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(Rundle et al., 2000)

SEISMOGENESIS

To get some insight on 
earthquake occurrence, 
is similar to deduce the 
reality of the external 
world from the 
imperfect shadows 
projected on the wall of 
the cave of Plato’s 
myth.
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SEISMOMETER: A DISCRIMINATOR
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The Modeling Process

Model World

Mathematical Model
(Equations)

Real World

Occam’s Razor*

Interpret and Test
(Validate)

Formulate Model
World Problem

Model 
Results

Mathematical 
Analysis

Solutions,
Numerics

*Occams’s Razor: 
“Entia non sunt multiplicanda
praeter necessitatem”

“Things should not be
multiplied without good reason”
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The Modeling Process

Real World Model World

OBSERVATIONS ITS CHARACTERIZATION
AND INTERPRETATION

STATISTICS:   the art and science of making 
sense of discrepant data
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Typical problem of statistics: to detect a real systematic “effect”, and 
measure its size, when the data are affected by errors and/or by
natural variability of the phenomena in question.

Techniques for dealing with these situations must depend on 
methods of describing patterns of variability as well as methods of 
interpreting discrepant data.

Roughly speaking, the descriptive patterns are supplied by 
probability theory, and the interpretative, inferential, conclusion-
drawing parts make up statistical theory. 

THE RULES OF THE GAME

EXAMPLE.
GEOMAGNETISM:
SECULAR VARIATION
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PART 1: 
CHARACTERIZATION OF 
OBSERVATIONS
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OBSERVATIONS: THE SEISMIC CATALOG

seismic source   +   earthquake coordinates

Seismic source:                 - strength M0 or Mw

- spatial orientation of 
slip (usually not 
accounted for)

Earthquake coordinates:   - hypocentral location

- origin time 
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QUANTIFICATION OF OBSERVATIONS
Basic and robust facts of earthquake phenomenology:

- Gutenberg-Richter law (strength)

(0.8 ≤ b ≤ 1.2)

- Omori’s law (temporal occurrence)

(p ~ 1)

- The spatial distribution of epicenters in fault’s 
systems is fractal.

UNIVERSAL LAWS

log ( ) logN m bm a= − +

( )
( ) p

kn t
t c

=
+
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GUTENBERG-RICHTER LAW

[Bull. Seism. Soc. Am., 34: 185-188 (1944)]
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log logN bm a=− +

SEISMICITY. 1
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[Turcotte (1997)]

SEISMICITY. 2
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[Turcotte (1997)]

SEISMICITY. 3

log logN bm a= − +
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EXTENSION OF GUTENBERG-RICHTER LAW

As already said, originally, the G-R law was written as

( ) ( )log , ub
r lbN M a b M M M M M= − − ≤ ≤

where N is the annual number of earthquakes of magnitude M or 
greater, Mlb and Mub are the lower and higher magnitude cutoffs. The 
coefficient a characterizes the expected level of seismic activity in the 
area, and b reflects changes in the number earthquakes in successive 
magnitude ranges. Mr refers to a reference magnitude, and has the 
meaning of a characteristic size; very often Mr does not appear in the 
formulation.



Advanced School on NLD&EP, ICTP          
Trieste, 28 Sep - 10 Oct.  2009

16

EXTENSION OF GUTENBERG-RICHTER LAW

Kossobokov and Mazhkenov (1994) generalized G-R law to make the 
parameter b to be comparable in the different seismic zones, of different 
size.

Assume that a sequence of earthquakes is self-similar in space, 
and let N(M, L) be the expected annual of number earthquakes in an 
area of linear dimension L. 

To eliminate the influence of clustering consider mainshocks only.

By assuming similarity, the correspondence between N(M, L) and N(M)
can be written as

( ) ( )( ), CN M L N M L l=

where N(M) = N(M, l), l is the characteristic length of the region and C
reflects spatial similarity of set of epicenters. Rearranging:

( ) ( )log , 5 logN M L A B M C L= − − +
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G-R LAW: PHYSICAL JUSTIFICATION

Statistical mechanics tells us that power law statistics (absence of 
characteristic sizes) appears when close to a critical point that defines 
a continuous phase transition.

Hence, formally we can assimilate the occurrence of an earthquake to 
a continuous phase transition order – disorder.
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HOWEVER … FAILURE OF G – R LAW?

• Two different branches in the frequency size 
scaling relation have been reported in the 
literature:

• Knopoff (PNAS, 97 (2000)11880), M ~ 4.8
• Kanamori & Heaton (Geophys. Mon. 120 

(2000) 147), MW > 4.5 and MW < 2.
• Ben-Zion & Zhu (Geophys. J. Int., 148(2002), 

F1-F5). ML ~ 3.5.



Advanced School on NLD&EP, ICTP          
Trieste, 28 Sep - 10 Oct.  2009

19

(Ben-Zion& Zhu)
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(Kanamori & Heaton)
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(Knopoff, 2000)
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The binned distribution densities of magnitudes in both the complete 
and the declustered catalogs of earthquakes in the Southern 
California region have two significantly different branches with
crossover magnitude near M = 4.8. In the case of declustered 
earthquakes, the b-values on the two branches differ significantly 
from each other by a factor of about two. The absence of self-
similarity across a broad range of magnitudes in the distribution of 
declustered earthquakes is an argument against the application of 
an assumption of scale-independence to models of main-shock 
earthquake occurrence. The presumption of scale-independence for 
complete local earthquake catalogs is attributable, not to a universal 
process of self-organization leading to future large earthquakes, but 
to the universality of the process that produces aftershocks, 
which dominate complete catalogs.

However, the G-R law, with b a constant across a wide range of 
magnitudes, is indeed a valid property of the distribution 
density. (Knopoff, 2000)
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ONE SLOPE OR TWO? (Main et al., 1999)

In analyzing data from the Krafla fissure in the north of Iceland, a 
significant break of slope was find:

Fracture width (opening 
displacement) u versus 

length l. The data are 
shown on log-log scales 

using natural 
logarithms. The best 

fitting lines using a 
Bayesian method are 

shown. The location of 
the best fitting break of 

slope is indicated by the 
vertical dashed line. 
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HOWEVER ...  (Main, 2000)

We examine the problem in a forward modeling mode by adding a realistic 
degree of statistical scatter to ideal incremental frequency-moment 
distributions of various commonly used forms. 

Adopting a priori the assumption of a piecewise linear distribution, we 
find in each case apparently statistically distinct breaks of slope that 
are not present in the parent distribution. 

These breaks of slope are artifacts produced by a combination of
(a) high-frequency noise introduced by the random statistical scatter, 
(b) the more gradual natural roll-over in the cumulative frequency data 

near the maximum seismic moment, and 
(c) a systematic increase in the apparent regression coefficient due to the 

natural smoothing effect of the use of cumulative frequency data. 
Therefore, if there is no apparent break of slope in the 
incremental distribution, it is unwise to interpret the 
cumulative-frequency data uniquely in terms of a break 
in slope. 
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DEPARTURES OF THE G-R LAW ?

Rundle (1993) suggested that departures from simple Gutenberg-Richter 
scaling are apparently due, at very large magnitudes, to the finite width of the 
brittle layer, and at very small magnitudes to the finite thickness of the inelastic 
fault zone. 

Gutenberg-Richter Law: the cumulative frequency dn0/dt of events with 
magnitude larger than m is given by

0
0 10 10A bmdn dt −=

A0 characterizes the level of seismicity of the fault system, and the value of b
determines the frequency of occurrence of large events relative to small ones. 
It is widely accepted that b ≈ 1.

The "brittle" seismogenic part of Earth is for the most part the uppermost 10-50 
km of Earth's lithosphere. 
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Earthquakes of intermediate size with magnitudes up to m ~ 6 have source 
dimensions smaller than ~ 10 km and are thus relatively uninfluenced by the 
finite width of the brittle lithosphere.
Large events with m ~ 7 and above have a length L that can greatly exceed the 
width of the brittle lithosphere. As a result, the way in which slip scales with 
event size changes.
The expected values for b for intermediate size events is bI ≈ 1 and for large 
events is bL ≈ 1.5.
The departure from strict Gutenberg-Richter scaling at large magnitudes is 
apparently related to the finite depth of the brittle layer. The slip in these events 
reached saturation when the depth of the earthquake roughly equaled the depth 
extent of the brittle seismogenic zone.
There may also be a departure from GR scaling at very small magnitudes. It 
has been observed a cumulative magnitude-frequency relation for small events 
that falls significantly below the rate given by GR with b ≈ 1 as m decreases 
below some cutoff magnitude mc , where typically mc is in the range of 1 to 3.

DEPARTURES OF THE G-R LAW ?
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DEPARTURES OF THE G-R LAW ?

It can be argued that very small events have a fixed source size λc and that the 
moment is determined only by the slip, which is thus independent of source 
size. This is in contrast to intermediate size events, in which slip scales linearly
with source radius, and large events, in which slip is proportional to the depth of 
the brittle layer and thus saturates. 
Thus, in both the small and large events, slip is independent of source 
size, and the resulting frequency of events is less than predicted by GR. 
Based on statistical mechanics grounds, Rundle recovers GR law for 
intermediate magnitude events and propose new relations for large and small 
earthquakes:

1.510 10 large events

10 log 1 10 small events

L

I c c

A m
L

A m m m
S

d n dt

d n dt

−

− −

=

⎡ ⎤= +⎣ ⎦
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TRUNCATED
POWER LAWS
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NOISE 1/f. 1
[Dutta & Horn (1981)]

1/f noise refers to fluctuations which have spectral densities varying approximately as 
1/f over a large range of frequency, f. Fluctuations with such spectra have been 
observed in a tremendous variety of dissimilar physical systems. Is there a 
universality in the underlying equations which leads to 1/f noise in many apparently 
unrelated systems? The shape of the power spectrum uniquely characterizes the 
process only if it is stationary and Gaussian (all higher-order correlations are zero).

In a generic way, 1/f noise can be contemplated as an activated random process. A 
random process with a characteristic time τ has a Debye-Lorentzian spectrum

1
)( 22 +
∝

τω
τωS

Any spectrum may be generated by postulating an appropriate distribution D(τ) of 
the characteristic times within the sample. This could arise if, for example, the 
sample was inhomogeneous. Then

∫ +
∝ .)(

1
)( 22 ττ

τω
τω dDS
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NOISE 1/f. 2
In particular, if

,)( 21
1 τττττ ≤≤∝ − forD

then
1

1
1

2
1)( −−− <<<<∝ τωτωω forS

If, as in many physical processes, τ is thermally activated,

( ),/exp0 kTEττ =

Then the required energy distribution is 

1 0 2 1( ) const. for ln( / ) ln( / )D E kT E kTτ τ τ τ= ≤ ≤

The problem of justifying a 1/f spectrum has now been shifted to one of motivating the 
required energy distribution. Very often, specially in natural phenomena, several 
intervals can be found behaving as 1/fα, each one with a different value of α.
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VARIABILITY OF B-VALUE WHEN TO CLOSE TO A 
CRITICAL POINT ?
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CHARACTERISTIC EARTHQUAKES

It has been found that fault systems with highly irregular geometry, 
which have many offsets and branches, display ‘‘power-law’’ statistics 
over the whole range of observed magnitudes. 

On the other hand, the available data indicates that fault systems with 
more regular geometry (presumably generated progressively with 
increasing cumulative slip) display power-law distributions only for small 
events, which occur in the time intervals between roughly quasiperiodic
earthquakes of a much larger ‘‘characteristic’’ size which rupture 
the entire fault. 

There are practically no observed earthquakes of intermediate 
magnitudes on such geometrically regular fault systems. Distributions of 
this type are called ‘‘characteristic earthquake’’ distributions.
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[Turcotte (1997)]

SEISMICITY. 4
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HOWEVER ...

According to Kagan (1993), evidence of the characteristic hypothesis can be 
explained either by statistical bias or statistical artifact. 
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Ben-Zion and Rice (1993) showed that a class of simple models of ruptures 
along a heterogeneous fault zone displays both types of behavior.

REGULAR AND CHARACTERISTIC EARTHQUAKES

Schematic phase diagram 
of the system. There is a 
‘‘coexistence’’ of two 
persistent stationary states 
called Gutenberg-Richter 
and runaway phases, in a 
finite region of parameter 
space, marked region ‘‘(2) 
metastable.’’ For region 1 
given by c < c* = 1/(1+ε) 
(line AB) one finds only 
small avalanches, i.e., the 
system is always in the 
Gutenberg-Richter phase.



Advanced School on NLD&EP, ICTP          
Trieste, 28 Sep - 10 Oct.  2009

43

SEISMICITY. 5
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PART 2: QUANTIFICATION 
OF OBSERVATIONS
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The Modeling Process

Model World

Mathematical Model
(Equations)

Synthesize the statistical 
characteristics of 
observations into 
probability density 
functions
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Gutenberg – Richter:                                                               (1) 

FREQUENCY SIZE STATISTICS: SEISMIC MOMENT

( )log N m a bm= −
where N(m) is the number of earthquakes with magnitude ≥ m. In terms of the 
seismic moment M, m and M are empirically related as 

2log 6.0
3

m M= − (2)

Because of the limited sensitivity of the seismographic networks a catalogue 
completeness threshold (observational cutoff) mt has to be introduced, and (1) 
becomes ( ) ( )log .t tN m a b m m= − − (3)

by combining (3) and (2) the original G-R is transformed into the Pareto
distribution for scalar seismic moment 

( ) 1 for   t tM M M M Mβ βφ β − −= ≤
where β is the index parameter of the distribution, β = 2/3 b. Note that whereas 
the magnitude is not a physical parameter, the seismic moment is.

(4)

K
ag

an
(2

00
2)
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Simple considerations of the finiteness of seismic moment flux or of deformation 
energy, available for an earthquake generation, require that the Pareto 
distribution  (4) be modified at the large size end of the moment scale: the 
distribution density tail have a decay stronger that            

This problem is solved by introducing  into the distribution an additional 
parameter, called the maximum or corner moment (Mx or Mc).

1 with 1.M β β− − >

FREQUENCY SIZE STATISTICS: SEISMIC MOMENT
K

ag
an

(2
00

2)

Requirements that should satisfy the statistical distribution of seismic moment:

1. Should have an extended scale-invariant part, describing small and 
moderate earthquakes.

2. Should have a small number of parameters.

3. A sharp cutoff at the large event distribution tail is not warranted, since it 
contradicts the known behavior of dissipative physical dynamical systems. 
The abrupt truncation may be replaced by a soft Gaussian-like roll-off, with 
the penalty of introducing an additional degree of freedom.
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The distribution which is a power-law form for small values of the argument and 
has an exponential tail is the gamma density distribution 

Here Mc, is the parameter that controls the distribution in the upper ranges of M
and C is a normalizing coefficient: 

( ) ( ) exp ,t
t t

c

M MM M M M M
M

β ⎛ ⎞−
Φ = ≤ <∞⎜ ⎟

⎝ ⎠
Mt ≤ M is the threshold seismic moment.

For small values of M the TGR behaves as a power law (Pareto) distribution

The tapered G-R distribution of M, TGR, is

( ) ( )1 1 exp for  c cM C M M M M Mβφ − − −= − ≤ <∞

( ) ( )tM M M βΦ =
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Advantages of
this distribution:

Simple (only one more parameter than G-R);
Has a finite integrated moment (unlike G-R) for β < 1;
Fits global subcatalogs slightly better than the gamma distribution.

( ) ( ) exp ,t
t t

c

M MM M M M M
M

β ⎛ ⎞−
Φ = ≤ <∞⎜ ⎟

⎝ ⎠
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threshold
magnitude

95%-confidence
lower limit

95%-confidence
lower limit

not to be
taken 
literally!
(“a large
number”)

95%-confidence
upper limit
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Omori's Law
Aftershocks occur with a pattern that follows Omori's law, or more correctly the 
modified Omori's law, and is an empirical relation for the temporal decay of 
aftershock rates. In 1894, Omori published his work on the aftershocks of 
earthquakes, in which he stated that aftershock frequency decreases by 
roughly the reciprocal of time after the main shock, or, more accurately,

where:

• k is the amplitude, and 

• n(t) is the rate of earthquakes measured in a certain time t after the main 
shock, 

• c is the "time offset" parameter. 

The modified version of Omori's law, now commonly used, was proposed by 
Utsu in 1961.

( ) kn t
c t

=
+

( )
( ) p

kn t
c t

=
+
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p modifies the decay rate and typically falls in the range 0.7–1.5. 

The rate of aftershocks is proportional to the inverse of time since the 
mainshock. 

These patterns describe only the mass behavior of aftershocks; the 
actual times, numbers and locations of the aftershocks are 'random', 
while tending to follow these patterns.

As this is an empirical law, values of the parameters are obtained by 
fitting to data after the mainshock occurred and they have (not yet)  
physical basis/meaning. (Omori, 1984; Utsu et al, 1995).

( )
( ) p

kn t
c t

=
+
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OMORI’S LAW
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• The geometrical structure of the aftershock 
time series is composed of a relaxation 
process (Omori’s potential law) and 
fluctuations, that can be positive 
(accelerations) or negative (decelerations).

• (A possible pattern could emerge: in the 
observed aftershock time series, positive 
fluctuations dominate over the negative 
ones.)

AFTERSHOCK TIME SERIES. 1
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HOWEVER …

• Fluctuations are too large
• Model parameters are time dependent 

(back to equilibrium?)
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(Correig et al., 1997)
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mb ~ 2.6
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mb ~ 2.5
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• A lot of mean field models have been constructed to 
deal with aftershock, some of them based on physical 
grounds (Yamashita (2003), GJI, 152, 20-33) and 
some other, based on the validity of universal laws of 
O and G-R (Helmstetter & Sornette (2003), 107(B10), 
2237, doi: 10.1029/2001JB001580, 2002). None of 
them, however, account for fluctuations or time 
variation of model parameters.

• Moreover, every model is able to explain some 
specific features, but not other.

AFTERSHOCK TIME SERIES. 2
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• In some way, aftershocks are similar to 
precursory activity :

– not always appear
– not always repeat

AFTERSHOCK TIME SERIES. 3
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Spatial epicenter/hypocenter 
distributions

• Distribution of distances between earthquakes 
characterizes their fractal structure. Using these 
distributions we determine fractal dimension of 
fault system. 

• For planar faults the dimension (D) is 2.0.
• For shallow seismicity D=2.2, for deep 

earthquakes D=1.6; this means that deep event 
clusters are separated by aseismic regions.
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UNIFIED LAW: TEMPORAL STATISTICS

Bak et al. (2002) attempted an explanation of interevent time of 
earthquake occurrence by unifying the observations on 

statistics of earthquakes, 

the geometrical fractal structure of hypocentral locations 

the fractal structure displayed by faults, considered all of them 
as a result of a dynamical process. 

The underlying philosophy was (Corral, 2004)

• Do not bother about the tectonic environment.

• Do not bother about aftershocks and foreshocks, all are    
equally treated.

• Do not bother about temporal heterogeneity.
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The abandon of the ingrained concept (in 
many seismologists’ mind) of the distintion 
between foreshocks, aftershocks and 
mainshocks is an important step toward a 
simplification and toward an understanding 
of the mechanism underlying earthquake 
sequence.

(Helmstetter et al., 2003)

THE END OF SEISMIC CYCLE?



Advanced School on NLD&EP, ICTP          
Trieste, 28 Sep - 10 Oct.  2009

24

GLOBAL SCALING LAWS. 1
Bak et al. (2002) carried out a spatiotemporal analysis over a region with a 
grid with cells of dimension L x L and defined the waiting time (interevent
time) as the time interval of two successive events. 

The distribution of waiting times T, PS,L(T), was measured between 
earthquakes occurring within a range L, whose magnitude are greater that 
m = mc = log(S), S being the fault surface related to the energy as S ~ E⅔.
For a suitable choice on the interval exponent α, the magnitude exponent b, 
and the spatial dimension df, all the data collapse onto a single well-defined 
curve f(x), y = f(x), that is:   TαPS,L(T) = f(TS-bLdf)
This equation expreses the unified scaling law for earthquakes, and 
consists on a constant part and a decaying part, separated by a sharp kink.

The index α ~ 1 can be identified as the Omori-law exponent, b ≈ 1 is the 
b value in the Gutenberg-Richter law, and df describes the 2D fractal 
dimension of the epicentral distribution.
Due to the fact that the variable x = TS-bLdf has no absolute meaning, 
there is no unique way of characterizing earthquakes as 
aftershocks or main shocks.
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The data with T > 38 s (left bottom) replotted with TαPS,LLdf

as a function of the variable x = cTS-bLdf, c = 10-4. The data 
collapse implies a unified law for earthquakes. The Omori 
law exponent a = 1, Gutenberg-Richter value b = 1, and 
fractal dimension df = 1.2 have been used in order to 
collapse all the data onto a single, unique curve f(x). The 
estimated uncertainty in the exponents is less than 0.2. 
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Tue scaling function f(θ) can be generalized to

( ) ( )
( )

1

,aC
f e

a a
δ

γ
θδ θθ

γ δ

−
−⎛ ⎞= ⎜ ⎟Γ ⎝ ⎠

which has a very general shape. Γ(.) is the gamma function. If γ and δ are 
positive, the former controls the shape for small θ and δ the shape at large θ; 
the situation is reversed if both parameters are negative; a is a scale parameter 
and C a normalization correction. θ is a dimensionless time.

If regions of smaller size are considered, the rate turns nonstationary, giving 
rise to heterogeneities in time. This is due to large earthquakes, which provoke 
a kind of “avalanches of earthquakes”, i.e., aftershock sequences.

SCALING FUNCTION
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PROBABILITY DISTRIBUTION FUNCTION

For short times, the scaling function shows a slow variation not
affecting the power law (1/τ) behavior.

For long times a fast decay is obtained, which could be consistent 
with an exponential distribution and therefore with a Poisson process. 

This PDF is relevant because

• shows a spatiotemporal occurrence of earthquakes (as in critical 
phenomena).

• relates interevent times with the G-R law and the epicentral
distribution of earthquakes.

• is valid for all kind of events (foreshocks, mainshock, aftershocks).

• the power law tells us that immediately after an earthquake there 
is a high probability of return, probability that decreases in time.
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OBSERVED PDF D(τ) FOR THE INTEREVENT 
TIME
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HOWEVER ...

The universality and interpretation of the scale funcgion has been 
disputed. Taking into account that seismicity consists of Poissonian
mainshocks plus triggered aftershocks, and that there are some regions 
on Earth with independent seismicity, Molhan (2005) showed that under 
very general assumptions, from a mathematical point of view 

. 1. The above distribution  may no exist for all times.

2. The only universal distribution of inter-event times in a stationary 
point process is exponential.

a) This universal distribution is not valid for the relatively short 
intervals associated with aftershocks.

b) The parameter 1/a in the PDF reflects the fraction of 
mainshocks contained in the data.
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PART 3: STATISTICAL 
INFERENCES
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The Modeling Process

Model World

Mathematical Model
(Equations)

Statistical inferences

(and/or)

phisical justification
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JUSTIFICATION OF THE GENERALIZED 
GUTERNBERG-RICHTER LAW
AS A GAMMA DISTRIBUTION
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Information theory provides a constructive criterion for setting up 
probability distributions on the basis of partial knowledge, and leads to  a 
type of statistical inference which is called the maximum entropy 
estimate.
If one considers statistical mechanics as a form of statistical inference 
rather than as a physical theory, it is found that the usual computational 
rules, starting with the determination of the partition function, are 
an immediate consequence of the maximum-entropy principle.

It can be shown that thermodynamic entropy and information-theory 
entropy appears as the same concept, so that information theory can be 
applied to the problem of justification of statistical mechanics.

Take the entropy as the starting concept and take into account the 
property that a probability distribution that maximizes the entropy, 
subject to certain constraints, becomes the essential fact which
justifies the use of that distribution for inference.

INFORMATION THEORY AND ENTROPY
Ja

yn
es

(1
95

7)
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THE PROBLEM TO BE SOLVED:
Let xi (i = 1, 2, … n)  be a discrete variable, for which the corresponding 
probabilities pi are  not known. All it is known is the expectation value of the
function f(x):

( ) ( )
1

n

i i
i

f x p f x
=

= ∑
subject to the normalization condition

1.ip =∑
On the basis of this information, what is the expectation value of the function 
g(x)?

(1)

(2)

Ja
yn

es
(1

95
7)

INFORMATION Th. AND ENTROPY
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According to information theory, there is a unique, unambiguous criterion for the 
“amount of uncertainty” represented by a discrete probability distribution. 
Following Shanon, the (positive) quantity which increases with increasing 
uncertainty is

( )1,... lnn i i
i

H p p K p p= − ∑
where K is a positive constant. Since this is just the expression for entropy as 
found in statistical mechanics, it is called the entropy of the probability 
distribution pi. 

In making inferences on the basis of partial information, we must use that 
probability distribution which has maximum entropy subject to whatever is 
known. To maximize (3) subject to the constrains (1) and (2) use is made of the 
Lagrangian multipliers λ, μ,  obtaining

(3)

( )if x
ip e λ μ− −= (4)

Ja
yn

es
(1

95
7)

INFORMATION Th. AND ENTROPY
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( )if x
ip e λ μ− −=

The constants λ, μ are determined by substituting into (1) and (2). The result 
may be written in the form

( ) ( )

( )
( ) ( )

ln

ln

partition functionif x

i

f x Z

Z

Z e μ

μ
μ

λ μ

μ −

∂
= −

∂

=

= ←∑

Ja
yn

es
(1

95
7)

INFORMATION Th. AND ENTROPY
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APPLICATION TO SEISMICITY

Let m stand for the moment magnitude and M0 for the seismic moment. 
Consider the continuous range of magnitudes (mc, ω), where ω is the maximum 
magnitude, and mc is a lower bound. The “missing information” (our 
ignorance of the system, the amount of uncertainty) is characterized by

( ) ( ) ( )( )ln
cm

S p p m p m dm
ω

= − ∫

where p(m) is the probability density function of magnitudes. S is 
the “information theory entropy”, and we look for the distribution of p
which maximizes S subject to the constrains

( ) 1
cm
p m dm

ω
=∫

( )
cm
m p m dm m

ω
=∫

( ) ( )0 0
cm
M m p m dm M

ω
=∫

M
ai

n 
&

 B
ur

to
n 

(1
98

4)



Advanced School on NLD&EP, ICTP          
Trieste, 28 Sep - 10 Oct.  2009

9

By applying the method of Lagrange multipliers we obtain

( ) ( ){ }1 2 0expp m m M m Zλ λ= − −

where Z is the normalizing integral (the partition function)

( ){ }1 2 0exp
cm

Z m M m dm
ω

λ λ= − −∫
It can be shown that 

( ){ } 1lnm d Z dλ= −

( ){ }0 2lnM d Z dλ= −

The cumulative form of the probability distribution is defined by

( ) ( ) ( )
c

Tm
P x m p x dx N x m N

ω
≥ = = ≥∫

where N is the cumulative frequency distribution and NT is the total number of 
events in the catalog above mc per unit time.
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(1
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APPLICATION TO SEISMICITY
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The number density (the non-cumulative distribution)

is given by the incremental probability

( ) ( )n m dN x m dm= − ≥

( ) ( ){ }1 2 0expn m dm C m M m dmλ λ= − −

where TC N Z=

M
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APPLICATION TO SEISMICITY
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Interpretation of 

( ) ( ){ }1 2 0expn m dm C m M m dmλ λ= − −

The Gutenberg-Richter law constitutes a bridge that 
links earthquake occurrence to statistical mechanics. 

In this framework, let’s see that the above equation is 
equivalent to the Boltzmann distribution as defined in 
statistical mechanics.

APPLICATION TO SEISMICITY
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STATISTICAL MECHANICS
FRAMEWORK

(MICROSCOPIC POINT OF VIEW)
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STATISTICAL MECHANICS

Microstate: describes a specific detailed microscopic configuration of a 
system, that the system visits in the course of its thermal fluctuations. There 
could be several microstates that have the same properties, as for example the 
energy. The energy level is then said to be degenerate.

Macrostate of a system: refers to its macroscopic properties (such as its 
temperature and pressure). A macrostate  is characterized by a 
probability distribution on a certain ensemble of microstates.

This distribution describes the probability of finding the system in a certain 
microstate as it is subject to thermal fluctuations.

EQUILIBRIUM ENTROPY
Boltzmann postulated that, for an isolated system in equilibrium, the 
entropy S is related to the number Ω of equiprobable microstates through

k is a unit conversion factor with units of [energy]/[termperature]. The entropy 
would be unitless except for the fact that we measure temperature and energy 
with different scales.                                          

lnS k= Ω
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STATISTICAL MECHANICS

NON-EQUILIBRIUM ENTROPY
The entropy for M equally-likely states is                         . In this case, the 
probability    of each state is                      If we write

( ) logS M k M=
1 .ip M=

( ) ( ) ( )log 1 log iS M k M k p= − = −

we get an appealing generalization for the counting entropy for cases where pi
is not constant:

log log .i i i
i

S k p k p p= − = − ∑

This is the correct generalization of entropy to systems out of equilibrium.
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STATISTICAL MECHANICS
When a system is in thermodynamic equilibrium at a temperature T, the 
probability P(Ei) that a system will occupy a state with energy Ei is

( ) / /1 ,i iE kT E kT
i

i

P E e q e
q

− −= = ∑

where q, the partition function (the total number of microstates), is a 
normalization constant, introduced so that 

( ) 1.i
i
P E =∑

In the presence of degeneracy, if g(Ei) is the number of states having the same 
energy Ei, then the probability that a system has an energy Ei occupying any 
other of the g(Ei) states is

( ) ( ) ( )/ /1 ,i iE kT E kT
i i i

i
P E g E e q g E e

q
− −= = ∑
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Consider a physical model of a fault and apply the method of statistical 
mechanics to its localized elements. These elements may be as small as the 
lattice constant of the predominant crystal or may be related to inhomogeneities 
such as joints or bedding planes. Assume that the elements A0 (the 
microstates) are small enough to warrant a continuous approach.

APPLICATION TO SEISMICITY

Consider an arbitrary area A ~ l2
which ruptures during an event on 
the fault plane Amax. Assuming a 
constant strain drop (so that the 
model is self similar), we may 
take the fault movement s ~ l. 
Taking into account that 

3
0M l∝

( )0M As Wμ μ σ= = Δ

M
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n 
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Let Er be an energy level that can be filled in g ways. The discrete frequency F
of state transition is

( ){ }'exp 'r r r rF g E Eβ= − −
( )' 0where  : change in strain energy M

and   ' depends on E
r rW E E

β

Δ = − ∝

degeneracy g(l): On a planar fault, take so that in the 
continuous case the density D(l) of degenerate states is

( ) ( )max ,g l A A l=

( ) ( ) ( ) ( )3
max2D l dl g l g l sdl A l dl= − + =

The continuous number density n(l) is 

( ) ( ) ( )( )0 0exp , 'n l dl D l dl M l M Wβ β β= − = Δ

APPLICATION TO SEISMICITY
M

ai
n 

&
 B

ur
to

n 
(1

98
4)



Advanced School on NLD&EP, ICTP          
Trieste, 28 Sep - 10 Oct.  2009

18

Taking into account that

( ) ( ) ( )3
0 0, log / , ln10, 2 3 ,M l m M A B B b B D l l νβ −∝ = − = = ∝

the above expression                                            is identical 
to 

( ) ( ){ }1 2 0expn m dm C m M m dmλ λ= − −

( ) ( ) ( )( )0expn l dl D l dl M lβ= −

In terms of the seismic moment M0 and defining  λ1 = b ln(10)  and λ2 = β

( ) 05 3
0 0 0 0

Mn M dM const M e dMβ−−=

The form of this distribution can be interpreted as a Boltzmann distribution of 
energy via                        , multiplied by a geometric factor M0

-5/3, which results 
in another exponential in terms of the magnitude. The geometric term 
corresponds to the G-R law, and the Boltzmann term to the roll-off often 
observed at higher magnitudes/seismic moments. gamma distribution

( )0exp Mβ−

APPLICATION TO SEISMICITY
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ENERGY
M

ai
n 

&
 A

l-K
in

dy
(2

00
2) In the framework of statistical mechanics, Boltzmann energy distribution reads

( ) ( )exp
,Eg E

p E dE dE kT
Z

θ
θ

−
= =

where θ, known as temperature factor, has dimensions of energy. k is the 
Boltzmann constant and T is the absolute temperature.

In earthquake population the degeneracy occurs because energy is related to 
the surface rupture area A by E ~ A3/2.   For earthquakes, the density 
distribution of the degeneracy  has the power law form

1
0

B B
Eg E E− − −=

where E0 is a scaling constant.This equation corresponds to the Gutenberg-
Richter law for the equivalent magnitude where typically the exponent B ≈ 2/3. 
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ENERGY

By combining the above equations the incremental probability is found to be

( ) ( )1 1
0exp ,B Bp E dE E E dE E Zα θ α− − −= − =

and the partition function

max

min 0

exp ln
BE

E

E EZ d E
E θ

−
⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫
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THE “TECTONIC” OR “TERM” TEMPERATURE

As already seen, the Boltzmann distribution of energy is given by

( ) ( )1exp ,Bp E dE E E dE kTα θ θ− −= − =

On the other hand, a good approximation for the PDF for the observed seismic 
moment distribution of earthquakes is provided by the tapered G-R distribution 
(Kagan, 1991))

( ) ( ) exp ,t
t t

c

M MM M M M M
M

β ⎛ ⎞−
Φ = ≤ ≤∞⎜ ⎟

⎝ ⎠

As the seismic moment is proportional to the energy             , by 
comparing (1) and (2) a “tectonic” temperature θ can be defined, with θ
proportional to the maximum event size, i.e., to the (maximum) released 
seismic energy. k has the same dimensions but is not equivalent to Boltzmann’s 
constant, since it applies to a macroscopic system.

( )4.8
0 10sE M −= ⋅

(1)

(2)
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SEISMICITY - ENERGY AND ENTROPY
M

ai
n 

&
 A

l-K
in

dy
(2

00
2) The expectation value of the system energy is the first moment

( )
max

min

E

E

E E p E dE= ∫

And the entropy is defined by

( ) ( )
max

min

ln
E

E

S p E p E dE= − ∫

The G-R law is recovered as θ ∞, preserving a finite energy  through a finite 
Emax. 
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ENERGY AND ENTROPY
M

ai
n 

&
 A

l-K
in

dy
(2

00
2)

From the above equations and for a system in a near-critical state it can be 
shown 

0 0ln , .S S B E S ct= + =

In a subcritical state with finite positive θ we would expect the local slope to be 
greater than B, and in a supercritical state we would expect a local slope less 
than B. Corollaries of the above equation for finite, positive θ are

( )1 , a small positive numberBE S Eθ ε−∝ ∂ ∂ =

For a system in a near critical state, with significant fluctuations in θ at a 
constant B-value, we would expect:

1) A strong positive correlation between <E> and θ

2) A week positive correlation between S and <E>.

3) A strong positive correlation between S and <lnE> of slope B
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ENERGY AND ENTROPY
M

ai
n 

&
 A

l-K
in

dy
(2

00
2) METHODOLOGY: 

Start from a seismic catalog.

The scalar moment for the catalog is converted to seismic energy using 
standard relationships.

Calculate the expectation value <E> from the individual summed energies.

Calculate S using a discrete version of the definition                     

after appropriate  normalization (to ensure unit total probability).

The results confirm that global seismicity is in near critical state, with large 
fluctuations in mean energy occurring due to small changes in entropy.

The proximity to the critical point indicates that the predictability of the system 
may be finite, but low.

( ) ( )max

min

ln
E

E
S p E p E dE= − ∫
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A week positive 
correlation between 
S and <E>.

Temporal variation in <lnE>, entropy S, mean annual energy E’max and maximum energy from 
the global occurrence of earthquakes from the CMT catalogue for the time period 1977– 2000. 
Energy units are Joules. Criteria 1) – 3) are preserved:

A strong 
positive 
correlation 
between <E>
and θ (~ Emax)

A strong 
positive 
correlation 
between S
and <lnE> of 
slope B

0 lnS S B E= +

1 BE θ −∝

( )
1

1

S E ε

ε θ

∂ ∂ =

∝

�
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ENERGY AND ENTROPY
M

ai
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&
 A

l-K
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dy
(2

00
3) Taking into account that 

( ) ( )exp
,Eg E

p E dE dE
Z

θ−
=

1
0

B B
Eg E E− − −=

It can further be shown that 

( )0ln lnS Z B E E E θ= + +

from which
1 S

Eθ
∂
∂

∼

This relation demonstrates formally that θ is an equivalent temperature term for 
the system.
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THERMODYNAMIC FRAMEWORK 
(MACROSCOPIC POINT OF VIEW)
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ENERGY AND ENTROPY

There is an important caveat to the application of thermodynamics to 
earthquake statistics.

The thermodynamic formulation is strictly based on an internal energy                  

But it is not possible  to determine U for the earthquake problem: we do not 
have independent information on the strain energy distribution in the Earth 
because we cannot independently measure the stress.

Therefore applications of thermodynamics to Earthquake systems 
assume, explicitly or implicitly, that the distribution of radiated 
energy is related to that of internal energy.
This implies that large earthquakes are more likely to occur in time periods 
when the internal strain energy is also high.

,U E=
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STATISTICAL MECHANICS AND THERMODYNAMICS 

STATISTICAL MECHANICS: Let Ω = Ω(E) be the number of microstates 
comprising a macrostate, a statistical weight for nonequilibrium macrostates.

The equilibrium of an isolated system is defined (Boltzmann) in terms of the 
entropy S, a measure of the disorder  of a system in a given 
macrostate, as

( ) ( )equil lnS E k E= Ω
As S is a function of the energy E, a definition of the absolute temperature T is 

1S
E T

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

THERMODYNAMICS: Entropy of a system is defined as a summation of 
“heat supplied” divided by its “temperature” [Clausius, 1865]. If a certain small 
amount of heat Q is supplied quasi-statically to a system with an absolute 
temperature of T, then the entropy of the system will increase by

,Q dQdS S
T T
δ

= Δ = ∫
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One could choose instead a rescaled entropy in microscopic terms such that 

THERMODYNAMIC  ENTROPY

' ln , ' .dQS S
kT

= Ω Δ = ∫
This is a rather more natural form because this rescaled entropy exactly 
corresponds to Shanon’s information entropy.

dQ/dt
T1 T2

where the inequality sign expresses Clausius principle of increase of entropy.

The rate of entropy production in a system not in equilibrium is

thermo
2 1

1 1 0,Q dS dQS
T dt T T dt

⎛ ⎞
Δ = → = − >⎜ ⎟

⎝ ⎠
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The probability distribution which maximizes the information entropy is the true 
probability distribution, with respect to the testable information prescribed. 

The myriad of processes that transform energy, that result in the motion of 
mass in the atmosphere, in oceans, and on land, processes that drive the global 
water, carbon, and other biogeochemical cycles, all have in common that they 
are irreversible in their nature. 

Entropy production is a general consequence of these processes and measures 
their degree of irreversibility. The proposed principle of maximum entropy 
production (MEP) states that systems are driven to steady states in 
which they produce entropy at the maximum possible rate given 
the prevailing constraints. 

THE LAW OF MAXIMUM ENTROPY PRODUCTION
A system will select the path or assemblage of paths out of 
available paths that maximizes the entropy at the fastest rate given 
the constraints

MAXIMUM ENTROPY PRODUCTION
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Whereas the Second Law says that the world acts to minimize 
potentials, it does not say which out available paths it will take to do 
this. This is the question the Law of Maximum Entropy Production
answers. 

(Note: The Law of Maximum Entropy Production (LMEP) does not 
contradict or replace the second law. It is another law that is in addition 
to it).

Swenson (2000) pointed out that the answer to this question, as above, 
was that it will "select the path or assemblage of paths out of available 
paths that minimizes the potential or maximizes the entropy at the 
fastest rate given the constraints". 

MAXIMUM ENTROPY PRODUCTION
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MAXIMUM ENTROPY PODUCTION (natural systems)

The goal is the quantification of the entropy production of earthquake 
occurrence from the energy budget to test whether natural seismicity is 
consistent with a state of maximum entropy production. 

Our observable is the magnitude (preferable MW) as reported in the seismic 
catalog, for the interval of magnitudes for which the catalog is complete, and 
then converted to seismic energy using standard relationships, as for example 
that of Kanamori (1977): the minimum estimate of the strain energy drop, known 
as the seismic wave energy ES, can be estimated as 

( )0
21.5 11.8, log 10.7
3S W WE M M M= + = −

The radiated energy ES is a finite fraction of the total energy change ΔQ during 
an earthquake, ES = ηΔQ, where the seismic efficiency 0 < η < 1, and is related 
to the ratio of stress drop to mean stress by

0.5 .η σ σ= Δ
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To investigate the temperature term and other aspects of entropy production a 
model system can be used, as for example the Olami-Feder-Cristensen (OFC) 
multiple spring-block slider model. The OFC model is very useful because it is 
the simplest numerical model for earthquake dynamics that reproduces the 
observed G-R distribution of small and intermediate–magnitude earthquakes as 
an emergent property.

As well, all relevant parameters for the calculation of the Maximum Energy 
Production can be calculated analytically.

MAXIMUM ENTROPY PODUCTION (natural systems)

In practice neither ΔQ –the difference between the initial and final strain energy-
nor the temperature term can at the present be estimated. We have thus to 
relay on numerical simulations of models of seismicity.
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Main and Naylor conclude that:

Many observations in natural and model seismicity are consistent with the 
hypothesis of maximum entropy production at steady state, including 
complexity, broad-band scale invariance, the occurrence of spatially 
characteristic Earthquakes, and low but finite seismic efficiency and stress 
drop.

When implemented in a numerical model entropy production is maximized 
in a state of self-organized sub-criticality, with b ≈ 1, also consistent with 
observation.

The results are consistent with entropy production as a thermodynamic 
driver for domain formation and self-organized (sub) criticality in natural 
and model seismicity.

MAXIMUM ENTROPY PODUCTION (natural systems)
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MAXIMUM ENTROPY PRODUCTION (natural 
systems)

Observations of natural phenomena (climatology, oceanic circulation, 
earthquake occurrence) agree with the principle of Maximum Entropy 
production. And? Which insight do we gain?

Maximum entropy production appears as a consequence of the 
general form of statistical inference, valid for non equilibrium systems 
and for irreversible processes (in some way, the equivalent of the arrow 
of time).

However, MEP is not the only consequence of the statistical inference. 
Other two properties, apparently disconnected, can also be derived:

The fluctuation theorem (established for a variety of non-
equilibrium systems)

The emergence of the paradigm of self-organized criticality.
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PRECURSORY ACTRIVITY: A SELF ORGANIZING PROCESS 
TROUGH DIFFERENT STRUCTURES.

EACH NEW STRUCTURE WOULD BE CHARACTERIZED BY A NET 
VARIATION OF ENTROPY, DEPENDING ON IF MORE OR LESS 
ORDERED.

WHICH IS THE INFORMATION CONTRENTS OF EACH 
STRUCTURE?

COULD IT BE RETRIEVEDS FROM THE PRECURSORY ACTIVITY 
(i.e. FROM THE SEISMIC CATALOG?)

EXAMPLE: the change of the G-R law 
implies a change in the PDF, and thus of 
the entropy.

( ) ( )max

min

ln
E

E
S p E p E dE= − ∫
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BASIC TYPES OF PREMONITORY PHENOMENA

The approach of a strong earthquake is indicated by (some of) the 
following

changes in the basic characteristics of seismicity:
a. Rise of seismic activity.

b. Rise of irregularity in space and time.

c. Reversal of territorial distribution of seismicity.

d. Transformation of magnitude distribution.

e. Rise of earthquake clustering in space and time.

f. Rise of the earthquake correlation range.

g. Accelerated stress-release
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A schematic of energy 
transport processes in 
the planetary system of 
the Earth, the Sun, and 
space. The Earth 
receives the shortwave 
radiation from the hot 
Sun and emits 
longwave radiation into 
space. The atmosphere 
and oceans act as a 
fluid system that 
transports heat from the 
hot region to cold 
regions via general 
circulation.
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MEP IN THE CLIMATE SYSTEM
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A schematic of heat 
transport through a small 
system (C) between  two 
thermal reservoirs with  
different temperatures (A, 
cold and B, hot). By the 
heat transport from hot to 
cold, entropy of the whole 
system increases. In the 
case of a fluid system in a 
supercritical condition, the 
rate of entropy production 
tends to be a maximum 
among all possible states.
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(in steady state)

MEP IN THE CLIMATE SYSTEM
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Patterns of seismic activity

Strain energy accumulation 
due to plate motions



Advanced School on NLD&EP, ICTP          
Trieste, 28 Sep - 10 Oct.  2009

42

DYNAMICS OF FAULT SYSTEM

Earthquake Fault systems are COMPLEX:
● Many degrees of freedom
● Strongly coupled spatial and temporal scales
● Nonlinear dynamical equations & constitutive     
laws
● Multi-physics: mechanical, chemical, thermal, 
fluids, (EM?)

X

Multi-Fractal fault heirarchy

Complicated interactions 
between faults due to 
stress transfer during Eqs

Nonlinear Rheology

D. Weatherley
QUAKES & AccESS

3rd ACES Working Group Meeting
Brisbane, Aust. 5th June, 2003.
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X

Surrounding system
(environment)

“Turbulent” system



Advanced School on NLD&EP, ICTP          
Trieste, 28 Sep - 10 Oct.  2009

44

TO BE CONTINUED ...
Study the possibility of entropy to quantify precursory activity:

1. Macroscopic (global) evolution of them system from the point of 
view of the energy and/or the temporal evolution of the PDF. 
Apply the MEP Law for the evolution of the system at the fault 
system.

2. Study of the entropy contents of the different precursors (ordered 
structures). emergent structures, not predicted by traditional 
entropy considerations.
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ORDER OUT OF DISORDER

Entropy is usually related to near-equilibrium states, and because of the  
second law, an ordered structure cannot be generated from a disordered one.

The lithosphere, like Rayleigh-Benard convection, constitutes a far-from-
equilibrium system, driven by external forces (the relative motion of the 
plates).

For far from equilibrium systems, continuously sustained by a continuous 
input of stress, the environmental increasing stress can cause breakdowns and 
jumps in behavior: the system will explore all possible ways to reduce the 
conflict. In a way compatible with the 2nd law, the gradients encourage the 
system to self-organize to an ordered state since this actually increases the 
rate of entropy production and thus stress reduction.

The greater the energy flows, the greater the order (and information) generated 
becomes. This order requires  the system to be dissipative, that means that 
energy must be expended (wasted) to create the visible order or information 
(emergent structures) from the disorder. The energy used to create the order is 
that accumulated in the lithosphere.
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ENTROPY

In physics, the second law of thermodynamics is formulated within a strict 
context of processes that result in energy changes. The fundamental physical 
measures associated with the 2nd law are temperature T,  head Q and 
(thermodynamic) entropy S, related by

dS dQ T=
Statistical mechanics identifies this macroscopic measure with the number 
Ω of microscopically defined states accessible to the system by the relation

lnS k≡ Ω
Thus defined, thermodynamic entropy has strong formal similarities to 
information entropy

( ) logi i
i

H p p p= −∑
where i ranges over the possible states of the system and pi is the probability  
of finding the system in state i. These formal similarities leads to the notion of 
“entropy” as a measure of macro-level disorder.
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ENTROPY VARIATION AND INFORMATION IN 
SELF-ORGANIZATION PROCESSES

Clausius entropy refers to isolated systems exchanging neither energy nor 
matter with the environment. According to the second law

0dS dt ≥
For non isolated systems we must distinguish two terms in the entropy change 
dS: deS, the transfer of entropy across the boundaries, and diS, the entropy 
produced within the system by irreversible processes (the only ones that 
produce entropy):

, 0, 0i e id S d S d S d S dS= + ≥ ≥
Open systems could conceivably evolve to non-equilibrium Steady State with

, 0e id S d S dS≤ − ≥
Entropy increase at the micro level is sufficient to ensure entropy increase in the 
overall system even in the presence of self-organization.

Order may be created from disorder and equilibrium is no longer 
the only attractor of the system.
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