

2064-2

Joint ICTP/IAEA Advanced School on in-situ X-ray Fluorescence and Gamma Ray Spectrometry

26 - 30 October 2009

Different type of detectors for different applications (advantages and disadvantages)

G. Kis-Benekek IAEA. Seibersdorf Austria

IN SITU GAMMA RAY-SPECTROMETRY

IN SITU GAMMA RAY-SPECTROMETRY

toms for Peace: The First Half Century

1957-20

Applications

 Rapid identification and determination of gamma emitting radionuclides in the environment (in the field)

- activity concentration (Bqkg⁻¹) or
- deposition (Bqm⁻²)
- activity concentration (Bqkg⁻¹)
- Indoor radiation studies Analysis of power reactor plumes

NOTE: Spatial distribution of the radionuclide(s) of interest (source geometry) has to be taken into account.

Directly measureable natural radionuclides

Nuclide	E (keV)	Intensity I _Y	Comments
Be-7	477.60	10.44%	Spallation product Continuous deposition at varying rate
K-40	1460.83	10.67%	
Pb-210	46.54	4.24	Low-energy Inhomogeneous distribution Note ²²² Rn
Ra-226	186.10	3.51	Interference with ²³⁵ U (185.72 keV)
Pa-231	300.07 302.65	2.47% 2.2%	Interference with ²¹² Pb (300.09 keV)
U-235	143.76 185.72	10.96% 57.2%	Interference with ²²⁶ Ra (186.10 keV)

Natural radionuclides measurable through daughter products

Nuclide	Gamma- emitting nuclide	E (keV)	Intensity Iy	Comments
Ra-226	Pb-214 Bi-214	295.22 351.93 609.31 1120.29 1764.49	18.15% 35.1% 44.6% 14.7% 15.1%	Equilibrium assumed between ²²⁶ Ra, ²²² Rn, ²¹⁸ Po, ²¹⁴ Pb, and ²¹⁴ Bi Note ²²² Rn
Ac-227	Th-227 Ra-223	235.97 269.46	12.3% 13.7%	Equilibrium assumed between ²²⁷ Ac, ²²⁷ Th, and ²²³ Ra Interference with ²²⁸ Ac at 270.24 keV
Th-228	Ra-224 Pb-212 Bi-212 TI-208	240.99 238.63 727.33 583.19 2614.35	4.10% 43.3% 6.58% 30.4% 35.64%	Equilibrium assumed between ²²⁸ Th, ²²⁴ Ra, ²²⁰ Rn, ²¹⁸ Po, ²¹² Pb, ²¹² Bi, and ²⁰⁸ Tl Note ²²⁰ Rn
Th-232	Ac-228	338.32 911.20 968.97	11.27% 25.8% 15.8%	Equilibrium assumed between ²³² Th, ²²⁸ Ra, and ²²⁸ Ac
U-238	Th-234 Pa-234m	63.28 766.37 1001.03	4.1% 0.316% 0.839%	Equilibrium assumed between ²³⁸ U, ²³⁴ Th, and ²³⁴ Pa(m) Note low-energy gamma line of ²³⁴ Th

- Analyte: gamma emitting radionuclides
- Geometry: HPGe (or other type) gamma detector usually at 1m above the ground
- Matrix: Soil and air
- Measurement time: usually 20 to 40 min
- MDA: about 100 Bqm⁻², depending on detector efficiency, radionuclide of interest and other radionuclides present
- Accuracy: 10-50 % depending on calibration accuracy and environmental conditions.
- **Prerequisite:** Calibration of the gamma-ray spectrometric system for in situ measurements

Effective field of view – Sample size

Example

photon energydetector at heightdetector at heightlsoil densitygrelaxation lengthl

662 keV (¹³⁷Cs) h=1m ρ=1.6 g cm⁻³ L=3.0 cm

r	Fraction of total flux $\Phi(r)/\Phi$	Surface area πr ²	
4 m	65%	~50 m ²	
10 m	85%	~310 m ²	
>10 m	15%#	~710 m² (at r=15m)	

remaining fraction

5 m

r

15 m

In situ / laboratory mesurements

- Shorter measurement time
- Prompt availability of results (without sampling, sample transport and preparation)
- Averaging radionuclide activity over large area
- Often large errors are observed (intercomparison exercises)
- Using laboratory results (soil profiles depths distribution) better results can be obtained
- Based on in situ results better sampling plan can be prepared

Basic instrumentation

Detector

- HPGe (hyper-pure germanium detector)
 - p-type for $E_{\gamma} > 100 \text{ keV}$ (3-60 keV up to 3-10 MeV)
 - n-type for $E_{\gamma} > 45 \text{ keV}$ (3 keV up to 300 keV-3 MeV)
- Efficiency of 20%-50% relative to 3"x3" NaI(TI) at 1.3 MeV
- Portable (hand-held) cryostat

Electronics

- portable, battery operated, or
- lab instruments and power generator

Detector holder

- tripod, or
- trolley

IN SITU GAMMA RAY-SPECTROMETRY BASIC EQUIPMENT

QA: In-situ γ-ray spectrometry Checklist

Instrumentation

- Detector
- Electronics (MCA, Notebook PC, set of cables, power supply)
- GPS
- Dose rate meter
- Distance meter
- Camera

<u>Software</u>

- MCA and Evaluation
- Databases
- Nuclide library, conversion factors

<u>Supplies</u>

- Detector support (tripod)
- Spare batteries, Spare cables, Check sources
- Liquid nitrogen (fittings for filling)
- Protective clothes, plastic bags,
- Basic tools

Documentation

- Manuals (operation, procedures)
- Logbook
- Nuclide library tables, conversion factors
- Map

Theoretical model for photon flux calculation in an in situ measurement

$$\Phi = \int_{V} \frac{f(r)}{4\pi (r_{D} - r)^{2}} \exp \left[-\frac{\mu_{a}}{\rho} \rho(r_{i} - r) - \frac{\mu_{a}}{\rho_{a}} \rho_{a}(r_{D} - r_{i}) \right] dV \qquad (2.2)$$

where f(r) is the source strength at r, μ_s/ρ is the mass attenuation coefficient for soil (cm² g⁻¹) and μ_a/ρ is the mass attenuation coefficient for air.

Commonly used depth distributions and units

 $f(z) = \frac{S_0}{I} e^{-z/L}$ S₀ in (Bq m⁻²) Exponential Uniform $f(z) = S_{\nu}$ S_V in e.g. (Bq m⁻³), $(Bq cm^{-3})$, or $(Bq kg^{-1})$ L=∞ Plane $f(z) = S_{A}$ S_A in (Bq m⁻²) L=0Plane at depth z₀ $f(z) = S_{A} \delta(z - z_{0})$ S_A in (Bq m⁻²) In general $f(z) = \sum S_i \,\delta(z - z_i)$ S_i in (Bq m⁻²)

Exponential distribution of a radionuclide

$$S_0 = \frac{S_0}{L}e^{-z/L}$$
 $S_0 = \frac{S_0}{L}e^{-z/L}$ $S_0 = \frac{S_0}{1}e^{-z/L}$ $e^{-z/L}$ $S_0 = \frac{S_0}{1}e^{-z/L}$ $S_0 = \frac{S_0}{1}e^{-z/L}$ $S_0 = \frac{S_0}{1}e^{-z/L}$ $e^{-z/L}$ $S_0 = \frac{S_0}{1}e^{-z/L}$ $e^{-z/L}$ $S_0 = \frac{S_0}{1}e^{-z/L}$ $e^{-z/L}$ $e^{-z/L}$

f(z)

Interpretation of S₀: $\int_{0}^{\infty} f(z)dz = S_{0}$

> Interpretation of L: $\int_{0}^{L} f(z) dz \approx 0.63 S_{0}$

 S_0

63%

0

Ζ

Example values for relaxation length (Soil density: 1.6 gcm⁻³)

L (cm)	Applications
0.10	used for fresh fallout where all the radioactivity is deposited on the soil surface
1.25	used for global fallout on wooded or desert sites (1.25 cm – 3.1 cm)
12.5	used for global fallout on open undisturbed fields (7 cm – 12.5 cm)
infinity	used for uniformly distributed radionuclides, e.g. natural radioactivity

Calculation of unscattered photon flux for different radionuclide depth distributions

Exponential

$$\Phi = \frac{1}{2} S_0 \left\{ E_1(\mu_a h) - e^{\frac{\mu_a h}{\mu L}} E_1 \left[\left(1 + \frac{1}{\mu L} \right) \mu_a h \right] \right\}$$

Uniform

$$\Phi = \frac{1}{2} S_V \frac{\mu_a}{\mu} \left[\frac{1}{\mu_a h} e^{-\mu_a h} - E_1(\mu_a h) \right]$$

Plane

$$\Phi = \frac{1}{2} S_0 E_1(\mu_a h)$$

The function $E_1(x)$ is the 1^{st} order exponential integral

$$E_1(x) = \int_{x}^{\infty} \frac{e^{-t}}{t} dt$$

Series expansion $E_1(x) = -\gamma - \ln x - \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n n!}$ $\gamma = 0.5772156649...$

Theoretical model for photon flux calculation in an in situ measurement

Calculation of radionuclide deposition

Detector calibration factor

$$C_{f} = \frac{R_{f}}{A_{s}} = \left(\frac{R_{f}}{R_{0}}\right) \left(\frac{R_{0}}{\Phi}\right) \left(\frac{\Phi}{A_{s}}\right)$$

angular correction factor – correction factor required to account for the detector angular response **geometrical factor** – total photon flux density at the detector per unit concentration or deposition inventory of the radionuclide

response factor - neat peak count rate due to a unit primary photon flux density of energy E incident on the detector (normal to the detector face)

Calibration – detector characteristics

Angular correction factor

Angular correction factor R_f/R_0 as a function of Ge crystal length/diameter L/D ratio at three different energies for a downward facing detector for a uniform with depth source profile in the soil.

Examples of a detector characteristics

Typical **response factor**, R_0/Φ , for a Ge detector of 22% relative efficiency

Geometrical factor, Φ/A_s , as a function of photon energy in case of surface source distribution for 1m above ground

Response factor – a quick reference

Count rate per unit incident flux at normal incidence, R_0/Φ , as a function of energy for different detectors.

Different approach – mathematical detector efficiency calculation

Sources of errors

Error

 Radiation situation is not adequately well described by a mathematical model used/available (lack of proper model)

10%-50% (larger are not uncommon)

- departure of real depth distribution from the model used,

- obstacles, e.g. building, wall, etc. (modified "field-ofview" –departure from a conical shape)

- nonuniform surface, e.g. grassland and a road in the field-of-view

- roughness of the soil surface (if not considered in the model)

- Poor experimental arrangement in the field (geometry)
- Incorrect or poor calibration for in-situ measurements
- Human errors due to e.g. typing for reporting
- Counting statistics of net count rate
- Nuclear constants used

Atoms for Peace: The First Half Century

10%-20% 15%-20% (?) a factor >10 5%-10% 1%-5%

Inhomogenius radionuclide distribution

Surface-distribution of Am-241at Colette of Mururora Atoll 10m x 10m square

Monitoring the system performance

Effect of count rate in well adjusted sytem

Resolution, FWHM (keV)

Net peak area (cps)

Field measurements of radioactivity: introduction to in-situ γ -ray spectrometry,

Marek Makarewicz IAEA

References

- ICRU REPORT 53 Gamma Ray Spectrometry in the Environment, Beteheshada(1994)
- EML-557 In situ Gamma Ray Spectrometry A tutorial for environmental radiation scientist, K.M Miller nad P. Shebell, US DOE 1993
- Generic procedures for monitoring in a nuclear or radiological emergency IAEA-TECDOC-1092, June 1999
- A theoretical comparison of methods of quantification of radioactive contamination in soil using in situ gamma spectrometry; J. MacDonald et. al; J. of Radiol. Prot. 1997 Vol. 17 No.1 3-15
- Uncertainties of in situ gamma spectrometry for environmental monitoring, W. Sowa et. al, Radiation Protection Dosimetry Vol. 27 No. 2 pp. 93-101 (1989)

