ICTP/FANAS Conference on trends in Nanotribology

19 - 24 October 2009

Pure adhesion in friction

HEISE Rainer Christof
Institut fuer Mechanik
Strasse des 17. Juni 135, D-10623 Berlin
GERMANY
Pure Adhesion in Friction

Rainer Heise Valentin L. Popov

Technische Universität Berlin, Institute for Mechanics, Germany

Joint ICTP/FANAS Conference on Trends in Nanotribology, October 2009
Friction

Friction Coefficient
- Macroscopic friction coefficient μ
- Amontons law 1699
- Defined as ratio between the frictional force and the normal force

Idea
Can friction be (partly) explained by a simple adhesive model?
Friction

Adhesion
- Attractive force between two bodies
- Van der Waals force
- Lennard-Jones Potential
- Surface energy density γ_{12}

JKR Theory
- Hertz contact theory for contact between rigid surface and elastic sphere 1882
- Johnson, Kendall and Roberts 1971
- Improvement by inclusion of surface effects
- Surface energy $\gamma_{12} \to 0$ gives back Hertz theory
Geometrical Set up

\[z_2(x) = Z_2 + \frac{(x-X_2)^2}{2R} \]

\[z_1(x) = Z_1 - \frac{(x-X_1)^2}{2R} \]
Round Asperities

Parabolas

- Round spheres approximated to first order as parabolas

\[
\begin{align*}
 z_1(x) &= Z_1 - \frac{(x - X_1)^2}{2R} \\
 z_2(x) &= Z_2 + \frac{(x - X_2)^2}{2R}
\end{align*}
\]
Indentation Depth

Indentation

- Difference in z coordinates
- Indentation

\[\hat{d} \equiv z_1 \left(\frac{X_1 + X_2}{2} \right) - z_2 \left(\frac{X_1 + X_2}{2} \right) = Z_1 - Z_2 - \frac{(X_1 - X_2)^2}{4R} \]

- Actual indentation: Multiply by cosine of angle
- Approximated by unity
Uniform Distribution of Asperities

- Uniform distribution of asperities along x axis
- Macroscopic length l

$$\psi_1(X_1) = \frac{1}{2l}, \quad \psi_2(X_2) = \frac{1}{2l}$$

- Stochastic averaging

$$\langle g \rangle_x = \int dX_0 \frac{1}{2l} g(X_0)$$

with

$$X_0 \equiv X_1 - X_2$$
Normal Distribution of Heights

- Gaussian distribution of heights
- Standard deviation L, macroscopic distance Z_0

$$\Phi_1(Z_1) = \frac{1}{\sqrt{2\pi L}} e^{-\frac{Z_1^2}{2L^2}}, \quad \Phi_2(Z_2) = \frac{1}{\sqrt{2\pi L}} e^{-\frac{(Z_2-Z_0)^2}{2L^2}}$$

- Inspired by Greenwood and Williamson 1966
- Stochastic averaging

$$\langle g \rangle_z = \int_{-\infty}^{+\infty} \frac{d\gamma}{\sqrt{4\pi}} \frac{dc}{L} e^{-\frac{dc^2}{4L^2}(\gamma+z_0)^2} g(\gamma)$$

$$\gamma \equiv \frac{Z_1 - Z_2}{dc}, \quad z_0 \equiv \frac{Z_0}{dc}$$
Physics

JKR Theory

Adhesion Theories

- Models for adhesion
- Johnson, Kendall and Roberts 1971
- Bradley 1932
- Derjaguin, Müller and Toporov 1975
- Tabor 1976
- Potential elastic energy
- Surface energy
Formulation

- Force F due to elastic deformation and adhesion
- Indentation depth d
- Contact radius a

\[
F = \frac{4E^*a^3}{3R} - \sqrt{8\pi \gamma_{12}a^3 E^*} \\
d = \frac{a^2}{R} - \sqrt{\frac{2\pi \gamma_{12}a}{E^*}}
\]
Effective Young’s modulus \(E^* \) if two different materials interact

\[
\frac{1}{E^*} = \frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2}
\]

\(\nu_i \) - Poisson number

Radius \(R \): harmonic mean if two round surfaces adhere

\[
\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}
\]
Critical Values for Detachment

- Maximal negative force F_c
- Associated contact radius a_c
- "Indentation" depth d_c - length of neck

\[
F_c = - \frac{3}{2} \pi \gamma_{12} R
\]
\[
a_c = \sqrt[3]{\frac{9 \pi \gamma_{12} R^2}{8 E^*}}
\]
\[
d_c = - \frac{3}{64} \sqrt[3]{\pi \gamma_{12}^2 R^2}
\]
Dimensionless Quantities

- **Dimensionless relations**
 \[\tilde{a} \equiv \frac{a}{|a_c|}\]
 \[\tilde{F} \equiv \frac{F}{|F_c|} = \tilde{a}^3 - 2 \tilde{a}^2\]
 \[\tilde{d} \equiv \frac{d}{|d_c|} = 3 \tilde{a}^2 - 4 \tilde{a}\]

- Implicit \(F - d\) - relation: Solvable by Cardano’s formula
- Instead: Approximation by power law

\[\tilde{F} \approx \alpha (\tilde{d} + 1)^{\beta} - 1, \quad -1 \leq \tilde{d} \leq 10\]

\[\alpha \approx \frac{1}{9}, \quad \beta \approx \frac{5}{3}\]
Forces

Decomposition of Forces

Decomposition

- Adhesive force F acts along the line connecting the sphere centers
- Decomposition necessary
- Small angles - first order approximation
- Normal force $F_N = F$
- Friction force $F_T = F \frac{x_0}{2R}$
First Contact

- First Contact

Intersection of parabolas

\[z_1 = z_2 \Rightarrow Z_1 - \frac{(x - X_1)^2}{2R} = Z_2 + \frac{(x - X_2)^2}{2R} \]

\[x_{1,2} = \frac{X_1 + X_2}{2} \pm \sqrt{R (Z_1 - Z_2) - \frac{(X_1 - X_2)^2}{4}} \]

Condition for just one intersection point

\[x = \frac{X_1 + X_2}{2}, \quad X_1 - X_2 = \pm 2 \sqrt{R (Z_1 - Z_2)} \]
Contact

- First contact at intersection of parabolas
- **Breaking of contact** delayed by adhesion
- Scope of interaction extended by critical indentation d_c
- Boundary

\[
X_{0,\text{min}} = -2\sqrt{R}(Z_1 - Z_2)
\]

\[
X_{0,\text{max}} = 2\sqrt{R}(Z_1 - Z_2) + Rd_c
\]
Normal and tangential forces are horizontally averaged quantities

\[
\langle \tilde{F}_N \rangle_x = \frac{1}{2l} \int_{X_{0,\min}}^{X_{0,\max}} dX_0 \left[\alpha \left(1 + \frac{1}{d_c} \left(Z_1 - Z_2 - \frac{X_0^2}{4R}\right)\right)^\beta - 1 \right]
\]

\[
\langle \tilde{F}_T \rangle_x = \frac{1}{2l} \int_{X_{0,\min}}^{X_{0,\max}} dX_0 \left[\alpha \left(1 + \frac{1}{d_c} \left(Z_1 - Z_2 - \frac{X_0^2}{4R}\right)\right)^\beta - 1 \right] \frac{X_0}{2R}
\]
Horizontal Averaging

Frictional force

Horizontally averaged frictional force

- Integration of the frictional force F_T easily performed

$$\langle \tilde{F}_T \rangle_x = \frac{1}{2} \frac{d_c}{l} \left(\frac{\alpha}{1 + \beta} - 1 \right)$$

- Frictional force proportional to d_c but independent of R
Normal Force

Horizontally averaged normal force

- Normal force

\[
\langle \tilde{F}_N \rangle_x = \sqrt{\frac{R}{d_c}} \frac{d_c}{l} \left[\frac{\alpha}{2} (1 + \gamma)^{\beta + \frac{1}{2}} \left[B\left(\frac{1}{2}, \beta + 1\right) + B\left(\frac{\gamma}{\gamma + 1}, \frac{1}{2}, \beta + 1\right) \right] - \sqrt{\gamma} - \sqrt{\gamma + 1} \right]
\]

- (Incomplete) Beta function

\[
B(z, a, b) \equiv \int_0^z t^{a-1} (1 - t)^{b-1} \, dt
\]

\[
B(1, a, b) = B(1, a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)}
\]

Averaging of frictional force

- **Stochastic mean over the height coordinates** Z_i
- **Frictional force**

\[
\langle \langle \tilde{F}_T \rangle \rangle = \int_0^{\infty} \frac{d\gamma}{\sqrt{4\pi}} \frac{dc}{L} \ e^{-\frac{dc^2}{4L^2}(\gamma+z_0)^2} \ \frac{dc}{2l} \left(\frac{\alpha}{1+\beta} - 1 \right) \\
= \frac{F_c}{4} \ \frac{dc}{l} \left(\frac{\alpha}{1+\beta} - 1 \right) \ \text{erfc} \left[\frac{dcz_0}{2L} \right]
\]

- **Complementary error function** \(\text{erfc} \)

\[
\text{erfc} \ (x) = \frac{2}{\sqrt{\pi}} \ \int_x^{\infty} \ dt \ e^{-t^2}
\]

- **Frictional force depends linearly on indentation depth** d_c
Height Averaging

Height Mean

Averaging of normal force

- Normal force

\[
\langle\langle \tilde{F}_N \rangle\rangle = -\frac{\sqrt{d_c} R}{l} \int_0^\infty \frac{d\gamma}{\sqrt{4\pi}} \frac{d_c}{L} e^{-\frac{d_c^2}{4L^2} (\gamma + z_0)^2} \left[\sqrt{\gamma + 1 + \sqrt{\gamma}} - \frac{\alpha}{2(1+\gamma)^{\frac{1}{2}+\frac{1}{2}}} \left[B \left(\frac{1}{2}, \beta+1 \right) + B \left(\frac{\gamma}{\gamma+1}, \frac{1}{2}, \beta+1 \right) \right] \right]
\]

- No closed analytic expression
- Numerically evaluated
Normal Force \tilde{F}_N as function of the normalized macroscopic distance Z_0/L and the normalized indentation depth d_c/L
Normal Force

- Normal force turns from negative to positive
- Negative: Adhesive effects prevail
- Positive: Compression takes over
Frictional force

Normalized friction force \tilde{F}_T as function of the normalized macroscopic distance Z_0/L and the normalized indentation depth d_c/L.

![Frictional force graph](image.png)
Macroscopic friction coefficient as statistical mean

\[\mu = \frac{\langle \langle F_T \rangle \rangle}{\langle \langle F_N \rangle \rangle} \]

\[\mu = \frac{\sqrt{\frac{\pi}{2}} \sqrt{\frac{L^2}{Rd_c}} \left(1 - \frac{\alpha}{1+\beta} \right) \text{erfc} \left[\frac{Z_0}{2L} \right]}{\int_0^\infty d\gamma e^{-\left(\frac{d\gamma+Z_0}{2L}\right)^2} \left[\sqrt{1+\gamma+\sqrt{\gamma}} - \frac{\alpha}{2}(1+\gamma)^{\beta+\frac{1}{2}} \left[B\left(\frac{1}{2},\beta+1\right) + B\left(\frac{\gamma}{\gamma+1},\frac{1}{2},\beta+1\right) \right] \right]} \]

Numerically evaluated integral
Diagram of Friction Coefficient

Friction coefficient μ as function of the normalized macroscopic distance Z_0/L and the normalized critical indentation depth d_c/L
Discontinuity

- Discontinuity in friction coefficient
- Reason: Zero of normal force
- Not observed in experiments
Zero of Normal Force

Parametric plot of the values of the normalized macroscopic distance Z_0/L and the critical indentation depth d_c/L for vanishing normal force.
Length Scales

Hierarchy

1. Macroscopic length l
2. Macroscopic separation Z_0
3. Curvature radius of asperities R
4. Stochastic length scale L
5. Indentation depth d_c
Conclusions and Outlook

- Too simplistic model
- Discontinuity in friction coefficient
- Vanishing of normal force at finite frictional force
- Inclusion of different physical effects necessary
Thanks

Thank you for your attention!