

2065-35

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis

26 October - 20 November, 2009

A model for image formation

Fabio Mammano University of Padua Faculty of Medicine and Surgery Department of Physics via Marzolo 8 35131 Padova Italy

A model for image formation

Image formation

Forming an image of an object requires the establishment of bi-univocal relationship between two R₃ domains named *object space* and *image space*. In optical systems this process is accomplished by reversal of wavefront curvature.

However, the optical system intercepts (a portion of) the spherical wave emitted by the <u>point source</u> *S*, and forms a converging spherical wavefront, which is diffracted at the (circular) exit pupil.

Consequently light is not focussed precisely at the geometrical image *O* but rather into small volume around *O*. Knowledge of the threedimensional light distribution near focus, i.e. the **point spread function** (PSF) is of particular importance for instrumental optics.

Modeling the effect of an optical system: 3D input-output relationship

i(x, y, z):Input light distributions(x, y, z):Impulse response (3D PSF): describes a process causing
the output distribution to be different from the original
scene.o(x, y, z):Output light distribution

Model equation:

 $o(x, y, z) = i(x, y, z) \otimes s(x, y, z)$

The 3D convolution operation is defined as:

$$o(x, y, z) = \iiint_{u, v, w} i(u, v, w) s(x - u, y - v, z - w) du dv dw$$

We need to determine the impulse response (3D PSF), i.e. output light distribution in image space for a point source input in object space.

The 3D light *intensity* distribution near focus (PSF)

Linfoot EH, Wolf E (1956) Proc Phys Soc B 69:823-832

The 3D PSF is symmetrical across the geometrical image plane and has a tubular structure in the bright central portion

Sections of the 3D PSF in planes normal to the optic axis are concentric rings of alternating bright and dark fringes

Depth of field

Although a lens can precisely focus at only one distance, the decrease in sharpness is gradual on either side of the focused distance.

The *depth of field* (DOF) is the portion of a scene that appears sharp in the image.

However, when observing transparent samples that are not infinitely thin, fluorescent or light-scattering objects that are <u>out</u> <u>of focus</u> produce unwanted light that is collected by the objective and reduces the contrast of the signal from the region of focus, i.e. cause *axial blurring*. Consequently the ability to discriminate objects <u>in different focal planes</u> is seriously compromised.

Axial blurring

Effect of defocus on the intensity PSF

A more formal discussion of axial blurring: Fourier optics in 3D

Effect of defocus

1

Normalized point spread **functions**

$$\begin{cases} \tilde{h}(v,u) \equiv 2 \int_{0}^{+\infty} P(\rho) J_{o}(v\rho) \exp\left(-j\frac{1}{2}u\rho^{2}\right) \rho d\rho \text{ (cPSF) Coherent} \\ \tilde{s}(u,v) \equiv \left|\tilde{h}(u,v)\right|^{2} \text{ (iPSF) Incoherent} \end{cases}$$

Note that
$$\rightarrow \widetilde{s}(v, u) = \widetilde{s}(v, -u)$$

Lecture 3

10

The representation of the image formation process in the frequency domain under incoherent illumination is given by

$$F\left\{o\left(x, y, z\right)\right\} = F\left\{i\left(x, y, z\right)\right\} \cdot \text{OTF}$$

where

$$OTF = F\left\{s\left(x, y, z\right)\right\}$$

is the 3D optical transfer function of the system.

In terms of the <u>spatial frequencies</u>, the normalized OTF for circular pupil system can be represented as

Effect of defocus

$$OTF(w, u) = F_v \left\{ \tilde{s}(v, u) \right\} = F_v \left\{ \left| 2 \int_0^{+\infty} P(\rho) J_o(v\rho) \exp\left(-\frac{1}{2} j u \rho^2\right) \rho d\rho \right|^2 \right\}$$

where the radial frequency w given by

$$w = \sqrt{f_X^2 + f_Y^2}$$

is conjugated to the radial optical coordinate

$$v = \frac{2\pi}{\lambda} \frac{a}{R} \sqrt{x^2 + y^2}$$

 λ is the wavelength,

Lecture 3

11

low frequency components filter through even at large defocus!

Lecture 3