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Many of the things that scientists measure have a typical size or “scale”, a 
typical value around which individual measurements are centered.

Histogram of heights in centimeters 
of American males.

Histogram of speeds in miles per hour
of cars on UK motorways.

NORMAL DISTRIBUTION
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But not all things we measure are peaked around a typical value. Some vary 
over an enormous dynamic range, sometimes many orders of magnitude.

Left: histogram of the populations of all US cities with population of 10 000 or 
more. Right: another histogram of the same data, but plotted on logarithmic 
scales. The approximate straight-line form of the histogram in the right panel 
suggest that the distribution follows a power law.

POWER LAW DISTRIBUTION
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Power law distribution
• Straight line on a log-log plot

• Exponentiate both sides to get that p(x), the
probability of observing an item of size ‘x’ is 
given by

α−= Cxxp )(

)ln())(ln( xcxp α−=

normalization
constant (probabilities 
over all x must sum to 1)

power law exponent α
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Power-law distribution

• linear scale

• log-log 
scale

• high skew (asymmetry)
• straight line on a log-log plot
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MEASURING POWER LAWS

Identifying power-law behavior in either natural or man-
made systems can be tricky. The standard strategy makes 
use of a histogram of a quantity with a power-law 
distribution appears as a straight line when plotted on 
logarithmic scales. Just making a simple histogram, 
however, and plotting it on log scales to see if it looks 
straight is, in most cases, a poor way proceed.
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Example on an artificially generated data set

• Take 1 million random numbers from a distribution with α
= 2.5

• Can be generated using the so-called
‘transformation method’

• Generate random numbers r on the unit interval
0≤r<1

• then x = (1-r)−1/(α−1) is a random power law distributed 
real number in the range 1 ≤ x < ∞
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REPRESENTATION OF HISTOGRAMS
a) Normal histogram of the numbers: produced by binning them into bins of 

equal size 0.1. On linear scales used this produces a smooth curve.

b) Logarithmic scales. Same as a) but in logarithmic scales: the 
characteristic straight-line form is revealed. The right-hand end of the 
distribution is noisy due to statistical errors.

c) Logarithmic binning. Same as b) but with variable width of the bins: each 
bin is a fixed multiple wider than the previous one. The bins of the tail of the 
distribution get more samples and reduces the statistical errors in the tail.

d) Cumulative distribution function. Make a plot of the probability P(x) that x
has a value greater than or equal to x:                                                          
For a power law PDF,   

( ) ( )' '
x

P x p x dx
∞

= ∫
( )p x C x α−=

( ) ( ) ( )1' ' power law with exponent -1
1x

CP x C x dx xα α α
α

∞ − − −= = →
−∫

There is no need to bin the data at all to calculate P(x). 
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Log-log scale plot of straight binning of the data

Same bins, but plotted on a log-log scale
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Noise in the tail:
Here we have 0, 1 or 2 observations
of values of x when x > 500

here we have tens of thousands of observations
when x < 10

Actually don’t see all the zero
values because log(0) = ∞
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Log-log scale plot of straight binning of the data

Fitting a straight line to it via least squares regression will 
give values of the exponent α that are too low 
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What goes wrong with straightforward binning

Noise in the tail skews the regression result
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Logarithmic axes
• powers of a number will be uniformly 

spaced

1 2 3 10 20 30 100 200

• 20=1, 21=2, 22=4, 23=8, 24=16, 25=32, 
26=64,….
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Numerical simulation generated by a power law distribution      ,  wit α = 2.5

Histogram of the 
set of 1 million 
random numbers

same histogram 
on logarithmic 
scales.
l.s.f.: 
α = 2.26 +- 0.02

Histogram 
constructed 
using 
“logarithmic 
binning”

cumulative
histogram or 
rank/frequency 
plot

( )p x C x α−=
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RECOVERING THE EXPONENT α

Very often: fit the slope of the line in plots like Figs. b, c or d. 
Unfortunately, it is known to introduce systematic biases into the value 
of the exponent. For example, a least-squares fit of a straight line to 
Fig. b gives α = 2.26 +- 0.02, which is clearly incompatible with the 
known value of α = 2.5.

Alternative method: Maximum likelihood fitting
1 1

1 1min min

11 ln , ln
n n

i i

i i

x xn n
x x n

αα σ
− −

= =

⎡ ⎤ ⎡ ⎤ −
= + = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑

The quantities xi, i = 1 . . . n are the measured values of x; xmin
corresponds to the smallest value of x for which the power-law behavior 
holds (the measured series is complete).
For the generated data set the recovered value is α = 2.503, very close 
to the true value.
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P(x)

x

The frequency of occurrence of
unique words in the novel Moby Dick 
by Herman Melville.

The number of species per genus of mammals. 
This data set, is composed primarily of species
alive today but also includes a subset of recently
extinct species.

Peak gamma-ray intensity of solar 
flares between 1980 and 1989.

Intensity of earthquakes occurring in California 
between 1910 and 1992, measured as the
maximum amplitude of motion during the quake.

EXAMPLES
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DISTRIBUTIONS THAT DO NOT FOLLOW A POWER LAW

Power-law distributions are impressively ubiquitous, but they are not the only 
form of broad distribution. A few examples: 

a) The abundance of bird species spans over five orders of magnitude, but is 
probably distributed according to a log-normal (normal distribution of the 
logarithm of the quantity)

b) The number of entries in people’s email address books, which spans over 
three orders of magnitude, seems to follow a stretched exponential (a 
curve of the form                        for some constants a and b.

c) The distribution of the sizes of the forest fires, which spans six orders of 
magnitude, could follow a power law but with an exponential cutoff.

d) It could be also the case for earthquakes.

In analyzing a new set of data having a broad dynamical range and a highly 
skewed distribution, we should bean in mind that a power law model is only 
one of several possibilities for fitting it.

( )exp bax−
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Another common distribution: power-law
with an exponential cutoff

p(x) ~ x-a e-k/κ

100 101 102 103
10-15

10-10

10-5

100

x

p(
x)

starts out as a power law

ends up as an exponential

but could also be a 
lognormal or double 
exponential…
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Definition of the power-law distribution and several other common statistical 
distributions. For each distribution we give the basic functional form f(x) and the 
appropriate normalization constant C such that ( )

min

1.
x

C f x dx
∞

=∫
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NORMALIZATION

The constant C is given by the normalization requirement that

( )
minmin min

11
1 xx x

Cp x dx C x d x xα α

α
∞ ∞ ∞− − +⎡ ⎤= = = ⎣ ⎦−∫ ∫

This only makes sense if α > 1, since otherwise the right-hand side of the 
equation would diverge: power laws with exponents less than unity cannot be 
normalized and don’t normally occur in nature. If α > 1 then                             
and the correct normalized expression for the power law itself is

( ) 1
min1C xαα −= −

( )
min min

1 xp x
x x

α
α

−
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

Some distributions follow a power law for part of their range but are cut off at 
high values of x. That is, above some value they deviate from the power law 
and fall off quickly towards zero. If this happens, then the distribution may be 
normalized no matter what the value of the exponent . 



Advanced School on NLD&EP, ICTP       
Trieste, 28 Sep. - 10 Oct. 2009

20

MOMENTS

The mean value of the power-law distributed quantity x is given by

( )
min min

1

x x
x x p x dx C x dxα∞ ∞ − += =∫ ∫

Note that this expression becomes infinite if α ≤ 2. Power laws with such low 
values of α have no finite mean: if we were to repeat our finite experiment many 
times and calculate the mean for each repetition, then the mean of those many 
means is itself also formally divergent, since it is simply equal to the mean we 
would calculate if all the repetitions were combined into one large experiment. 
This implies that, while the mean may take a relatively small value on any 
particular repetition of the experiment, it must occasionally take a huge value, in 
order that the overall mean diverge as the number of repetitions does. Thus 
there must be very large fluctuations in the value of the mean, and this is what 
the divergence really implies. 
We  can also calculate higher moments of the distribution p(x).

min
1

1
m mx x

m
α

α
−

=
− −
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SCALE-FREE DISTRIBUTIONS

A power-law distribution is also sometimes called a scale-free distribution: a 
power law is the only distribution that is the same whatever scale we look at it 
on. Suppose we have some probability distribution p(x) for a quantity x, and 
satisfies the property that, for any b

( ) ( ) ( )p bx g b p x=

If we increase the scale or units by which we measure x by a factor of b, the 
shape of the distribution p(x) is unchanged, except for an overall multiplicative
constant. 
There are some systems that become scale-free for certain special values of 
their governing parameters. The point defined by such a special value is called 
a “continuous phase transition” and the argument given above implies that at 
such a point the observable quantities in the system should adopt a power-law 
distribution. 
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MANIFESTATIONS OF POWER LAWS

Power laws can be viewed from two different points of view:

● Power-law decay of correlations

● Power-law size distributions

Correlations are related to systems in thermodynamic equilibrium, that should 
have correlations which decay exponentially over space and time, and how big 
a typical fluctuation should be.

Power law correlations are related to far from equilibrium systems or in 
equilibrium but very close to a critical point. Phase transitions have fluctuations 
which decay like power law, and many non-equilibrium systems do too.

Autocorrelation functions are defined in time domain, but very often they are 
transformed into the Fourier spectrum (power spectrum). A power-law decay 
for the correlations as a function of time translates into a power-law decay of the 
spectrum as a function of frequency. This is also called “1/fα noise”, whiz α ~ 1.
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MANIFESTATIONS OF POWER LAWS

Power law distributions say there is no typical scale or size for the variable, 
whereas the exponential and he Gaussian cases both have natural scale 
parameters. 

1/fα noise. Many different kinds of stochastic process, with no connection to 
critical phenomena, have power-law correlations. From the point of view of time 
series analysis, 1/fα noise can be considered as  long memory processes, that 
can be obtained as a superposition of Gaussian autoregressive processes, also 
known as fractional Brownian motion, a particular case of self-affine time 
series.
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GENERATION OF POWER LAW DISTRIBUTIONS

We can deal with the generation of power law distributions from two different 
points of view:

Phenomenological (purely mathematical without any underlying physics): 
algebraic models

Based on the underlying physics: complex approach, notably the physics 
of critical phenomena and the tools of the renormalization group that are 
used to analyze it. Two approaches are in order:

By developing physical models 

Through numerical simulations
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ALGEBRAIC MODELS

▬ Combination of exponentials

▬ Inverse quantities

▬ Random walks

▬ The Yule process

[See Newman (2005)]
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PHYSICAL MODELS

▬ Phase transitions and critical phenomena

▬ Self-organized criticality

▬ Highly optimized tolerance

▬ Coherent noise

[See: Newman (2005),

Sornette (2000)]
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NOISE 1/f
[Dutta & Horn (1981)]

1/f noise refers to fluctuations which have spectral densities varying approximately as 
1/f over a large range of frequency, f. Fluctuations with such spectra have been 
observed in a tremendous variety of dissimilar physical systems. Is there a 
universality in the underlying equations which leads to 1/f noise in many apparently 
unrelated systems? The shape of the power spectrum uniquely characterizes the 
process only if it is stationary and Gaussian (all higher-order correlations are zero).

In a generic way, 1/f noise can be contemplated as an activated random process. A 
random process with a characteristic time τ has a Debye-Lorentzian spectrum

1
)( 22 +
∝

τω
τωS

Any spectrum may be generated by postulating an appropriate distribution D(τ) of 
the characteristic times within the sample. This could arise if, for example, the 
sample was inhomogeneous. Then

∫ +
∝ .)(

1
)( 22 ττ

τω
τω dDS
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NOISE 1/f
In particular, if

,)( 21
1 τττττ ≤≤∝ − forD

then
1

1
1

2
1)( −−− <<<<∝ τωτωω forS

If, as in many physical processes, τ is thermally activated,

( ),/exp0 kTEττ =

then the required energy distribution is 

)/ln()/ln()( 1201 ττττ kTEkTforconstED ≤≤=

The problem of justifying a 1/f spectrum has now been shifted to one of motivating the 
required energy distribution. Very often, specially in natural phenomena, several 
intervals can be found behaving as 1/fα, each one with a different value of α.
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NOISE 1/f
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Figure 2.2: Power-spectral density estimated with the Lomb periodogram of the temperature
inferred from the Deuterium concentrations in the Vostok (East Antarctica) ice core. The power-
spectral density S is given as a function of frequency for time scales of 500 yr to 200 kyr.

[Pelletier & Turcotte (1999)]

EXAMPLES
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Figure 2.6: Average power-spectral density of 50 continental daily temperature time series 
from the data set of the National Climatic Data Center [1994] as a function of frequency in yr-1. The 
power-spectral density S is given as a function of frequency for time scales of 2 days to 10 yr.

[Pelletier & Turcotte (1999)]

EXAMPLES
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Figure 2.7: Average power-spectral density of 50 maritime daily temperature time series 
from the data set of the National Climatic Data Center [1994] as a function of frequency in yr-1. 
The power-spectral density S is given as a function of frequency for time scales of 2 days to 10 yr.

[Pelletier & Turcotte (1999)]

EXAMPLES
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Figure 2.8: Power-spectral density of local atmospheric temperature from instrumental 
data and inferred from ice cores from time scales of 200 kyr to 2 days. The high frequency data 
are for continental stations. Piecewise power-law trends are indicated.

[Pelletier & Turcotte (1999)]

EXAMPLES
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POWER LAW DISTRIBUTIONS IN 
EMPIRICAL DATA

Power-law distributions occur in many situations of scientific interest and have 
significant consequences for our understanding of natural and man-made 
phenomena. 

Unfortunately, the empirical detection and characterization of power laws is 
made difficult by the large fluctuations that occur in the tail of the distribution. 

In particular, standard methods such as least-squares fitting are known to 
produce systematically biased estimates of parameters for power-law 
distributions and should not be used in most circumstances.

In practice, we rarely, if ever, know for certain that an observed 
quantity is drawn from a power-law distribution. Instead, the best 
we can typically do is to say that our observations are consistent 
with a model of the world in which x is drawn from a power law 
distribution.
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P-L DISTRIBUTION IN EMPIRICAL DATA

The maximum likelihood estimators are only guaranteed to be unbiased in the 
asymptotic limit of large sample size, n → ∞. For finite data sets, biases are 
present but decay as O(n−1) for any choice of xmin.

For very small data sets, such biases can be significant but in most practical 
situations they can be ignored because they are much smaller than the statistical 
error on the estimator, which decays as O(n−1/2). Numerical simulations suggests 
that n ≥ 50 is a reasonable rule of thumb for extracting reliable parameter 
estimates. Data sets smaller than this should be treated with caution. 

Note, however, that there is another reason to treat small data sets with caution, 
which is typically more important, namely that it is difficult with such small set of 
data to rule out alternative forms for the distribution. 

That is, for small data sets the power-law form may appear to be a good fit even 
when the data are drawn from a non-power-law distribution.
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ESTIMATING THE LOWER BOUND ON P-L BEHAVIOR

The estimation of the lower limit xmin on the scaling behavior from data is an 
important issue. 

It is important in the typical case where there is some non-power-law behavior 
at the lower end of the distribution of x. In such cases, we need a reliable 
method for estimating where power-law behavior starts: without it, we cannot 
make a reliable estimate of the scaling parameter. 

If we choose too low a value for xmin we will get a biased estimate of the scaling 
parameter since we will be attempting to fit a power-law model to non-power-
law data. On the other hand, if we choose too high a value for xmin we are 
effectively throwing away legitimate data points xi < xmin, which increases both 
the statistical error on the scaling parameter and the bias from finite size effects.

Traditionally, xmin has been chosen either by visually identifying a point beyond 
which the PDF or CDF of the distribution becomes roughly straight on a log-log 
plot, or by plotting α as a function of xmin and identifying a point beyond which α
appears relatively stable. These approaches are clearly subjective and can be 
sensitive to noise or fluctuations in the tail of the distribution.



Advanced School on NLD&EP, ICTP       
Trieste, 28 Sep. - 10 Oct. 2009

38

TESTING THE POWER-LAW HYPOTHESIS

Assume we have performed a power-law fit to a given data set and provide 
good estimates of the parameters α and xmin. They tell us nothing, however, 
about whether the data are well fitted by the power law: obtaining roughly a 
straight line on a log-log plot is a necessary but not sufficient condition for 
power-law behaviour.
Given an observed data set and a power-law distribution from which the data 
are drawn, we want to know whether that hypothesis is a likely one given the 
data.
Questions of this type can be answered using goodness-of-fit tests that 
compare the observed data to the hypothesized distribution. Many such tests 
have been proposed, but one of the simplest, and more efficient, is based on 
the Kolmogorov-Smirnov statistic, the KS statistic. 
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THE KOLMOGOROV-SMIRNOV STATISTIC

The KS statistic is simply the maximum distance between the CDFs of the data 
and the fitted model:

( ) ( )
min

max .
x x

D S x P x
≥

= −

Here S(x) is the CDF of the data for the observations with value at least xmin, 
and P(x) is the CDF for the power-law model that best fits the data in the region
x ≥ xmin.
The calculation returns a single number that is smaller for hypothesized 
distributions that are a better fit to the data. If this value is suitably small we can 
say that the power law is a plausible fit to the data; if the value is too large the 
power-law model can be ruled out. The crucial question we need to answer is, 
how large is too large?
The standard way to answer this question is to compute a p-value which 
quantifies the probability that our data were drawn from the hypothesized 
distribution, based on the observed goodness of fit. 
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THE P-VALUE

The p-value is defined to be the probability that a data set of the same size that 
is truly drawn from the hypothesized distribution would have goodness of fit D 
as bad or worse than the observed value. In essence, it tells you how likely it is 
that you saw results as bad as you did if the data really are power-law 
distributed.
If the p-value is much less than 1, then it is unlikely that the data are drawn from 
a power law. If it is closer to 1 then the data may be drawn from a power law, 
but it cannot be guaranteed. 
This last point is an important one: the goodness-of-fit test and the 
accompanying p-value are a tool only for ruling out models, not for ruling them
in. They can tell us when a model such as the power law is probably wrong, but 
they cannot tell us when it is right. 
The best we can do by way of confirming the power-law model, in a 
strictly statistical sense, is to say that it is not ruled out by the observed 
data. 
There is no known formula for calculating the p-value, but we can calculate it 
numerically by a Monte Carlo procedure.
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Zipf’s law & fat tails
Plotting and fitting distributions

Lecture 6
Instructor: Lada Adamic

Reading: 
Lada Adamic, Zipf, Power-laws, and Pareto - a ranking tutorial, 
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
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