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� Driven adsorbed monolayer:  results from particle models 

� Phase-field crystal modelling

� Phase-field crystal model of  an adsorbed monolayer

Outline



Driven monolayer on a periodic potencial

Persson, PRL 71, 112 (1993). 

• Lennard-Jones interactions V(r )
• square-lattice pinning potential  U(r) )'(2)'()( ,
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• Langevin  dynamics 
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Dynamic melting and freezing

Effective temperature
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Persson, J.Chem.Phys.103,3449 (1995) 
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Transverse pinning

• Response to additional transverse force in the sliding state 

Granato, Ying, PRL85,  5368 (2000)
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Phase-field modelling

• instead of particles, represent the system by continuous fields

• describe  solid, liquid and gas phases

• choose a  free-energy that is a functional  of the fields

• the dynamics of the fields should minimize the free-energy functional: 
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simplest free-energy
functional 

• non conserved field   
Ginzburg-Landau

Allen-Cahn equation

• conserved field 
Cahn-Hilliard equation



Phase-field-crystal modelling

• continuous phase field retaining some information on atomic scale 
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• freee-energy minimized by a periodic pattern :  a phase-field crystal
• allows  for elasticity,  multiple crystal orientations,  dislocations , etc.
• dynamics on diffusive times scales

• can be derived  from classical density functional theory of freezing (DFT)
• phase field can be identified as deviations of the density from 

the uniform liquid: 

Elder, Katakowski, Haataja, Grant, PRL. 88, 245701 (2002)

Elder, Provatas, Berry, 
P. Stefanovic,  Grant, PRB 75, 064107 (2007).llxx ll /))(()( ��



Time and length scales

• phase-field crystal modelling  provides  a bridge between atomistic 
and continuous  length scales



Examples of defects in the phase-field crystal
Grain boundaries 

two dimensions
hexagonal three dimensions 

bcc

Elder, Grant, PRE 70, 051605 (2004).

Jaatinen, Achim, Elder, Ala-Nissila, PRE 80,  
031602 (2009)



Phase-field-crystal model for an adsorbed monolayer

• add a pinning potential  V(x,y) 

• for V(x,y)=0 , the minimum correspond to hexagonal lattice 

• lattice constant mismatch 

• conserved dynamical  equations
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Achim, Karttunen, Elder, Granato, Ala-Nissila, Ying, PRE 74, 021104 (2006);
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Fundamental requirements 
to model adsorbed layers

� commensurability effects

� depining  by thermal fluctuations

�force-induced depinning  



Minimum free-energy structures

(1 x 1)  c(2 x 2)   (2 x 1)   

Hexagonal IC   IC with  domain walls  near c(2 x 2)   

• square-lattice pinning potential



Potential-misfit phase diagram

near  c(2 x 2) phase  near  (1 x 1) phase 



Thermal fluctuations

• to go beyond mean-field approximation 
regard  free-energy functional as an effective Hamiltonian 
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• fluctuations are taken into account by the partition function:
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• equilibrium behavior obtained by:

� Langevin dynamics:

� Monte Carlo method:    Metropolis ,   Parallel tempering

Ramos, Granato, Achim, Ying, Elder, Ala-Nissila, PRE 78, 031109 (2008);



Temperature phase diagram

near  (1 x 1) phase near  c(2 x 2) phase  



Scaling analysis  
c(2x2) melting
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• results consistent with Ising universality class 

Binder ratio

Specific heat
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Velocity response at zero temperature
force-induced depinning 
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• add a convective gradient term proportional to external force
in the dynamical equations:

• velocity measurements: 
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* from the local maxima positions 

Achim, Ramos, Karttunen, Elder, Granato, Ala-Nissila, Ying, PRE79, 011606 (2009);



Small pinning strength 

Different critical forces
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Velocity response at T=0  
Large pinning strength 
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Transverse response at large velocity 

transverse velocity response critical transverse force 
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Conclusions

• PFC model provides  a  density field description of adsorbed layers:
commensurability effects, thermal depinning ,  force depinning  and 
inertial effects . 

• velocity response  to an external force at low T,  shows hysteresis with 
dynamical melting and freezing transitions at distinct critical values. 

• main features of the nonlinear response are similar to the results 
obtained for atomistic models. 

• dynamical melting and freezing mechanisms appear to be different 

• It should be possible to describe realistic adsorbed layer systems by 
adjusting the parameters of the model.


