Sliding friction of neon monolayers on metallic surfaces

Giampaolo Mistura

Università degli Studi di Padova
Italy
Nanofriction of monolayers of simple gases on metals

Giampaolo Mistura

Laboratorio di Fisica delle Superfici e delle Interfacce
Dipartimento di Fisica G.Galilei, Università di Padova
Outline

• Introduction

• QCM technique
 • Kr on gold (e.g. dynamical depinning)
 • Ne on lead (e.g. structural depinning)
 • Ne on metals plated with rare gases multilayers (e.g. control of friction)
Introduction
Deposit atoms on a flat surface
Apply the same external lateral force on each atom
Study dependence of atomic friction on the various system parameters
Keep it simple!

Deposit gases (e.g. rare gases) characterized by simple physical interactions between them and with the surface

Use uniform crystalline surfaces without chemical impurities

Study dependence of atomic friction on temperature,
External force strength,
film coverage (e.g. 2D phase of adsorbate),
chemical nature of substrate (e.g. vertical interactions),
physical nature of substrate (e.g. metal or insulator, lattice parameters),
...

and their interplay with impurities (chemical or structural)
Sliding of adsorbed monolayers

Model system for extensive theoretical studies

Experimentally, the most suitable probe to study these systems is the quartz crystal microbalance
• Quartz Crystal Microbalance
Quartz Crystal Microbalance (QCM)

Standard technique to measure mass (e.g. thickness) in evaporators

- quartz disk (D≈10 mm, t≈0.3mm) with two metal electrodes
- parallel faces undergo a shear motion by the application of a variable voltage
 - automatic track of mechanical resonance (1st harmonic 5MHz), instantaneous measurements of frequency and amplitude
 - high quality factor Q≈10^5
 ⇒ High sensitivity

\[F_i = m A_0 f_0^2 \approx 0.002 fN \]

\(N_2 \) molecule

ICTP-FANAS, Tribology Conference, Trieste 18-24/10/2009
QCM as a nanofriction probe

In 1988 J. Krim suggested to use QCM to study sliding of adsorbed film.

\[\Delta V_s \rightarrow \text{adsorbed mass} \]
\[\text{(2.3 Hz/5MHz for Ne monolayer)} \]
\[\Delta f \rightarrow \text{dissipation} \]
QCM as a nanofriction probe

From ΔV and Δf it is possible to determine slip time τ_s

Slip time is the time it takes the film to follow the electrode

- v_{film} $t=0$
- $v_{\text{electrode}}$

- v_{film} $t=\tau_s$
- $v_{\text{electrode}}=0$

- $v_{\text{film}}=v_0/e$

$\tau_s = 0$ film locked to the surface
$\tau_s = \infty$ superfluid film
$\tau_s \approx 1\div10$ nsec sliding Kr monolayer
• Results
Dynamical depinning

Kr film adsorbed on gold at $T = 85K$. Coverage = 0.2 layers

Data indicate dynamical depinning of Kr film (e.g. static to dynamic friction)

ICTP-FANAS, Tribology Conference, Trieste 18-24/10/2009
Why is there hysteresis?

Molecular Dynamics simulations of model system Xe/Ag(100) indicate that hysteresis is due to melting of the solid adsorbate caused by frictional heating.

ICTP-FANAS, Tribology Conference, Trieste 18-24/10/2009
Structural depinning

• Substrate: Lead
 (“easy” to prepare good quality films even at room temperature / becomes superconducting at 7 K)

• Adsorbate: Rare gases
 (very simple interactions / Ne still “active” at very low temperatures, e.g. <10K)

• Measurements done in a UHV chamber and at low T
 (reduce surface contamination)

RSI '05
Pb deposited on a bare QCM at room T and in UHV
Experimental details

• QCM driven with FM technique
 Frequency stability ±0.1Hz overnight
 Amplitude stability ±0.05%
 Power dissipation < 1 μW

• In-situ deposition of the film at low T
 Deposition time comprised between 15 min and 90 min
 For heavy adsorbates (e.g. Kr, Xe, N₂ deposition followed by post-annealing
Structural depinning

Coverage scan of Ne on Pb(111) @ 6.5K

PRL '06

ICTP-FANAS, Tribology Conference, Trieste 18-24/10/2009
Coverage scans of Ne on Pb(111)

Pinning of the film at low coverages
Depinning onset depends on temperature
Why is there depinning?

Persson's calculations of the slippage of a simple adsorbate on a low-corrugated model surface.

ε is the adatom-adatom well depth

PRB '93, JCP '95

\Rightarrow Structural depinning of the adsorbed film

Ne on Pb(111)

Ne-Ne well potential $\varepsilon=42K$

$\Rightarrow K_B T=1/7 \varepsilon$

ICTP-FANAS, Tribology Conference,
Trieste 18-24/10/2009
Superlubricity

Dry friction assumes very small values when the two crystalline surfaces are incommensurate:
The force coming from the mismatched atoms in the contact area point in all directions and sum up to zero.
Hirano and K. Shinjo, PRB 90

Vanishing friction on a silicon surface was observed with ultra-high vacuum (UHV) scanning tunneling microscopy
Hirano et al., PRL 97

With a very sensitive frictional force microscope it was found that friction between a graphite flake sliding over a HOPG graphite was significantly reduced when the two graphite surfaces are rotated out of the commensurate locking angle.
Dienwiebel et al., PRL 04
Coverage scans Ne on Pb(111) @ 6.5K
Results on plated Pb

In-situ deposition of Kr, Xe overlayers of controlled nominal thickness (1 to 5 ML)

Rare gases can be very pure and are characterized by simple interactions

Heavy rare gases do not slide at low T

J. Phys.: Cond. Matt. '06

Heavy rare gases do not evaporate at T ≤ 30 K
Deposition of Kr overlayers at 6.5 K

No sliding of Kr on bare Pb and on Kr plated Pb
Deposition of N2 at low T
Heavy rare gases do not slide and they do not evaporate at low T

→ They are dynamically “inert”
Coverage scans Ne on Pb plated with Kr overlayers
Coverage scans Ne on Pb plated with Xe overlayers
Partial summary

• Plating Pb with a Kr or Xe overlayer increases slip time by a factor ~3

• This lubrication effect saturates after only 1 monolayer

• Depinning of Ne on Xe seems to occur at lower coverages than on Kr

• NB. The heavy rare gas overlayer DOES NOT act as a conventional fluid lubricant: the overlayer is dynamically inert
WHY NO DIFFERENCE BETWEEN Kr and Xe?

Calculations of Ne potential on Kr (Xe) overlayers of different thickness

\[V(R) = A e^{-bR} - \sum_{n=3}^{M} \left[1 - \sum_{k=0}^{2n} \frac{(bR)^k}{k!} \exp(-bR) \right] \frac{C_{2n}}{R^{2n}} \]

Tang and Tonnies, Z Phys D 86

→ No major difference between Ne-Kr and Ne-Xe adsorption potentials
 OK with experimental data

ICTP-FANAS, Tribology
Conference, Trieste 18-24/10/2009
WHY NO DIFFERENCE WITH Kr (Xe) THICKNESS?

Variation of calculated Ne-Kr potential with Kr overlayer thickness

→ No big dependence of adsorption potential with Kr (Xe) thickness
OK with experimental data
WHY INCREASED SLIDING OF Ne ON Kr (Xe)?

• The Kr (Xe) multilayer may lower the surface corrugation potential experienced by the Ne atoms

• Differences in surface potential periodicity between Xe and Kr may be responsible for different depinning onset (?)

• The insulating overlayer may shield the electronic coupling between adsorbate-electrode reducing the electronic contribution (??)

Theoretical modelling and accurate surface potentials are essential for a reliable data interpretation !!!
WHY NO SLIDING OF Ar, Kr, Xe, N$_2$ FOR T<10K?

• Intrinsic pinning
 Sliding of the adsorbate is an activated process.
 Barrier energy ~ corrugation amplitude of surface potential.
 Corrugation increases with adsorbate polarizability

<table>
<thead>
<tr>
<th></th>
<th>Corrugation</th>
<th>Well-depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne/Kr</td>
<td>40K (H-B)</td>
<td>290K</td>
</tr>
<tr>
<td>Ne/Xe</td>
<td>40K (H-B)</td>
<td>290K</td>
</tr>
<tr>
<td>Ar/Cu(111)</td>
<td>45K (T-H)</td>
<td>290K</td>
</tr>
<tr>
<td>Kr/Cu(111)</td>
<td>73K (T-H)</td>
<td>290K</td>
</tr>
<tr>
<td>Xe/Cu(111)</td>
<td>98K (T-H)</td>
<td>3000K</td>
</tr>
<tr>
<td>Ne/Pd(111)</td>
<td>8K ([2])</td>
<td>220K</td>
</tr>
<tr>
<td>Kr/Pd(111)</td>
<td>87K ([2])</td>
<td>2050K</td>
</tr>
<tr>
<td>Xe/Pd(111)</td>
<td>116K [2]</td>
<td>3700K</td>
</tr>
</tbody>
</table>

WHY NO SLIDING OF Ar, Kr, Xe, N$_2$ FOR T<10K?

- Extrinsic pinning
 Electrode surface is defective (steps, missing atoms, chemical impurities...)
 Low temperature will enhance binding of adsorbate at such defects

N$_2$ films deposited on Pb are highly susceptible to become pinned at low T
 Highland and Krim, PRL 06

Static friction of N$_2$ films deposited on Pb for T<30K
 Barigazzi et al., J. Phys. 07

Further studies are required to clarify the relative importance of intrinsic to extrinsic pinning of heavy adsorbates on metal surfaces at low T

ICTP-FANAS, Tribology Conference, Trieste 18-24/10/2009
Coverage scans Ne on Au(111) plated with Kr overlayers
CONCLUSIONS

• We have studied the sliding friction of Ne monolayers with a QCM technique

• Results are suggestive of a structural depinning of the Ne film

• Measurements on composite substrates indicate a significant increase of Ne slippage on metal films plated with ≥1 ML of Kr or Xe
ACKNOWLEDGMENTS

Lorenzo Bruschi
Matteo Pierno, Giovanni Fois and Chiara Piron
Dipartimento di Fisica, Università di Padova, Italia

Francesco Ancilotto
Dipartimento di Fisica, Università di Padova, Italia

Corrado Boragno, Francesco Buatier de Mongeot, and Ugo Valbusa
Dipartimento di Fisica, Università di Genova, Italia