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RECTED PAbstract

The standard explanation for soft sediment deformation is associated with overturn of inverted density gradients. However,

in many cases, observations do not support this interpretation. Here we suggest an alternative in which stably stratified layers

undergo a shear instability during relative sliding via the Kelvin–Helmholtz Instability (KHI) mechanism, triggered by

earthquake shaking. Dead Sea sediments have long stood out as a classical and photogenic example for recumbent folding

of soft sediment. These billow-like folds are strikingly similar to KHI structures and have been convincingly tied to

earthquakes. Our analysis suggests a threshold for ground acceleration increasing with the thickness of the folded layers.

The maximum thickness of folded layers (order of decimeters) corresponds to ground accelerations of up to 1 g. Such an

acceleration occurs during large earthquakes, recurring in the Dead Sea.

D 2005 Published by Elsevier B.V.

Keywords: Kelvin–Helmholtz Instability; Soft sediment deformation; Paleo-earthquake intensity; Dead Sea basin
29
30
31
32
33
34
35
36
NCOR1. Introduction

The ubiquitous stratification in low-energy depos-

its, where density typically increases with depth, inhi-

bits gravitational instabilities of the Rayleigh–Taylor

type. Yet such deposits commonly show structural

evidence of mechanical instabilities experienced in

the unconsolidated state. Layer-parallel displace-
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ments, not uncommon in soft sediments, force shear

between layers and possibly drives instabilities of the

Kelvin–Helmholtz (KH) type [1]. Layer-parallel shear

in post-depositional situations can be driven by a

number of mechanisms such as sloping substrates or

water flow above the sediments. Yet, soft sediment

deformations are observed also on vanishing slopes

and at calm water environments. Sediments in the

Dead Sea basin provide long environmental records

comprising finely laminated layers, radiometrically

dated to a precision of tens to hundreds years [2].

Laminated lake deposits, such as in the Quaternary
etters xx (2005) xxx–xxx
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Dead Sea, provide spectacular examples for such

deformation structures (Fig. 1) [2]. These structures

have been tied to strong earthquakes [3–8], providing

a source for shear energy. Earthquakes may leave

several types of marks on soft laminated beds, includ-

ing faulting, folding and fragmentation. Counting

laminas (thought to represent seasonal deposition)

provides a resolution approaching annual that recently

enabled matching of particular deformed laminas to

historically documented earthquakes [3].

The folding of soft sediments appears at various

magnitudes, seemingly indicating various stages of

the deformation. Folding can evolve from a wavy
UNCORRECT

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Fig. 1. Examples of different geometry of sediment foldings: (1a)

linear wavy geometry, (1b) coherent billow vortices, and (1c)

turbulent mixed breccia layer (Photos were taken from the Dead

Sea region). In (1a) the speculated original condition supporting

KHI is illustrated schematically: Two layers, of thickness H, ini-

tially horizontal and stably stratified (q1Nq2), experience an earth-

quake shaking in the x direction. In response to the shaking, the

denser lower layer moves more slowly than the upper one, forming

shear at the interface. The interface, located initially at z =0, was

perturbed becoming unstable with a wavy shape.
ED P
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shape (Fig. 1a) which can be distorted further to a

billow-like or recumbent form (Fig. 1b). The layer

may deform further and become fully turbulent,

creating a thoroughly mixed breccia layer featuring

fragments from the original laminas (Fig. 1c)

[3,5,6].

Here we examine the feasibility for a KHI mech-

anism by which folds are being formed. The shear in

the present context is one of fluid flow, not related to

the elastic cyclic shear loading prior to liquefaction

[9]. KHI was examined in numerous laboratory

experiments [10] and numerical simulations [11].

The mechanism involves two horizontal layers that

are stably stratified (the light layer overlies the heavy

one, Fig. 1a). The layers move horizontally in the

same direction but with different speeds, creating

shear in the layers’ interface. Such shear tends to

rotate the beds, giving rise to an instability that uplifts

the heavy layer above the lighter one (Fig. 1a). As a

result, a wavy structure of billow vortices, distorted by

the shear, is formed; the heavier lifted layer tends to

collapse into the lighter layer and mix with it (Fig.

1b). If the shear persists, a mixed turbulent boundary

layer is developed at the interface where the local

shear within the billows forms secondary unstable

vortices (note the small scale wiggles in Fig. 1b).

These vortices cascade energy into smaller scales

and promote the mixing [1] (Fig. 1c).

We attempt to construct a simple physical model to

capture the dynamics of the phenomenon (Section 2)

and examine its potential instability (Section 3). Fi-

nally, we discuss the applicability of the model to

Dead Sea deposits (Section 4).
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2. A simple model of sediment KHI instability

The folds amount to evidence that deformation

took place while the sediment was in a state of un-

consolidated mud, reasonably treated as a fluid. Dur-

ing the processes of sedimentation and loss of fluid,

the suspension can be viewed as an array of particles

falling through the suspending fluid at a steady state

velocity. The sedimentation velocity decreases with

increasing mass fraction v. Gradients in v tend to

form sharp fronts between layers of uniform density,

and these fronts travel through the suspension as

kinematic waves [12]. Hence, the layers are distin-
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guished by mass fraction vj, of solid material in the

sediment. The layers’ density is described by

qj ¼ vjqs þ 1� vj
� �

qw; ð1Þ

where the index j numerates the layers, qs is the

suspended solid material density and qw is the sus-

pending fluid density (corresponding to either fresh or

salty water). We consider a simple configuration of

two neighboring sediment layers j =1,2 (layer-1

underlies layer-2 so that q1Nq2, Fig. 1a) with thick-

ness H (A typical value of qs=2500 kg/m3 where the

water density might vary between qw ~1000–1300 kg/

m3, for fresh and salty water. A typical value of the

fraction in the sediments is v =2 /3 and thus Eq. (1)

suggests a mean typical density value of the sediments

at the range of qm =2000�2100 kg/m3. The typical

fraction difference between two successive sediment

layers Dv =v1�v2, is of the order of 0.1 which gives

Dq =150�120 kg/m3bqm, for both fresh and salty

water.). Observations indicate that the typical unstable

perturbed wavelength is small compared to the layer

interface length but has the same order of the sediment

layer width (aspect ratio at the order of unity) [2].

Hence we take for simplicity an infinite horizontal

interface (with no vertical boundaries). We consider a

case where away from the interface at say z =FH the

perturbation vertical velocity vanishes. We assume

that the problem is essentially two dimensional

(where x is the direction of the earthquake shaking

and z is the vertical), hydrostatic, incompressible and

irrotational away from the interface.

Introducing viscosity to the problem is non-trivial

since it is impossible to recover from the present

folded sediment layers the original viscosity qualities

of the paleo unconsolidated mud before deformation.

Moreover, the effective viscosity of a thick suspension

under dynamic conditions depends on sizes and

shapes of suspended particles. These properties are

not well characterized in many natural deposits, and

their quantitative effect on viscosity is poorly known.

Even if we assume an isotropic viscosity within the

layers it is straightforward to show that the viscosity

vanishes for an incompressible irrotational flow. Then

the viscosity should be incorporated in the internal

boundary condition by requiring continuity of the

normal stress along both sides of the interface [1].

These normal stress cannot be quantified however,
ED P
ROOF

from present observations. Hence, here we take a

simple approach of representing viscosity in terms

of the bulk Rayleigh damping [13]:

f v ¼ � ru; ð2Þ

where fv provides the damping force per unit mass,

u=(u, 0, w) is the 2-D velocity vector and for a given

dominant frequency r is taken as a constant. Damping

should be sufficient to reduce the motion significantly

within the time scale of an earthquake duration, how-

ever it should not be too strong as to diminish the

motion completely. We can estimate the damping by

using the response to seismic shear waves, as the

attenuation of these would dissipate energy in a man-

ner similar to that of internal gravity waves [14]. The

quality factor, Q, is the ratio between the stored

energy and the energy lost during a cycle. Due to

the Rayleigh damping the wave amplitude decays as

exp (�rt) and its energy as exp (�2rt). Hence,

Q =2k / [1�exp (�2r / f)]ckf / r, were f represents

the frequency of the most energetic wave, if we

assume r / fb1. Recent estimates based on in situ

measurements for sediments [15], provide typical

values of Q ~30F20, thus suggesting r ~0.1f.

We treat the acceleration perturbation of earthquake

waves in the soft sediment as pressure gradients, with a

horizontal component P ¼ � B
Pp
Bx
. The pressure gradi-

ent force is assumed to be damped by Eq. (2), within

the time scale of the duration of strong motion. As a

result the layers reach an approximate balance where

both layers move in concert but the denser lower layer

moves more slowly than the upper one, i.e.

rUj ¼
P
qj

ð3Þ

(Uj denotes the mean velocity of layer j), forming

shear at the interface. We are focusing on cases where

hindered settling creates minor differences between

adjacent layers (Appendix A) hence we assume that

Dqbqm =(q1+q2) / 2. Then Eq. (3) gives

DU ¼ P
rq2

m

Dq; ð4Þ

where DU =U2�U1N0 and Dq =q1�q2N0.

Hence, under these simplified assumptions a Kel-

vin–Helmholtz like configuration of stratified sheared

bi-layer is being established within the time scale of
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an earthquake. Next we examine the possible modal

instability resulted from the KHI mechanism.
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3. Damped growth of sediment KH

We seek normal mode wavelike solutions for the

perturbation in the form of exp[ik(x�ct)], where k is

wavenumber and c is phase speed (which could be

complex). Then in the Appendix we derive the

damped bounded KHI dispersion relation,

c ¼ Um þ i

�
rH

2K

��
F

�
1þ

�
K
r

�2

K K � 2Ri tanh Kð Þ
�1=2

� 1

�
ð5Þ

where

Um ¼ q1U1 þ q2U2

q1 þ q2

; K ¼ kH ;

K ¼ DU

H
; N2 ¼ g

qm

Dq
H

; Ri ¼
�
N

K

�2

:

ð6a; b; c; d; eÞ

Um is density weighted mean velocity, K is the

nondimensional wavenumber scaled by the layers’

width H, K can be regarded as the bulk mean shear

and N as the bulk buoyancy (Brunt–Väisälä) frequen-

cy. The square of the ratio of the two latter terms is

known to be the bulk Richardson number [13].

Modal instability is obtained when the imaginary

part of the phase speed, ci, of Eq. (5) is positive,

possible only for wavenumbers K NKc=2Ri tanh

Kc, which is precisely the explicit criterion for the

inviscid case of bounded KHI. Using Eq. (6c,e), the

latter condition can also be rewritten in terms of the

minimal shear required to make a specific wavelength

unstable in a given density stratification, i.e.,

DUNNH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tanh K=K

p
. The difference between the

viscid and the inviscid KHI instability is therefore not

in the range of instability but in the exponential

growth rate, GR =kci s
�1,

GR ¼ r

2

��
1þ

�
K
r

�2

K K � 2Ri tanh Kð Þ
�1=2

� 1

�
ð7Þ
ED P
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which is always smaller than the inviscid KHI growth

rate (when r =0).

A useful measure for earthquake effectiveness is

the ground acceleration imposed by the shaking, com-

monly normalized by the gravitation acceleration g.

Hence, defining the averaged ground acceleration as

a =C /qm, then using Eqs. (4) and (6c), the condition

for instability can be rewritten as a=gN r=Nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tanh K=K

p
. The typical perturbed wavelength

which is found in the observations (c.f. Fig. 1) has

an aspect ratio around unity, i.e., k /H ~1 or K ~2k
and tanh (K)c1. Therefore, the lower limit to the

averaged ground acceleration for the development of

such perturbations is

a

g
N

rffiffiffi
p

p
N

¼ r

ffiffiffiffiffiffiffiffiffiffiffiffi
qmH

pgDq

s
: ð8Þ

The threshold for instability increases with

damping r and with the square-root of the layer

thickness. The threshold is inversely proportional to

the square-root of the density difference suggesting

that a high density difference is less stable. By

contrast, density difference tends to suppress the

inviscid KHI instability. This somewhat surprising

result for the viscid case considered here is solely

due to the increasing bulk shear for a given pres-

sure gradient. The growth rate Eq. (7) then takes the

form

GR ¼ r

2

��
1þ

�
K
r

�2

4p p � Rið Þ
�1=2

� 1

�
: ð9Þ

Finally, using Eqs. (4) and (6), then Eq. (9) can be

rewritten explicitly in terms of (H, a /g)

GR ¼ r

2

��
1þ

�
2pgDq
r2qmH

�2��
a

g

�2

� r2qm

pgDq
H

��1=2
� 1

�
: ð10Þ

Fig. 2 shows the calculated growth rate (normal-

ized by the frequency of the dominant seismic wave)

as a function of (H, a /g). For this example we take

typical values of the Dead Sea sediment composi-

tion. The solid material, with density qs =2500 kg/

m3 , is suspended into salty water with density

qw =1200 kg/m3. The averaged suspended mass frac-
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Dq =130 kg/m3. The damping coefficient is taken as r =0.1 Hz. The parabolic solid line marks the threshold for instability (c.f. 8). For onset of

linear KHI wave folding (as in Fig. 1a), the growth rates must be in the order of the gravest seismic wave frequency (order of 1 Hz). Coherent

billows (Fig. 1b) require high growth rates, where fully turbulent mixing, leading to breccia layers (Fig. 1c), requires yet higher growth rates.
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UNCORRECtion, vm, and its difference between the layers, Dv,
are 2 /3 and 0.1, respectively, yielding qmc2000

kg/m3, and Dq =130 kg/m3. The damping coefficient

was taken as r =0.1f, where the frequency of the

most energetic seismic waves f was taken as 1 Hz.

The layers are stable for ground accelerations a,

smaller than 0:07
ffiffiffiffiffiffiffi
Hg

p
(where H is in meters), c.f.

the parabolic threshold solid line Eq. (8). For onset

of linear KHI wave folding (as in Fig. 1a), the growth

rates must be in the order of f. Coherent billows

(Fig. 1b) require high growth rates, where fully

turbulent mixing, leading to breccia layers (Fig.

1c), requires yet higher growth rates. For example,

for an acceleration a =0.7g, layers of 1 m thickness

or thicker are stable. Thinner layers become unstable,

yet for thickness larger than about half a meter, the

growth rate might not suffice for the development of

instability during the seismic wave half-period. Bil-

low structures can develop in layers with a thickness

of fractions of a meter, while fully turbulent mixing

is expected for layers with thickness of the order of

centimeters.
4. Discussion

Laminated fine-grained sediments, deposited on

horizontal bottom under low-energy conditions, are

expected to be stably stratified, so density increases

with compaction and hence with depth. Since gravi-

tational Rayleigh–Taylor instabilities are not likely

under these conditions, alternative mechanisms

should be at work. From an observational aspect,

the striking similarity of structures in fine-grained

laminated deposits to KHI billows, suggests that

shear plays a central role in soft sediment deformation

(For example, Fig. 3 is a photograph of KHI billow

clouds taken in New Zealand during the summer. An

atmospheric inversion layer yields both strong strati-

fication and wind shear which together enable KHI

instability to develop. Please note the similarity be-

tween Figs. 1b and 3.).

The simple analysis presented here examines the

feasibility of KHI instability in stably stratified sedi-

ments. We contend that shear energy is available in

various depositional settings such as sloping substrate,
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high water energy environment, or earthquake prone

regions. We focus here on earthquake related settings,

yet the analysis is valid for other scenarios, as long as

the pressure gradients are known.

The application of the model to earthquake settings

is based on a translation of the instrumentally measur-

able ground accelerations to pressure gradients. As a

preliminary model it does not provide precise corre-

spondence between field observations and the actual

driving ground accelerations. Moreover, we cannot

rule out alternative sources for pressure gradients,

such as surface and internal waves in the depositing

water body. Since water depth of Lake Lisan was

several tens of meters, ground acceleration waves dom-

inated over water waves.

In deriving the model we have neglected differential

displacement between grains and suspending fluid.

Such displacement is evident in the very existence of

billows in sedimentary rocks. While KHI instabilities

are very common in our surroundings, the resulting

structures are ephemeral due to the stabilizing force of

gravity. By contrast, billows are so well preserved in

sediments due to water loss and consolidation shortly

after the onset of the instability.We assume here that on

the time scale of development of KHI instability, the

differential displacement between grains and suspend-

ing fluid is negligible, yet in the time scale of attenu-

ation of the seismic energy, the differential

displacement is sufficient to preserve some of the

structure.

Tentative evidence for such differential displace-

ment can be seen in Fig. 1c. [5] have interpreted such
ED P
ROstructures as a case for differential displacement be-

tween grain and water during shaking. Water loss in

the lower cohesive zone to the overlying homoge-

neous zone may have provided upward flow to

drive complete suspension of this zone.

The analysis assumes that all displacement fields

are confined to a vertical plane. This assumption is

valid away from the earthquake source, where P, S,

and surface waves have dispersed sufficiently. Some

of the most photogenic cases of billows in the Dead

Sea laminated deposits indeed show such two-dimen-

sional displacement fields. In the vicinity of the earth-

quake source, the displacement field is three

dimensional, and a more complete analysis is re-

quired. At the same time, well documented three

dimensional observations will be useful for the

study of the vicinity of the earthquake source.

The introduction of bulk damping to represent

viscosity, a key simplification of the present analysis,

assumes that the viscous damping of the suspension

is proportional to the velocity. This representation

bypasses the formidable challenge of assessing the

effective viscosity under the dynamic conditions of

shaking of a thick suspension, in which the sus-

pended particles exhibit a wide range of shapes

and scales [16]. The advantage in the present formu-

lation is that the actual coefficient of damping can be

estimated from direct experimental observations in a

shaking tank. In the absence of such experimental

data, we parametrize the bulk Rayleigh damping

coefficient in terms of the driving frequency domi-

nant in the acceleration spectrum of the earthquake.
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The time scale for damping should be sufficiently

short as to balance the driving pressure gradient

during the time around peak acceleration, say a

tenth of the acceleration cycle. This is the rationale

behind choosing a bulk Rayleigh friction coefficient

10 times the frequency. The estimation of damping is

also in agreement with the attenuation of seismic

shear waves, as the attenuation of these would dis-

sipate energy in a manner similar to that of internal

gravity waves [14].

The force balance between the driving pressure

gradient and Rayleigh damping yields an expres-

sion for the mean shear between the two layers Eq.

(4), turning out proportional to the density differ-

ence. This leads to the somewhat nonintuitive result

that damped KHI instability increases with the den-

sity difference Eq. (8). This result is only valid in

the range of small density difference (with respect

to the mean density), a range in which Eq. (4)

results from Eq. (3). Hence high density difference

cannot lead to instability at low acceleration. The

prediction of Eq. (8), namely that the instability is

promoted by increasing the density difference (at the

low range of Dq /qm) can be subjected to experi-

mental verification.

The ability of the analysis to rationalize field

observations suggests that KHI instability is a plau-

sible mechanism for deformation of stably stratified

soft sediments. Earthquake-triggered KHI instability

seems plausible for deposits laid horizontally in

calm water, as the case is for the earthquake

prone Dead Sea basin. The present study sets a

foundation for quantitative analysis of deformation

structures in laminated sediments and for the extrac-

tion of dynamic conditions during earthquakes. This

can be a contribution to earthquake science and

hazard assessment.

Our analysis indicates that density inversion is

not required from the physics of earthquake-induced

soft sediment deformation. By extension, we expect

that the Kelvin–Helmholtz instability will provide

explanations to common geophysical situations,

where gravitational instabilities are inhibited by

density stratification. These may include the em-

placement of ophiolites, mixing of the upper mantle

with the denser lower mantle, and entrainment by

hot plumes of dense slugs at the core mantle

boundary.
ED P
ROOF

Appendix A. Bounded modal KHI instability in the

presence of Rayleigh damping:

Writing the 2-D Navier–Stokes Eq. (2).

Bu

Bt
þx � uþj

juj2

2
¼ � 1

q
jp�jU þ f ; ðA:1Þ

the vorticity x =j�u, p, q, U =gz, are the pressure,

density and the gravitation potential. t denotes time

and j =(Bx, 0, Bz). The viscosity is given by Eq. (2).

We assume a mean hydrostatic balance in the vertical

direction and a mean horizontal balance in the form of

Eq. (3).

We seek normal mode wavelike solutions for the

perturbation in the form of exp[ik(x�ct)]. Every-

where except at the interface, the layers are assumed

irrotational, x =0. While the normal modes result

from the basic state vorticity d-function on the inter-

face, the companion set of solutions of the continuous

spectrum results from rotation within the layers. The

continuous spectrum is neutral and therefore tradi-

tionally neglected in the context of linear stability.

However, due to non-orthogonality between the con-

tinuous spectrum and the normal modes, an interac-

tion between the two sets of solutions might lead to a

super non-modal growth in finite time [17]. This sort

of growth mechanism is however beyond the scope of

this work. The modal velocity can be written then in

terms of the velocity potential w; u=�Dw. Then Eq.

(A.1) can be rewritten in the barotropic gradient form:

j �
�
Bw
Bt

þ rw

�
þ
�
juj2

2
þ p

q
þ U

�#
¼ 0;

"

ðA:2Þ

and Eq. (2) has been used to represent the viscosity.

Eq. (A.2) implies that

�
�
Bw
Bt

þ rw

�
þ
�
juj2

2
þ p

q
þ U

�
¼ F tð Þ;

ðA:3Þ
where F(t) is some function of time only. The LHS of

Eq. (A.3) can be regarded as the Rayleigh viscid

unsteady flow generalization of the Bernoulli conser-

vation (indicated by the second brackets of the LHS).

Assuming also incompressibility of the layers

(jui =0) and decomposing the perturbation from the
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basic state so that ui=(Ui +uiV, 0, wiV), prime indicates

the perturbation, then wi=�Uix +wiV. Writing

wiV= w̃i(z) exp [ik(x�ct)], the incompressibility con-

strain yields the Laplace equation for the perturbation

streamfunction (j2wiV=0).
The boundary conditions of vanishing the vertical

velocity on the horizontal outer boundaries of the

layers, located at z =FH, give the solution:

w̃wi zð Þ ¼ ŵwi

cosh kHð Þ cosh k H � jzjð Þ½ 
; ðA:4Þ

where ĉi is the perturbation’s velocity potential am-

plitude on the two sides of the interface at z=0.

Before and after the time when the perturbation is

initiated the pressure on both sides of the interface

should be even. This allows us to set the time function

F(t) by using the latter condition in Eq. (A.3) at z=0,

prior to the perturbation:

1

2
q1U

2
1 � q2U

2
2

� �
¼ ðq1 � q2ÞF tð Þ; ðA:5Þ

which suggests F(t) to be taken as constant. Perturb-

ing the interface with a vertical displacement 1V= ê
exp [ik(x�ct)], linearizing the kinetic energy juij2=2
cU2

i =2�
BwV

i

Bx
Ui; then pressure continuity across the

perturbed interface, together with Eqs. (A.3-5), yield

q1½ik U1 � cð Þŵw1 þ rŵw1 � gf̂f


¼ q2 ik U2 � cð Þŵw2 þ rŵw2 � gf̂f
i
: ðA:6Þ

h
In order to obtain the dispersion relation we also

imply that the vertical velocity at z=0 is equal to the

Lagrangian time derivative of the interface vertical

displacement,

w z ¼ 0ð Þ ¼
�

B

Bt
þ udj

�
f̂f: ðA:7Þ

Next we linearize the RHS of Eq. (A.7) with

respect to the basic state. Recall thatw =�BwV /Bz,
we can then write for the two sides of the interface

tanh kHð Þŵw1 ¼ � i U1 � cð Þf̂f;
tanh kHð Þŵw2 ¼ � i U2 � cð Þf̂f:

Using that Dqbqm, Eqs. (A.6) and (A.8) provide

the dispersion relation of Eq. (5).
ED P
ROOF
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