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We consider an inverse (time-reverse) problem of thermal evolution of a viscous inhomogeneous incom-
pressible heat-conducting fluid describing dynamics of the Earth’s mantle. Present observations of geo-
physical fields (temperature, velocity) are incorporated in a three-dimensional dynamic model to
determine the initial conditions of the fields. We present and compare numerical techniques for solving
the inverse problem: backward advection, variational (adjoint), and quasi-reversibility methods. The
methods are applied to restore the evolution of the mantle structures such as rising plumes and
descending lithospheric plates.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many geodynamic problems can be described by mathematical
models, i.e., by a set of partial differential equations and boundary
and/or initial conditions defined in a specific domain. A mathemat-
ical model links the causal characteristics of a geodynamic process
with its effects. The aim of the direct mathematical problem is to
determine the relationship between the causes and effects of the
geodynamic process and hence to find a solution to the mathemat-
ical problem for a given set of parameters and coefficients. An in-
verse problem is the opposite of a direct problem. An inverse
problem is considered when there is a lack of information on the
causal characteristics (but information on the effects of the geo-
physical process exists). Inverse problems can be subdivided into
time-reverse or retrospective problems (e.g., to restore the devel-
opment of a geodynamic process), coefficient problems (e.g., to
determine the coefficients of the model equations and/or boundary
conditions), geometrical problems (e.g., to determine the location
of heat sources in a model domain or the geometry of the model
boundary), and some others. In this paper, we will consider
ll rights reserved.
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time-reverse (retrospective) problems of thermal evolution of the
Earth’s interior.

The Earth’s mantle is heated from the Earth’s core and from in-
side due to decay of radioactive elements. Since thermal convec-
tion in the mantle is described by heat advection and diffusion,
one can ask: is it possible to tell, from the present temperature
estimations of the Earth, something about the Earth’s temperature
in the geological past? Even though heat diffusion is irreversible in
the physical sense, it is possible to predict accurately the heat
transfer in the past without contradicting the basic thermody-
namic laws.

The inverse retrospective problem of thermal convection in the
mantle is an ill-posed problem, since the backward heat problem,
describing both heat advection and conduction through the mantle
backwards in time, possesses the properties of ill-posedness [1]. In
particular, the solution to the problem does not depend continu-
ously on the initial data. As for the existence and uniqueness of
the solution to the backward heat problem, they are proven for
several specific cases (we discuss it below). The authors do not
know any proven statements about existence and uniqueness of
the solution either to the direct or to the inverse thermal convec-
tion problem in three-dimensional cases.

To restore thermal structures in the mantle (e.g., ascending
plumes, that is, hot mantle rocks rising through the surrounding
colder rocks, and descending lithospheric plates, that is, cold
and hence dense rocks subsiding into the hotter mantle) in the
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geological past, data assimilation techniques can be used to con-
strain the initial conditions for the mantle temperature and velocity
from their present observations. The initial conditions so obtained
can then be used to run forward models of mantle dynamics to re-
store the evolution of mantle structures. Data assimilation can be
defined as the incorporation of observations (in the present) and
initial conditions (in the past) in an explicit dynamic model to pro-
vide time continuity and coupling among the physical fields (e.g.,
velocity, temperature). The basic principle of data assimilation is
to consider the initial condition as a control variable and to opti-
mize the initial condition in order to minimize the discrepancy be-
tween the observations and the solution of the model.

If heat diffusion is neglected, the present mantle temperature
and flow can be assimilated using the backward advection (BAD)
into the past. Two- and three-dimensional numerical approaches
to the solution of the inverse problem of the Rayleigh–Taylor insta-
bility were developed for a dynamic restoration of diapiric struc-
tures to their earlier stages (e.g. [2–5]). The mantle flow was
modeled backwards in time from present-day mantle density het-
erogeneities inferred from seismic observations (e.g. [6,7]). Both
direct (forward in time) and inverse (backward in time) problems
of the heat (density) advection are well-posed. This is because the
time-dependent advection equation has the same form of charac-
teristics for the direct and inverse velocity field (the vector velocity
reverses its direction, when time is reversed). Therefore, numerical
algorithms used to solve the direct problem of the gravitational
instability can also be used in studies of the time-reverse problems
by replacing positive time-steps with negative ones.

In sequential filtering a numerical model is computed forward
in time for the interval for which observations have been made,
updating the model each time where observations are available.
The sequential filtering was used to compute mantle circulation
models [8,9]. Despite sequential data assimilation well adapted
to mantle circulation studies, each individual observation influ-
ences the model state at later times. Information propagates from
the geological past into the future, although our knowledge of the
Earth’s mantle at earlier times is much poor than that at present.

The variational (VAR) data assimilation method has been pio-
neered by meteorologists and used very successfully to improve
operational weather forecasts (e.g. [10]). The data assimilation
has also been widely used in oceanography (e.g. [11]) and in hydro-
logical studies (e.g. [12]). However, the application of the method
to problems of geodynamics (dynamics of the solid Earth) is still
in its infancy. The use of VAR data assimilation in models of geody-
namics (to estimate mantle temperature and flow in the geological
past) has been put forward by Bunge et al. [13] and Ismail-Zadeh
et al. [14,15] independently in 2003. The VAR approach by Is-
mail-Zadeh et al. [15] is computationally less expensive, because
it does not involve the Stokes equation into the iterations between
the direct and adjoint problems, and this approach admits the use
of temperature-dependent viscosity. The VAR data assimilation
algorithm was employed to restore numerically models of present
prominent mantle plumes to their past stages [16] and to recover
the structure of mantle plumes prominent in the past from that
of present plumes weakened by thermal diffusion [17]. The VAR
method was recently used to study dynamics models of thermal
plumes and lithospheric plates in the mantle (e.g. [18,19]).

The use of the quasi-reversibility (QRV) method [20] implies the
introduction into the backward heat equation of the additional
term involving the product of a small regularization parameter
and a higher order temperature derivative. The data assimilation
in this case is based on a search of the best fit between the forecast
model state and the observations by minimizing the regularization
parameter. The modified QRV method was recently introduced in
geodynamic modeling and employed to assimilate data in models
of mantle dynamics [21,22].
The advances in numerical modeling and in data assimilation
attract an interest of the geophysical community dealing with
dynamics of the mantle structures. The aim of this paper is to re-
view the VAR and QRV data assimilation methods introduced by
the authors and to compare them with the BAD method used
widely in geodynamic modeling for years.
2. Mathematical statement of the problem and numerical
approach

We assume that the Earth’s mantle behaves as a Newtonian
incompressible fluid with a temperature-dependent viscosity and
infinite Prandtl number [23]. The mantle flow is described by heat,
motion, and continuity equations [23,24]. To simplify the govern-
ing equations, we make the Boussinesq approximation keeping
the density constant everywhere except for buoyancy term in the
equation of motion [25].

In the three-dimensional (3-D) model domain
X = [0,x1 = 3h] � [0,x2 = 3h] � [0,x3 = h], we consider the boundary
value problem for the flow velocity (it includes the Stokes equation
and the incompressibility equation subject to appropriate bound-
ary conditions)

rP ¼ divðgðTÞEÞ þ RaTe; x 2 X; ð1Þ
divu ¼ 0; x 2 X; ð2Þ
u � n ¼ 0; @us=@n ¼ 0; x 2 @X; ð3Þ

and the initial-boundary value problem for temperature (it includes
the heat equation subject to appropriate boundary and initial
conditions)

@T=@t þ u � rT ¼ r2T þ f ; t 2 ½0; #�; x 2 X; ð4Þ
r1T þ r2@T=@n ¼ T�; t 2 ½0; #�; x 2 @X; ð5Þ
Tð0;xÞ ¼ T0ðxÞ; x 2 X: ð6Þ

Here x = (x1,x2,x3) are the Cartesian coordinates; T, t, u, P, and g are
dimensionless temperature, time, velocity, pressure, and viscosity,
respectively; E = eij(u) = {oui/oxj + ouj/oxi} is the strain rate tensor;
ui are the velocity components; e = (0,0,1) is the unit vector; r is
the gradient operator; div is the divergence operator; f is the heat
source; n is the outward unit normal vector at a point on the model
boundary; us is the projection of the velocity vector onto the tan-
gent plane at the same point on the model boundary; [t = 0, t = #]
is the model time interval; r1 and r2 are some piecewise smooth
functions or constants such that r2

1 þ r2
2 – 0.

The Rayleigh number is defined as Ra ¼ agqref DTh3g�1
ref j�1,

where a is the thermal expansivity, g is the acceleration due to
gravity, qref and gref are the reference typical density and viscosity,
respectively; DT is the temperature contrast between the lower
and upper boundaries of the model domain; and j is the thermal
diffusivity. Length, temperature, and time are normalized by h,
DT, and h2j�1, respectively. The physical parameters of the fluid
(temperature, velocity, pressure, viscosity, and density) are as-
sumed to depend on time and on space coordinates. The mantle
behaves as a Newtonian fluid on geological time scales, and a
dimensionless temperature-dependent viscosity law [26] given by

gðTÞ ¼ exp
M

T þ G
� M

0:5þ G

� �

is used in the modeling, where M = [225/ln(r)] � 0.25ln(r), G = 15/
ln(r) � 0.5 and r is the viscosity ratio between the upper and lower
boundaries of the model domain. We consider the impermeability
condition with perfect slip on oX. The perfect slip, no slip (u = 0)
or their combinations are used as boundary conditions in modeling
of geodynamic processes [26]. In fact, our knowledge about the con-
ditions of motion at boundaries of a geological domain is limited.
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Meanwhile, the perfect slip (symmetry) condition approximates
well conditions at boundaries of a geological domain in many prac-
tical case studies. When the rates of the Earth’s surface motion are
available, the data are used to constrain the conditions at the upper
boundary of a numerical model.

Choosing r1, r2, and T* in a proper way we can specify temper-
ature or heat flux at the model boundaries. Surface temperatures
and heat flux are known in many geological domains, and therefore
the use of the data is straightforward in geodynamic modeling. By
Cu = {x : (x e oX) \ (x3 = l3)}, Cl = {x : (x e oX) \ (x3 = 0)}, and Cv ¼
[i¼1;2fx : ðx 2 XÞ \ ðxi ¼ 0Þg [ fx : ðx 2 XÞ \ ðxi ¼ liÞg, we denote
the parts of the model boundary that Cu [ Cl [ Cv ¼ @X. We as-
sume the constant temperature at the horizontal boundaries and
zero heat flux at vertical boundaries of the model domain:
r1(t,x) = 1, r2(t,x) = 0, and T*(t,x) = 0 at (t,x) e [0,#] � Cu;
r1(t,x) = 1, r2(t,x) = 0, and T*(t,x) = 1 at (t,x) e [0,#] � Cl; and
r1(t,x) = 0, r2(t,x) = 1, and T*(t,x) = 0 at (t,x) e [0,#] � Cv.

The direct problem of thermo-convective flow is formulated as
follows: find the velocity u = u(t,x), the pressure P = P(t,x), and the
temperature T = T(t,x) satisfying boundary value problem (1)–(3)
and initial-boundary value problem (4)–(6). We can formulate
the inverse problem in this case as follows: find the velocity, pres-
sure, and temperature satisfying boundary value problem (1)–(3)
and the final-boundary value problem which includes Eqs. (4)
and (5) and the final condition:

Tð#;xÞ ¼ T#ðxÞ; x 2 X; ð7Þ

where T0 is the temperature at time t = #.

3. Variational (VAR) method for data assimilation

In this section, we describe a variational approach to 3-D
numerical restoration of thermo-convective mantle flow (see de-
tails in [16]). The variational data assimilation is based on a search
of the best fit between the forecast model state and the observa-
tions by minimizing an objective functional (a normalized residual
between the target model and observed variables) over space at
each time step. To minimize the objective functional over time,
an assimilation time interval is defined and an adjoint model is
typically used to find the derivatives of the objective functional
with respect to the model states.

The method for variational data assimilation can be formulated
with a weak constraint (a generalized inverse) where errors in the
model formulation are taken into account [13] or with a strong
constraint where the model is assumed to be perfect except for
the errors associated with the initial conditions [15,16]. The gener-
alized inverse of mantle convection considers model errors, data
misfit and the misfit of parameters as control variables. Unfortu-
nately the generalized inverse presents a tremendous computa-
tional challenge and is difficult to solve in practice, and therefore,
the strong constraint makes the problem computationally
tractable.

We consider the following objective functional:

JðuÞ ¼ kTð#; �;uÞ � vð�Þk2
; ð8Þ

where k�k denotes the norm in the space L2(X) (the Hilbert space
with the norm defined as kyk ¼

R
X y2ðxÞdx

� �1=2). Since in what fol-
lows the dependence of solutions of the thermal boundary value
problems on initial data is important, we introduce these data
explicitly into the mathematical representation of temperature.
Here Tð#; �;uÞ is the solution of the problem (4)–(6) at the final time
#, which corresponds to some (unknown as yet) initial temperature
distribution u(x); v(x) = T(#,x;T0) is the known temperature distri-
bution at the final time, which corresponds to the initial tempera-
ture T0(�). The functional has its unique global minimum at value
u � T0 and J(T0) � 0, rJ(T0) � 0. The uniqueness of the global mini-
mum of the objective functional follows from the uniqueness of the
solution of the relevant boundary value problem for the heat equa-
tion and from a strong convexity of the functional [29]. Therefore, if
a solution to the backward heat problem exists, the solution is
unique.

To find the minimum of the functional we employ the gradient
method (k = 0, . . .,k�, . . .):

ukþ1 ¼ uk � bkrJðukÞ; u0 ¼ eT ; ð9Þ

bk ¼
JðukÞ=krJðukÞk; 0 6 k 6 k�;
1=ðkþ 1Þ; k > k�;

�
ð10Þ

where eT is an initial temperature guess, and k* is a natural number.
The minimization method belongs to a class of limited-memory
quasi-Newton methods [27], where approximations to the inverse
Hessian matrices are chosen to be the identity matrix. The gradient
of the objective functional rJ(uk) decreases steadily with the num-
ber of iterations providing the convergence, although the absolute
value of J(uk)/krJ(uk)k increases with the number of iterations,
and it can result in instability of the iteration process. To enhance
the rate of convergence and to stabilize the solution at the same
time, we perform initially several iterations (k* = 5) using bk =
J(uk)/krJ(uk)k and then replace the expression by bk = 1/(k + 1) as
described in (10).

Let us assume that the gradient of the objective functional
rJ(uk) is computed with an error and krJd(uk) �rJ(uk)k < d,
where rJd(uk) is the computed value of the gradient and d is a
constant. We introduce the function u1 ¼ u0 �

P1
k¼1bkrJðukÞ,

assuming that the infinite sum exists, and the function u1d ¼
u0 �

P1
k¼1bkrJdðukÞ as the computed value of u1. For stability of

the iteration method (9), the following inequality should be met:

ku1d �u1k ¼
X1
k¼1

bkðrJdðukÞ � rJðukÞÞ
�����

�����
6

X1
k¼1

bkkrJdðukÞ � rJðukÞk 6 d
X1
k¼1

bk:

If bk = 1/kp and p > 1, the sum
P1

k¼1bk is finite. We use p = 1, but the
number of iterations is limited, and therefore the iteration method
is conditionally stable, although the convergence rate of these iter-
ations is low.

The minimization algorithm requires the calculation of the gra-
dient of the objective functional, rJ. This can be done through the
use of the adjoint problem for the problem (4)–(6) with the rele-
vant boundary and initial conditions. In the case of the heat prob-
lem, the adjoint problem can be represented in the following form:

@W=@t þ u � rWþr2W ¼ 0; x 2 X; t 2 ð0; #Þ; ð11Þ

r1Wþ r2@W=@n ¼ 0; x 2 @X; t 2 ð0; #Þ; ð12Þ

Wð#; xÞ ¼ 2ðTð#;x;uÞ � vðxÞÞ; x 2 X: ð13Þ

We showed that the solution to the adjoint problem (11)–(13) is the
gradient of the objective functional (8): W(0, �) =rJ(u) [15].

Implementation of minimization algorithms requires the evalu-
ation of both the objective functional (8) and its gradient rJ. Each
evaluation of the objective functional requires an integration of the
model problem (4)–(6), whereas the gradient is obtained through
the backward integration of the adjoint problem (11)–(13). The
performance analysis shows that the CPU time required to evaluate
the gradient J is about the CPU time required to evaluate the objec-
tive functional itself, and this is because the direct and adjoint heat
problems are described by the same equations. Information on the
properties of the Hessian matrix (r2J) is important in many as-
pects of minimization problems [28]. To obtain sufficient condi-
tions for the existence of the minimum of the problem, the
Hessian matrix must be positive definite at T0 (optimal initial
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temperature). However, an explicit evaluation of the Hessian ma-
trix in our case is prohibitive due to the number of variables.

We describe now the algorithm for numerical solution of the
inverse problem (1)–(6) of thermal convection in the mantle using
the VAR method. A uniform partition of the time axis is defined
at points tn = # � dtn, where dt is the time step, and n successively
takes integer values from 0 to some natural number m = #/dt.
At each subinterval of time [tn+1, tn], the search of the temperature
T and flow velocity u at t = tn+1 consists of the following basic
steps:

Step 1. Given the temperature T = T(tn,x) at t = tn we solve a set
of linear algebraic equations derived from (1)–(3) in order to
determine the velocity u.
Step 2. The ‘advective’ temperature Tadv = Tadv(tn+1,x) is deter-
mined by solving the advection heat equation backward in
time, neglecting the diffusion term in (4). This can be done by
replacing positive time-steps by negative ones. Given the tem-
perature T = Tadv at t = tn+1 Steps 1 and 2 are then repeated to
find the velocity uadv = u(tn+1,x;Tadv).
Step 3. The heat equation (4) is solved with the boundary
condition (5) and the initial condition uk(x) = Tadv(tn+1,x),
k = 0,1,2, . . .,m forward in time using velocity uadv in order to
find T(tn,x;uk).
Step 4. The adjoint equation of (11) is then solved backward in
time with the boundary condition (12) and the initial condition
W(tn,x) = 2(T(tn,x;uk) � v(x)) using velocity u in order to deter-
mine rJ(uk) = W(tn+1,x;uk).
Step 5. The coefficient bk is determined from (10), and the tem-
perature is updated (i.e. uk+1 is determined) from (9).
Steps 3–5 are repeated until
dun ¼ JðunÞ þ krJðunÞk
2
< e; ð14Þ

where e is a small constant. Temperature uk is then considered
to be the approximation to the target value of the initial temper-
ature T(tn+1,x). And finally, Step 1 is used to determine the flow
velocity u(tn+1,x;T(tn+1,x)). Step 2 introduces a pre-conditioner
to accelerate the convergence of temperature iterations in Steps
3–5 at high Rayleigh number. At low Ra, Step 2 is omitted and
uadv is replaced by u. After these algorithmic steps, we obtain
temperature T = T(tn,x) and flow velocity u = u(tn,x) correspond-
ing to t = tn, n = 0, ...,m. Based on the obtained results, we can use
interpolation to reconstruct, when required, the entire process
on the time interval [0,#] in more detail.
Thus, at each subinterval of time we apply the VAR method to

the heat equation only, iterate the direct and conjugate problems
for the heat equation in order to find temperature, and determine
backward flow from the Stokes and continuity equations twice (for
‘advective’ and ‘true’ temperatures). The solution of the backward
heat problem is therefore reduced to solutions of series of forward
problems, which are known to be well-posed [29].

Although the VAR data assimilation technique described above
can theoretically be applied to many problems of mantle and lith-
osphere dynamics, a practical implementation of the technique for
modeling of real geodynamic processes backward in time (to re-
store the temperature and flow pattern in the past) is not a simple
task. Smoothness of the input (present) temperature and of the tar-
get (initial) temperature in the past is an important factor in back-
ward modeling.

Samarskii et al. [30] studied a one-dimensional (1-D) backward
heat diffusion problem and showed that the solution to this prob-
lem becomes noisy if the initial temperature guess is slightly per-
turbed, and the amplitude of this noise increases with the initial
perturbations of the temperature guess. They suggested using a
special filter to reduce the noise and illustrate the efficiency of
the filter. This filter is based on the replacement of iterations (9)
by the following iterative scheme:

Bðukþ1 �ukÞ ¼ �bkrJðukÞ; ð15Þ

where By = y �r2y. Unfortunately, employment of this filter in-
creases the number of iterations to obtain the target temperature
and it becomes quite expensive computationally, especially when
the model is three-dimensional. In practice, our approach to this
problem was to run the model backward to the point of time when
the noise becomes relatively large. Another way to reduce the noise
is to employ high-order adjoint [31] or regularization (e.g. [20,32])
techniques.

4. Quasi-reversibility (QRV) method for data assimilation

In this section, we describe a quasi-reversibility approach to 3-
D numerical restoration of thermo-convective mantle flow (see de-
tails in [21]). The principal idea of the quasi-reversibility method is
based on the transformation of an ill-posed problem into a well-
posed problem [20]. In the case of the backward heat equation, this
implies an introduction of an additional term into the equation,
which involves the product of a small regularization parameter
and higher order temperature derivative. The additional term
should be sufficiently small compared to other terms of the heat
equation and allow for simple additional boundary conditions.
The data assimilation in this case is based on a search of the best
fit between the forecast model state and the observations by min-
imizing the regularization parameter. The regularized backward
heat problem has the unique solution [20,36,40].

The transformation to the regularized backward heat problem is
not only a mathematical approach to solving ill-posed backward
heat problems, but has some physical meaning: it can be explained
on the basis of the concept of relaxing heat flux for heat conduction
(e.g. [33]). The classical Fourier heat conduction theory provides
the infinite velocity of heat propagation in a region. The instanta-
neous heat propagation is unrealistic, because the heat is a result
of the vibration of atoms and the vibration propagates in a finite
speed [34]. To accommodate the finite velocity of heat propaga-
tion, a modified heat flux model was proposed by Vernotte [33]
and Cattaneo [35].

To solve the inverse problem by the QRV method we suggested
to consider the following regularized backward heat problem to
define temperature in the past from the known temperature
T0(x) at present time t = # [21]:

@Tb=@t � ub � rTb ¼ r2Tb þ f � bKð@Tb=@tÞ; t 2 ½0; #�; x 2 X;

ð16Þ
r1Tb þ r2@Tb=@n ¼ T�; t 2 ð0; #Þ; x 2 @X; ð17Þ
r1@

2Tb=@n2 þ r2@
3Tb=@n3 ¼ 0; t 2 ð0; #Þ; x 2 @X; ð18Þ

Tbð#;xÞ ¼ T#ðxÞ; x 2 X; ð19Þ

where KðTÞ ¼ @4T=@x4
1 þ @

4T=@x4
2 þ @

4T=@x4
3, and the boundary value

problem to determine the fluid flow:

rPb ¼ �div½gðTbÞEðubÞ� þ RaTbe; x 2 X; ð20Þ
divub ¼ 0; x 2 X; ð21Þ
ub � n ¼ 0; @ðubÞs=@n ¼ 0; x 2 @X: ð22Þ

Hereinafter we refer to temperature T0 as the input temperature for
the problem (16)–(22). The core of the transformation of the heat
equation is the addition of a high-order differential expression
K(oTb/ot) multiplied by a small parameter b > 0. Note that Eq. (18)
is added to the boundary conditions to properly define the regular-
ized backward heat problem. The solution to the regularized back-
ward heat problem is stable for b > 0, and the approximate solution
to (16)–(22) converges to the solution of (1)–(5) and (7) in some
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spaces, where the conditions of well-posedness are met [36]. Thus,
the inverse problem of thermo-convective mantle flow is reduced to
determination of the velocity ub = ub(t,x), the pressure Pb = Pb(t,x),
and the temperature Tb = Tb(t,x) satisfying (16)–(22).

We seek a maximum of the following functional with respect to
the regularization parameter b:

d� kTðt ¼ #; �; Tbk
ðt ¼ 0; �ÞÞ � vð�Þk !max

k
; ð23Þ

bk ¼ b0qk�1; k ¼ 1;2; . . . ;R; ð24Þ

where Tk ¼ Tbk
ðt ¼ 0; �Þ is the solution to the regularized backward

heat problem (16)–(18) at t = 0; T(t = #, �;Tk) is the solution to the
heat problem (4) and (5) at the initial condition T(t = 0, �) = Tk at time
t = #; v is the known temperature at t = # (the input data on the
present temperature); small parameters b0 > 0 and 0 < q < 1 are de-
fined below; and d > 0 is a given accuracy. When q tends to unity,
the computational cost becomes large; and when q tends to zero,
the optimal solution can be missed.

The prescribed accuracy d is composed from the accuracy of the
initial data and the accuracy of computations. When the input
noise decreases and the accuracy of computations increases, the
regularization parameter is expected to decrease. However, esti-
mates of the initial data errors are usually inaccurate. Estimates
of the computation accuracy are not always known, and when they
are available, the estimates are coarse. In practical computations, it
is more convenient to minimize the following functional with re-
spect to (24)

kTbkþ1
ðt ¼ 0; �Þ � Tbk

ðt ¼ 0; �Þk !min
k
; ð25Þ

where misfit between temperatures obtained at two adjacent itera-
tions must be compared. To implement the minimization of tem-
perature residual (23), the inverse problem (16)–(22) must be
solved on the entire time interval as well as the direct problem
(1)–(6) on the same time interval. This at least doubles the amount
of computations. The minimization of functional (25) has a lower
computational cost, but it does not rely on a priori information.

We describe now the numerical algorithm for solving the in-
verse problem of thermal convection in the mantle using the
QRV method. Consider a uniform temporal partition tn = # � dtn
(as defined in Section 3) and prescribe some values to parameters
b0, q, and R (e.g., b0 = 10�3, q = 0.1, and R ¼ 10). A sequence of the
values of the regularization parameter {bk} is defined according to
(24). For each value b = bk model temperature and velocity are
determined in the following way.

Step 1. Given the temperature Tb = Tb(t, �) at t = tn, the velocity
ub = ub(tn, �) is found by solving problem (20)–(22). This velocity
is assumed to be constant on the time interval [tn+1, tn].
Step 2. Given the velocity ub = ub(tn, �), the new temperature
Tb = Tb(t, �) at t = tn+1 is found on the time interval [tn+1, tn] sub-
ject to the final condition Tb = Tb(tn, �) by solving problem
(16)–(19).
Step 3. Upon the completion of Steps 1 and 2 for all
n = 0,1, . . .,m, the temperature Tb = Tb(tn, �) and the velocity
ub = ub(tn, �) are obtained at each t = tn. Based on the computed
solution we can find the temperature and flow velocity at each
point of time interval [0,#] using interpolation.
Step 4a. The direct problem (4)–(6) is solved assuming that the
initial temperature is given as Tb = Tb(t = 0, �), and the tempera-
ture residual (23) is found. If the residual does not exceed the
predefined accuracy, the calculations are terminated, and the
results obtained at Step 3 are considered as the final ones.
Otherwise, parameters b0, q, and R entering Eq. (24) are modi-
fied, and the calculations are continued from Step 1 for new set
{bk}.
Step 4b. The functional (25) is calculated. If the residual between
the solutions obtained for two adjacent regularization parame-
ters satisfies a predefined criterion (the criterion should be
defined by a user, because no a priori data are used at this step),
the calculation is terminated, and the results obtained at Step 3
are considered as the final ones. Otherwise, parameters b0, q,
and R entering Eq. (24) are modified, and the calculations are
continued from Step 1 for new set {bk}.

In a particular implementation, either Step 4a or Step 4b is used
to terminate the computation. This algorithm allows (i) organizing
a certain number of independent computational modules for vari-
ous values of the regularized parameter bk that find the solution to
the regularized problem using Steps 1–3 and (ii) determining a
posteriori an acceptable result according to Step 4a or Step 4b.

Stability of the solution to (16)–(19) is difficult to analyse.
Samarskii and Vabischevich [36] estimated the stability of the
solution to 1-D regularized backward heat problem with respect
to the initial condition expressed in the form Tbðt ¼ t�; xÞ ¼ T�b:

kTbðt;xÞkþbk@Tbðt;xÞ=@xk6CðkT�bkþbk@T�b=@xkÞexp½ðt� � tÞb�1=2�;

where C is a constant. According to this estimation, the natural log-
arithm of errors will increase in a direct proportion to time and in-
versely to the root square of the regularization parameter.

5. Numerical methods

To solve the heat problem (4)–(6) and the regularized heat
problem (16)–(19), finite differences are used to derive discrete
equations. We employ (i) the characteristic-based semi-Lagrangian
(CBSL) method [37,38] to calculate the derivatives of the convec-
tive term in the heat equation (4); (ii) the total variation diminish-
ing (TVD) method [39] to calculate the derivatives of the
convective term in the regularized heat equation (16); (iii) central
differences to approximate the derivatives of the diffusion and reg-
ularizing terms in (4) and (16), respectively; and (iv) the two-lay-
ered additively averaged scheme to represent the 3-D spatial
discrete operators associated with the diffusion and regularizing
terms as 1-D discrete operators, and the component-wise splitting
method to solve the set of the discrete equations [40].

The Eulerian finite-element method is employed to solve the
Stokes problems (1)–(3) and (20)–(22). The numerical approach
is based on the representation of the flow velocity by a two-com-
ponent vector potential [41] eliminating the incompressibility
equation from the relevant boundary value problems. This poten-
tial is approximated by tri-cubic splines, which allows one to effi-
ciently interpolate the velocity field. Such a procedure results in a
set of linear algebraic equations with a symmetric positive-definite
banded matrix. We solve the set of discrete equations by the con-
jugate gradient method [42]. A detailed description of the numer-
ical methods used in the modelling is presented in appendices of
[21].

To stabilize the numerical solution to time-dependent advec-
tion-dominated problems, several techniques were introduced
(e.g. [43,44]). When oscillations arise, the numerical solution will
have larger total variation of temperature (that is, the sum of the
variations of temperature over the whole computational domain
will increase with oscillations). The TVD method (we employ in
the modelling) is designed to yield well-resolved, non-oscillatory
discontinuities by enforcing that the numerical schemes generate
solutions with non-increasing total variations of temperature in
time, thus no spurious numerical oscillations are generated [45].
The TVD method describes convection problems with large tem-
perature gradients very well, because it is at most first-order accu-
rate at local temperature extrema [46].
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Accuracy of the numerical solution to the 3-D Stokes equation
coupled with the advection equation was checked by comparing
the solution with the partial analytical solution to the problem
[47]. Because the 3-D spatial discrete operator associated with
the diffusion term of the heat equation was split into 1-D discrete
operators, Korotkii and Tsepelev [48] tested the stability of the sol-
ver in a 1-D case. Accuracy of the numerical solutions to the Stokes
and heat problems was tested by the following procedure: (i) em-
ploy a trial continuously differentiable function and insert it in-
stead of the unknown function; (ii) obtain the right-hand side of
the governing equation and solve numerically the equation with
the right-hand side so obtained; and (iii) finally compare the
numerical solution with the trial function [41].
6. Applications of data assimilation methods

6.1. Restoration of mantle plumes: synthetic case study

Thermal plumes in the Earth’s mantle evolve in three distin-
guishing stages: (i) immature, i.e., an origin and initial rise of the
plumes; (ii) mature, i.e., plume–lithosphere interaction, gravity
spreading of plume head and development of overhangs beneath
the bottom of the lithosphere, and partial melting of the plume
material; and (iii) overmature, i.e., slowing-down of the plume rise
and fading of the mantle plumes due to thermal diffusion [17]. The
ascent and evolution of mantle plumes depend on the properties of
the source region (that is, the thermal boundary layer) and the vis-
cosity and thermal diffusivity of the ambient mantle. The proper-
ties of the source region determine temperature and viscosity of
the mantle plumes. Structure, flow rate, and heat flux of the
plumes are controlled by the properties of the mantle through
which the plumes rise. While properties of the lower mantle
(e.g., viscosity, thermal conductivity) are relatively constant during
about 150 million years lifetime of most plumes [23], source region
properties can vary substantially with time as the thermal basal
boundary layer feeding the plume is depleted of hot material. Com-
plete local depletion of this boundary layer cuts the plume off from
its source. Laboratory [49] and numerical experiments forward in
time [17] show that thermal plumes start disappearing from bot-
tom up due to a week feeding of plumes by the hot material from
the boundary layer.

To compare how three techniques for data assimilation can re-
store the prominent state of the thermal plumes in the past from
their ‘present’ weak state, we develop initially a forward model
from the prominent state of the plumes (Fig. 1a) to their diffusive
state in 100 million years (Fig. 1b). To do it we solve numerically
Eqs. (1)–(6) in the domain X (where h = 2800 km), which is divided
into 50 � 50 � 50 rectangular finite elements to approximate the
vector velocity potential by tri-cubic splines; a uniform grid
148 � 148 � 148 is employed for approximation of temperature,
velocity, and viscosity.

We apply the QRV, VAR, and BAD methods to restore the plumes
from their weak state and present the results of the restoration and
temperature residuals (between the initial temperature for the for-
ward model and the temperature assimilated to the same age) in
Fig. 1. The VAR method (Fig. 1d and g) provides the best perfor-
mance for the diffused plume restoration. The BAD method
(Fig. 1e and h) cannot restore the diffused parts of the plumes, be-
cause temperature is only advected backward in time. The QRV
method (Fig. 1c and f) restores the diffused thermal plumes, mean-
while the restoration results are not so perfect as in the case of VAR
method. Although the accuracy of the QRV data assimilation is low-
er compared to the VAR data assimilation, the QRV method does not
require any additional smoothing of the input data and filtering of
temperature noise as the VAR method does.
The iteration scheme (9) and (10) of the VAR method provides
the solution of high accuracy because of the following reasons.
The function v(�) is not an arbitrary function, but it is the solution
to (4)–(6). The adjoint problem (11)–(13) is solved by the same
numerical method and the same numerical code as the direct prob-
lem (4)–(6). To improve the solution accuracy (as well as the solu-
tion convergence), we introduce preconditioned velocity uadv

reducing errors associated with an inaccuracy in determination
of v(�).

6.2. Restoration of a descending lithosphere: geophysical case study

In this section, we present a quantitative model of the thermal
evolution of the descending lithospheric slab in the SE-Carpathians
using the QRV method for assimilation of present crust/mantle
temperature and flow in the geological past [22]. The model of
the present temperature of the crust and upper mantle is esti-
mated from body wave seismic velocity anomalies [50] and heat
flux data [51] and is assimilated into Miocene times (22 mil-
lion years ago).

To minimize boundary effects, the studied region
(650 � 650 km2 and 440 km deep, see Fig. 2a) has been bordered
horizontally by 200 km area and extended vertically to the depth
of 670 km. Therefore we consider a rectangular 3-D domain
X = [0,x1 = l1 = 1050 km] � [0,x2 = l2 = 1050 km] � [0,x3 = h = 670 -
km] for assimilation of present temperature and mantle flow be-
neath the SE-Carpathians.

Our ability to reverse mantle flow is limited by our knowledge
of past movements in the region, which are well constrained only
in some cases. In reality, the Earth’s crust and lithospheric mantle
are driven by mantle convection and the gravitational pull of dense
descending slabs. However, when a numerical model is con-
structed for a particular region, external lateral forces can influence
the regional crustal and uppermost mantle movements. Yet in or-
der to make useful predictions that can be tested geologically, a
time-dependent numerical model should include the history of
surface motions. Since this is not currently achievable in a dynam-
ical way, we prescribe surface motions using velocity boundary
conditions.

The heat flux through the vertical boundaries of the model do-
main X is set to zero. The upper and lower boundaries are assumed
to be isothermal surfaces. The present temperature above 440 km
depth is derived from the seismic velocity anomalies and heat flow
data. We use the adiabatic geotherm for potential temperature
1750 K [52] to define the present temperature below 440 km
(where seismic tomography data are not available). Eqs. (16)–
(22) with the specified boundary and initial conditions are solved
numerically.

The numerical models, with a spatial resolution of
7 km � 7 km � 5 km, were run on parallel computers. To estimate
the accuracy of the results of data assimilation, we employ the
temperature and mantle flow restored to the time of 22 mil-
lion years ago as the initial condition for a model of the slab evolu-
tion forward in time, run the model to the present, and analyze the
temperature residual (the difference between the present temper-
ature and that predicted by the forward model with the restored
temperature as an initial temperature distribution). The maximum
temperature residual does not exceed 50�.

A sensitivity analysis was performed to understand how stable
is the numerical solution to small perturbations of input (present)
temperatures. The model of the present temperature has been
perturbed randomly by 0.5–2% and then assimilated to the past
to find the initial temperature. A misfit between the initial tem-
peratures related to the perturbed and unperturbed present tem-
perature is rather small (2–4%) which proves that the solution is
stable.
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Fig. 1. Model of mantle plume evolution forward in time (a and b; r = 20). Assimilation of the mantle temperature and flow to the time of 100 million years ago and
temperature residuals between the temperature model in the past (a) and the temperature assimilated to the same age starting from the present temperature model (b),
using the QRV (c and f; b = 10�7), VAR (d and g), and BAD (e and h) methods, respectively.
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Fig. 2a presents the 3-D thermal image of the slab and pattern of
contemporary flow induced by the descending slab. Note that the
direction of the flow is reversed, because we solve the problem
backward in time: cold slab move upward during the numerical
modeling. The 3-D flow is rather complicated: toroidal (in horizon-
tal planes) flow at depths between about 100 and 200 km coexists
with poloidal (in vertical planes) flow. The geometry of the re-
stored slab is shown in Fig. 2b–d. The numerical results were com-
pared to that obtained by the backward advection of temperature
(using the BAD method): the maximum temperature residual in
the case of the BAD assimilation is found to be about 360�. The ne-
glect of heat diffusion leads to an inaccurate restoration of mantle
temperature, especially in the areas of low temperature and high
viscosity. The similar results for the BAD data assimilation have
been obtained in the synthetic case study (see Fig. 1e and h). The
VAR method was not employed to assimilate the present temper-
ature, because computations in this case become quite time-con-
suming due to the unavoidable need to smooth the solution and
to filter temperature noise.

7. Comparison of the methods for data assimilation

In this section, we compare the VAR, QRV, and BAD methods in
terms of solution stability, convergence, and accuracy, time inter-
val for data assimilation, analytical and algorithmic works, and
computer performance (see Tables 1 and 2). The VAR data assimi-
lation assumes that the direct and adjoint problems are con-
structed and solved iteratively forward in time. The structure of



Fig. 2. Model of a descending lithosphere. 3-D thermal shape of the lithospheric slab and contemporary flow induced by the slab descending in the mantle (a). Snapshots of
the 3-D thermal shape of the slab and pattern of mantle flow 11 million years ago (b), 16 million years ago (c), and 22 million years ago (d). Upper panel: top view; lower
panel: side view from the SE toward NW. Arrows illustrate the direction and magnitude of the flow. The marked sub-domain of the model domain (a) presents the region
around the Vrancea shown in b–d. The surfaces marked by blue, dark cyan, and light cyan illustrate the surfaces of 0.07, 0.14, and 0.21 temperature anomaly dT, respectively,
where dT = (Thav � T)/Thav, and Thav is the horizontally averaged temperature. The top surface presents the topography. (For interpretation of the references in color in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Comparison of methods for data assimilation in models of mantle dynamics.

QRV VAR BAD

Method Solving the regularized backward heat problem
with respect to parameter b

Iterative sequential solving of the direct and
adjoint heat problems

Solving of heat advection equation
backward in time

Solution’s stability Stable for parameter b to numerical errors and
conditionally stable for parameter b to arbitrarily
assigned initial conditions (numerically)

Conditionally stable to numerical errors
depending on the number of iterations
(theoretically) and unstable to arbitrarily
assigned initial conditions (numerically)

Stable theoretically and numerically

Solution’s
convergence

Numerical solution to the regularized backward
heat problem converges to the solution of
the backward heat problem in the special
class of admissible solutions

Numerical solution converges to the exact
solution in the Hilbert space

Not applied

Solution’s accuracy Acceptable accuracy for both synthetic
and geophysical data

High accuracy for synthetic data Low accuracy for both synthetic and geophysical
data in conduction-dominated mantle flow

Time interval for data
assimilation

Limited by the characteristic thermal
diffusion time

Limited by the characteristic thermal
diffusion time and the accuracy of the
numerical solution

No specific time limitation; depends on
mantle flow intensity

Analytical work Choice of the regularizing operator Derivation of the adjoint problem No additional analytical work
Algorithmic work New solver for the regularized equation

should be developed
No new solver should be developed Solver for the advection equations is to

be used
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the adjoint problem is identical to the structure of the original
problem, which considerably simplifies the numerical implemen-
tation. However, the VAR method imposes some requirements
for the mathematical model (i.e., a derivation of the adjoint prob-
lem). Moreover, for an efficient numerical implementation of the
VAR method, the error level of the computations must be adjusted
to the parameters of the algorithm, and this complicates
computations.

The QRV method allows employing sophisticated mathematical
models (because it does not require derivation of an adjoint prob-
lem as in the VAR data assimilation) and hence expands the scope
for applications in geodynamics (e.g., thermo-chemical convection,
phase transformations in the mantle). It does not require that the
desired accuracy of computations be directly related to the param-
eters of the numerical algorithm. However, the regularizing opera-
tors usually used in the QRV method enhance the order of the
system of differential equations to be solved.

The BAD is the simplest method for data assimilation in models
of mantle dynamics, because it does not require any additional
work (neither analytical nor computational). The major difference
between the BAD method and two other methods (VAR and QRV
methods) is that the BAD method is by design expected to work
(and hence can be used) only in advection-dominated heat flow.
In the regions of high temperature/low mantle viscosity, where



Table 2
Performance of data assimilation methods.

Method CPU time for one time step (circa, in s)

Solving the Stokes
problem using
50 � 50 � 50 finite
elements

Solving the backward heat
problem using 148 � 148 � 148
finite difference mesh

Total

BAD 180 2.5 182.5
QRV 100–180 3 103–183
VAR 360 1.5n 360 + 1.5n
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heat is transferred mainly by convective flow, the use of the BAD
method is justified, and the results of numerical reconstructions
can be considered to be satisfactory. Otherwise, in the regions of
conduction-dominated heat flow (due to either high mantle viscos-
ity or high conductivity of mantle rocks), the use of the BAD meth-
od cannot even guarantee any similarity of reconstructed
structures. If mantle structures are diffused significantly, the
remaining features of the structures can be only backward ad-
vected with the flow.

If a thermal feature created, let us say, hundreds million years
ago has completely diffused away by the present, it is impossible
to restore the feature, which was more prominent in the past.
The time to which a present thermal structure in the upper mantle
can be restored should be restricted by the characteristic thermal
diffusion time, the time when the temperatures of the evolved
structure and the ambient mantle are nearly indistinguishable
[16]. In fact, the time duration for which data assimilation methods
can provide reasonable results is much shorter than the character-
istic thermal diffusion time interval. The time interval for the VAR
data assimilation depends strongly on smoothness of the input
data and the solution. The time interval for the BAD data assimila-
tion depends on the intensity of mantle convection: it is short for
conduction-dominated heat transfer and becomes longer for
advection-dominated heat flow. We note that in the absence of
thermal diffusion the backwards advection of a low-density fluid
in the gravity field will finally yield a uniformly stratified, inverted
density structure, where the low-density fluid overlain by a dense
fluid spreads across the lower boundary of the model domain to
form a horizontal layer. Once the layer is formed, information
about the evolution of the low-density fluid will be lost, and hence
any forward modeling will be useless, because no information on
initial conditions will be available.

The QRV method can provide stable results within the charac-
teristic thermal diffusion time interval. However, the length of
the time interval for QRV data assimilation depends on several fac-
tors. Samarskii and Vabishchevich [36] estimated the temperature
misfit between the solution to the backward heat conduction prob-
lem and the solution to the regularized backward heat conduction
equation and evaluated the time interval 0 6 t 6 t* of data assimi-
lation for which the temperature misfit would not exceed a pre-
scribed value. The time duration of data assimilation depends on
a regularization parameter, errors in the input data, and smooth-
ness of the temperature function.

Computer performance of the data assimilation methods can be
estimated by a comparison of CPU times for solving the inverse
problem of thermal convection. Table 2 lists the CPU times re-
quired to perform one time-step computations on 16 processors.
The CPU time for the case of the QRV method is presented for a gi-
ven regularization parameter b; in general, the total CPU time in-
creases by a factor of R, where R is the number of runs required
to determine the optimal regularization parameter b*. The numer-
ical solution of the Stokes problem (by the conjugate gradient
method) is the most time consuming calculation: it takes about
180 s to reach a high accuracy in computations of the velocity po-
tential. The reduction in the CPU time for the QRV method is at-
tained by employing the velocity potential computed at bi as an
initial guess function for the conjugate gradient method to com-
pute the vector potential at bi+1. An application of the VAR method
requires to compute the Stokes problem twice to determine the
‘advected’ and ‘true’ velocities [16]. The CPU time required to com-
pute the backward heat problem using the TVD solver is about 3 s
in the case of the QRV method and 2.5 s in the case of the BAD
method. For the VAR case, the CPU time required to solve the direct
and adjoint heat problems by the semi-Lagrangian method is
1.5 � n, where n is the number of iterations in the gradient method
used to minimize the cost functional (Eq. (8)).
8. Conclusion

Data assimilation methods are useful tools for improving our
understanding of the thermal and dynamic evolution of the Earth’s
structures. We have presented the VAR and QRV methods for data
assimilation and their realizations with the aim to restore the evo-
lution of the Earth’s thermal structures. We have obtained reason-
able scenarios for the evolution of mantle structures since the
geological past, which are based on the measurements of the
Earth’s temperature, heat flux, and surface motions. The basic
knowledge we have gained from the case studies is the dynamics
of the Earth interior in the past, which could result in its present
dynamics.

The VAR and QRV methods have been compared to the BAD
method. It is shown that the BAD method can be employed only
in models of advection-dominated mantle flow (that is, in the re-
gions where the Rayleigh number is high enough, >107), whereas
the VAR and QRV methods are suitable for the use in models of
conduction-dominated flow (lower Rayleigh numbers). The VAR
method provides a higher accuracy in restoration of mantle struc-
tures compared to the QRV method, but it encounters the problem
of increasing noise (without proper smoothing of data and numer-
ical solutions). Meanwhile the QRV method can be applied to
assimilate both smooth and non-smooth data. Depending on a geo-
dynamic problem one of the three methods can be employed in
solving of inverse retrospective problems of Earth’s mantle
dynamics.

The present mantle temperature estimated from seismic
tomography, the surface movements based on geodetic measure-
ments, and initial and boundary conditions bring uncertainties in
data assimilation. The seismic tomography imaging of the Earth
and geodetic measurements have their own uncertainties and lim-
itations. The conditions at the boundaries of the model domain
used in the data assimilation are, of course, an approximation to
the real temperature, heat flux, and movements, which are practi-
cally unknown and, what is more important, may change over time
at these boundaries. The results of data assimilation will hence de-
pend on the model boundary conditions. Moreover, errors associ-
ated with the knowledge of the temperature (or heat flux)
evolution or of the regional horizontal surface movements can
propagate into the past during data assimilation.

A part of the scientific community may maintain scepticism
about the inverse retrospective modeling of thermal evolution of
the Earth interior. This scepticism may partly have its roots in
our poor knowledge of the Earth’s present structure and its physi-
cal properties and related uncertainties which cannot allow for rig-
orous numerical paleoreconstructions of the evolution of Earth’s
mantle structures. An increase in the accuracy of seismic tomogra-
phy inversions and geodetic measurements, improvements in the
knowledge of gravity and geothermal fields, and more complete
experimental data on the physical and chemical properties of
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mantle rocks will facilitate reconstructions of thermal structures in
the Earth’s mantle.
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