
2065-15

Advanced Training Course on FPGA Design and VHDL for Hardware
Simulation and Synthesis

Nizar Abdallah

26 October - 20 November, 2009

ACTEL Corp.2061 Stierlin Court Mountain View
CA 94043-4655

U.S.A.

FPGA Architectures & VHDL
Introduction to Synthesis

FPGA Architectures & VHDL

Nizar Abdallah
nizar@ieee.org

October 2009

Actel Corporation Confidential © 2009 2

Introduction to FPGAs & FPGA design flows
Introduction to Synthesis
The VHDL hardware description language
Design verification, validation, and testing

Programmable logic & FPGA architectures
Actel’s SoC Flash FPGA architectures
Co-design & co-verification of HW/SW embedded systems

Emerging technologies and future opportunities.

FPGA Architectures & VHDL

Actel Corporation Confidential © 2009 3

Why HDL? Why VHDL?

HDL is a software solution due to limits in hardware
solutions and to:

Increasing design complexity
Increasing cost in time and investment
Increasing knowledge requirement
Inadequacy of other existing languages

VHDL is a response to problems for system manufacturers
in verifying their system fully

Vendor dependency
Different vendors with different incompatible HDLs
Problems in design documentation exchange

A standard HDLHDL from the System
Manufacturer’s Point of View: V H D LV H D L

Actel Corporation Confidential © 2009 4

VHDL History

1981: Extensive Public Review (DOD): VHSIC Program for
modeling digital systems
1983: Request for Proposal
(Intermetrics, IBM, and Texas Instruments)
1986: VHDL in the Public Domain
1987: Standard VHDL'87 (IEEE-1076-1987)
1993: New Standard VHDL'93 (IEEE-1076-1993)
1994: VITAL (VHDL Initiative Toward ASIC Libs)
2000: Revised standard (VHDL 1076 2000, Edition)
2002: Revised std (named VHDL 1076-2002)
2007: VHDL Procedural Language Application Interface
standard (VHDL 1076c-2007)

Actel Corporation Confidential © 2009 5

VHDL Advantages & Drawbacks

Philosophy: readable, docs-based on a clear and
predictable simulation behavior
Advantages

Standard format for design exchange
Technology independent
Multiple vendor support
Support for large as well as small designs
Support for wide range of abstraction in modeling
Simulation oriented (including for writing testbench)
User defined value abstractions
Timing constructs

Drawbacks
Complex tools
Slow tools

Actel Corporation Confidential © 2009 6

VHDL Main Features

TimingDataflow

Structure

Behavior

Actel Corporation Confidential © 2009 7

VHDL Architectures

Does not allow a layout description

BehavioralBehavioral

StructuralStructural

AlgorithmicAlgorithmic

FSMFSM

RTLRTL

GateGate

LayoutLayout

Abstraction LevelsAbstraction Levels VHDL ArchitecturesVHDL Architectures

How it works

How it is connected

Actel Corporation Confidential © 2009 8

A Dataflow Language

DATAFLOWCONTROLFLOW ≠
EXEX: : CC language assignmentlanguage assignment EXEX: : VHDLVHDL signal assignmentsignal assignment

X = A & B; X <= A and B;X <= A and B;

X is computed out of A and X is computed out of A and
B B ONLYONLY each time this each time this
assignment isassignment is executedexecuted

A A PERMANENTPERMANENT link is created link is created
between A, B, and Xbetween A, B, and X

X is computed out of A and B X is computed out of A and B
WHENEVERWHENEVER A or B changesA or B changes

Actel Corporation Confidential © 2009 9

A Dataflow Language (cont’d)

DATAFLOWCONTROLFLOW

EXEX: : CC language assignmentlanguage assignment EXEX: : VHDLVHDL signal assignmentsignal assignment

X = A & B;

X = C & D;

X <= A and B;

X <= C and D;

YESYES NONO

≠

Actel Corporation Confidential © 2009 10

-- component declaration
component DFF

port (D, CLR, CLK : in std_logic;
Q : out std_logic);

end component;
-- component instantiation
U1: DFF
port map (D => DATA, CLR => RESET, CLK => CLK, Q => OUT);

-- component declaration
component DFF

port (D, CLR, CLK : in std_logic;
Q : out std_logic);

end component;
-- component instantiation
U1: DFF
port map (D => DATA, CLR => RESET, CLK => CLK, Q => OUT);

process (CLK, RESET)
begin

if (RESET = '0') then
Q <= '0';

elsif (CLK'event and CLK='1') then
Q <= DATA;

end if ;
end process;

process (CLK, RESET)
begin

if (RESET = '0') then
Q <= '0';

elsif (CLK'event and CLK='1') then
Q <= DATA;

end if ;
end process;

Behavioral vs. Structural

D-FF with asynch low reset & pos-edge clock
Behavioral

Structural

Actel Corporation Confidential © 2009 11

VHDL Building Blocks: Entity

Entity

Architecture

Configuration

Package

Library

Actel Corporation Confidential © 2009 12

Entity Overview

The External Aspect of a Design Unit

entity entity_name is
[generic_declaration]
[port_clause]
[entity_declarative_item]

end [entity_name];

entityentity entity_name entity_name isis
[generic_declaration][generic_declaration]
[port_clause][port_clause]
[entity_declarative_item][entity_declarative_item]

endend [entity_name];[entity_name];

Required

Required
(NAME
optional)

Optional

Actel Corporation Confidential © 2009 13

Entity Example: 2-to-1 Mux

AIN

BIN

SIN

YOUT

MUX2

entity MUX2 is
port (AIN, BIN, SIN : in std_logic;

YOUT : out std_logic);
end MUX2;

entity MUX2 is
port (AIN, BIN, SIN : in std_logic;

YOUT : out std_logic);
end MUX2;

Port
mode

Port
type

Actel Corporation Confidential © 2009 14

entity FULL_ADDER is
port (A, B, Cin : in BIT;

S, Cout : out BIT);
end FULL_ADDER;

entity FULL_ADDER FULL_ADDER is
port (A, B, (A, B, CinCin : : in BIT;;

S, S, CoutCout : : out BIT););
end FULL_ADDER;FULL_ADDER;

Entity Example: Full Adder

Port
mode Port

type

AA BBCinCin

SS CoutCout

FULLFULL
ADDERADDER

Actel Corporation Confidential © 2009 15

Ports

Provide communication with other components
Must have signal name, type and mode
Port Modes:

in (data goes into entity only)
out (data goes out of entity only and not used internally)
inout (data is bi-directional)
buffer (data goes out of entity and used internally)

Actel Corporation Confidential © 2009 16

VHDL Building Blocks: Architecture

Entity

Architecture

Configuration

Package

Library

Actel Corporation Confidential © 2009 17

Architecture Overview

The Internal Aspect of a Design Unit
Can be behavioral (RTL) or structural
Always associated with single entity
Single entity can have multiple architectures

architecture architecture_name of entity_name is
{architecture_declarative_part}

begin
{architecture_descriptive_part}

end [architecture_name];

architecture architecture_namearchitecture_name of entity_nameentity_name is
{{architecture_declarative_partarchitecture_declarative_part}}

begin
{{architecture_descriptive_partarchitecture_descriptive_part}}

end [[architecture_namearchitecture_name];];

Actel Corporation Confidential © 2009 18

Architecture Example: 2-to-1 Mux

Two architecture flavors: Behavioral & Structural

architecture TWO of MUX2 is
component MX2 -- a macro from a library
port (A, B, S:in std_logic;

Y :out std_logic);
end component;
begin
-- instantiate MX2

U1: MX2
port map(A=>AIN, B=>BIN, S=>SIN, Y=>YOUT);
end TWO;

architecture TWO of MUX2 is
component MX2 -- a macro from a library
port (A, B, S:in std_logic;

Y :out std_logic);
end component;
begin
-- instantiate MX2

U1: MX2
port map(A=>AIN, B=>BIN, S=>SIN, Y=>YOUT);
end TWO;

architecture ONE of MUX2 is
begin

YOUT <= (AIN and not SIN) or (BIN and SIN);
end ONE;

architecture ONE of MUX2 is
begin

YOUT <= (AIN and not SIN) or (BIN and SIN);
end ONE;

Declarative
part

BehavioralBehavioral

StructuralStructural

Descriptive
part

Actel Corporation Confidential © 2009 19

Architecture Example: Full Adder

Two architecture flavors: Behavioral & Structural

entity FULL_ADDER is
port (A, B, Cin : in BIT;

S, Cout : out BIT);
end FULL_ADDER;
architecture DATAFLOW of FULL_ADDER is

signal X : BIT;
begin

X <= A xor B;
S <= X xor Cin after 10ns;
Cout <= (A and B) or (X and Cin) after 5ns;

end DATAFLOW;

entity FULL_ADDER FULL_ADDER is
port (A, B, Cin(A, B, Cin : : in BIT;;

S, CoutS, Cout : : out BIT););
end FULL_ADDER;FULL_ADDER;
architecture DATAFLOW DATAFLOW of FULL_ADDER FULL_ADDER is

signal X : X : BIT;;
begin

XX <= A A xor B;B;
SS <= X X xor Cin Cin after 10ns;10ns;
CoutCout <= (A (A and B) B) or (X (X and Cin) Cin) after 5ns;5ns;

end DATAFLOW;DATAFLOW;

BehavioralBehavioral

Actel Corporation Confidential © 2009 20

Architecture Example: Full Adder (cont’d)

Two architecture flavors: Behavioral & Structural

architecture STRUCTURE of FULL_ADDER is
component HALF_ADDER

port (I1, I2 : in BIT;
Carry, S : out BIT);

end component;

component OR_GATE
port (I1, I2 : in BIT;

O : out BIT);
end component;
signal X1, X2, X3 : BIT;

architecture STRUCTURE STRUCTURE of FULL_ADDER FULL_ADDER is
component HALF_ADDERHALF_ADDER

port ((I1, I2I1, I2 : : in BIT;;
Carry, SCarry, S : : out BIT););

end component;;

component OR_GATEOR_GATE
port ((I1, I2I1, I2 : : in BIT;;

OO : : out BIT););
end component;;
signal X1, X2, X3 : X1, X2, X3 : BIT;;

Structural:
Declarative part
Structural:
Declarative part

Actel Corporation Confidential © 2009 21

Architecture Example: Full Adder (cont’d)

Two architecture flavors: Behavioral & Structural

begin
HA1: HALF_ADDER port map (

I1 => A, I2 => B, Carry => X1, S => X2);
HA2: HALF_ADDER port map (

I1 => X2, I2 => Cin, Carry => X3, S => S);
OR1: OR_GATE port map (

I1 => X1, I2 => X3, O => Cout);
end STRUCTURE ;

begin
HA1: HALF_ADDERHA1: HALF_ADDER port map ((

I1 I1 => A, I2 A, I2 => B, Carry B, Carry => X1, S X1, S => X2);X2);
HA2: HALF_ADDERHA2: HALF_ADDER port map ((

I1 I1 => X2, I2 X2, I2 => CinCin, Carry , Carry => X3, S X3, S => S);S);
OR1: OR_GATEOR1: OR_GATE port map ((

I1 I1 => X1, I2 X1, I2 => X3, O X3, O => CoutCout););
end STRUCTURE ;STRUCTURE ;

Structural:
Descriptive part
Structural:
Descriptive part

Actel Corporation Confidential © 2009 22

Structural & Hierarchy

Structural Style to represent Hierarchy

HA1HA1 HA2HA2
OR1OR1

AA
BB SSCinCin

CoutCout

entityentity--architecturearchitecture

entityentity--architecturearchitecture

entityentity--architecturearchitecture

Actel Corporation Confidential © 2009 23

Architecture in a Design Tree

Structure & Behavior in a Design Tree

StructuralStructural

BehavioralBehavioral

Actel Corporation Confidential © 2009 24

Entity/Architecture

entity/architecture: a One-to-Many relationship

AA BBCINCIN

SS COUTCOUT

FULLFULL
ADDERADDER

X <= A xor B;
S <= X xor CIN;
COUT <= (A and B) or

(X and CIN);

X <= A xor B;
S <= X xor CIN;
COUT <= (A and B) or

(X and CIN);

Actel Corporation Confidential © 2009 25

VHDL Building Blocks: Packages & Libraries

Entity

Architecture

Configuration

Package

Library

Actel Corporation Confidential © 2009 26

Packages & Libraries

Libraries contain packages
Packages contain commonly used types, operators,
constants, functions, etc.
Both must be “opened” before their contents can be used in
an entity or architecture

library ieee;
use ieee.std_logic_1164.all;

Actel Corporation Confidential © 2009 27

Commonly Used Libraries & Packages

STD Library

standard

IEEE Library

std_logic_1164

std_logic_arith

std_logic_unsigned

Always visible! - no
LIBRARY or USE
statement required

Requires LIBRARY and
USE statements

Actel Corporation Confidential © 2009 28

Design Libraries

library library_name ;
use library_name.package_name.all;

STDSTD

IEEEIEEE

PROJECT_LIBPROJECT_LIB
WORKWORK

VHDLVHDL
filesfiles

AA
NN
AA
LL
YY
ZZ
EE
RR

SSIMULATORIMULATOR

SSYNTHESIZERYNTHESIZER

Actel Corporation Confidential © 2009 29

Complete Design Example: Multiplier

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity MULT is
port(A: in std_logic_vector(3 downto 0);

B: in std_logic_vector(3 downto 0);
Y: out std_logic_vector(7 downto 0));

end MULT;

architecture TEST of MULT is
begin

Y <= A * B;
end TEST;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity MULT is
port(A: in std_logic_vector(3 downto 0);

B: in std_logic_vector(3 downto 0);
Y: out std_logic_vector(7 downto 0));

end MULT;

architecture TEST of MULT is
begin

Y <= A * B;
end TEST;

Is this a structural or behavioral description ?

Declare the library
and packages

Now we can use
std_logic_vector
types and unsigned
arithmetic

Actel Corporation Confidential © 2009 30

Data Objects

Constants
Variables

syntax: var:= expression
can be declared in body (inside process) or subprogram (outside
process)
a body-declared variable is never reinitialized
a sub-program declared variable is initialized for each call to the
subprogram
value assignment has immediate effect

Signals
syntax: signal <= value
delayed value assignment
optional propagation delay attribute
no global variables to avoid synchronization problems
value resolution for multiple assignments

Actel Corporation Confidential © 2009 31

Signals

Used for connections internal to the design
Must be declared before use
Must have a type
Assignment is done with <=

SIG1
OUT1

C

A
B

. . .
architecture TEST of EXAMPLE is

signal SIG1: std_logic ;
begin
SIG1 <= A and B;
OUT1 <= SIG1 xor C;

end TEST;

. . .
architecture TEST of EXAMPLE is

signal SIG1: std_logic ;
begin
SIG1 <= A and B;
OUT1 <= SIG1 xor C;

end TEST;

Type

Declaration

Notice: A, B, C, and OUT1
are not Signals; They are
Ports declared in the Entity.

Actel Corporation Confidential © 2009 32

Signal Vector

Bit order may be ascending (0 to 7) or descending (7
downto 0)

entity COUNTER is
port(CLK: in std_logic;

RST: in std_logic;
Q : out std_logic_vector(7 downto 0));

end COUNTER;

entity COUNTER is
port(CLK: in std_logic;

RST: in std_logic;
Q : out std_logic_vector(7 downto 0));

end COUNTER;

Q is an 8-bit vectorQ is an 8-bit vector

…
architecture BEHAVE of COUNTER is

signal S1: std_logic_vector(7 downto 0);
signal S2: std_logic_vector(2 downto 0);
signal S3: std_logic;

…
architecture BEHAVE of COUNTER is

signal S1: std_logic_vector(7 downto 0);
signal S2: std_logic_vector(2 downto 0);
signal S3: std_logic;

S2 is a 3-bit vectorS2 is a 3-bit vector

Actel Corporation Confidential © 2009 33

Vector Slicing

Vector slicing can be used on either side of a signal or
variable assignment statement
Extracts subset of Vector for Reading or Writing

port (P: in std_logic_vector(0 to 3);
R: out std_logic_vector(8 downto 0);

…
architecture BEHAVE of EXAMPLE is
…

R(5 downto 3) <= P(0 to 2);

port (P: in std_logic_vector(0 to 3);
R: out std_logic_vector(8 downto 0);

…
architecture BEHAVE of EXAMPLE is
…

R(5 downto 3) <= P(0 to 2);

Declaration Direction and
Slice Direction must be the
same. (P is up; R is down)

Size of slices must match

R(5) P(0)

R(4) P(1)

R(3) P(2)

Actel Corporation Confidential © 2009 34

Data Types

All VHDL data objects must have a type
Port types are declared in the entity
Signal, variable, and constant types are declared in the architecture.

Types we will cover:
STANDARD package types
User-defined enumeration types
IEEE std_logic_1164 package types

Actel Corporation Confidential © 2009 35

IEEE 1076-1987 Standard Package

Predefined VHDL Data Types
Is always visible
No declaration is needed

Types available
BOOLEAN : (false , true)
BIT : ('0', '1')
BIT_VECTOR : array of BIT values
INTEGER : range -2 147 483 647 to +2 147 483 647
CHARACTER
NATURAL : Subtype of INTEGER (Non Negative)
POSITIVE : Subtype of INTEGER (positive)
STRING : array of CHARACTERS
REAL : range -1.0E+38 to +1.0E+38
TIME : Physical type used for simulation

Actel Corporation Confidential © 2009 36

IEEE 1076-1987: integer Type

Allowed values are mathematical integers
Minimum range: 231 to -231 (32 bits minimum) if no range
is specified
Useful as index holders for loops or generics
Supported operations are add, subtract, multiply, and divide

architecture BEHAVE of COUNTER is
begin
process(clk)
variable cntr: integer range 0 to 63 := 0;

begin

architecture BEHAVE of COUNTER is
begin
process(clk)
variable cntr: integer range 0 to 63 := 0;

begin

Actel Corporation Confidential © 2009 37

IEEE 1076-1987: bit / bit_vector Type

Allowed values are ‘0’ and ‘1’
Default initialization to ‘0’

bit_vector is an array of bits

architecture BEHAVE of MUX is
constant LOW: bit_vector(1 downto 0) := “00”;
begin

architecture BEHAVE of MUX is
constant LOW: bit_vector(1 downto 0) := “00”;
begin

entity MUX is
port (A, B, S: in bit;

Y: out bit);
end MUX;

entity MUX is
port (A, B, S: in bit;

Y: out bit);
end MUX;

Actel Corporation Confidential © 2009 38

IEEE 1076-1987: boolean Type

Allowed values are
true and false
Not a bit literal –
has no relationship
to a bit
Operations only
allowed in IF-ELSE
statements, in
processes and
always produce a
Boolean result

library ieee;
use ieee.std_logic_1164.all;

entity CONTROLLER is
port (SEL : in boolean;

X, Y : in std_logic;
Z : out std_logic);

end CONTROLLER;

architecture BEHAVE of CONTROLLER is
begin
process (X, Y, SEL)
begin
if (SEL) then

Z <= X;
else

Z <= Y;
end if ;

end process;
end BEHAVE;

library ieee;
use ieee.std_logic_1164.all;

entity CONTROLLER is
port (SEL : in boolean;

X, Y : in std_logic;
Z : out std_logic);

end CONTROLLER;

architecture BEHAVE of CONTROLLER is
begin
process (X, Y, SEL)
begin
if (SEL) then

Z <= X;
else

Z <= Y;
end if ;

end process;
end BEHAVE;

Actel Corporation Confidential © 2009 39

User-Defined Enumeration Types

Allow designers to specify exact values for operation
Useful for state machine designs

architecture MACHINE of TRAFFIC_LIGHT is
type STATE is (RED, YELLOW, GREEN);
signal CURRENT_STATE, NEXT_STATE: STATE;

begin

architecture MACHINE of TRAFFIC_LIGHT is
type STATE is (RED, YELLOW, GREEN);
signal CURRENT_STATE, NEXT_STATE: STATE;

begin

The data type of two signals (current_state and
next_state) is the user-defined type called state

Actel Corporation Confidential © 2009 40

IEEE 1164-1993 Standard Logic Package

std_logic_1164 must be declared

Supported by most VHDL simulators and synthesis tools
Includes a multi-value logic system

Nine signal strengths defined
Can resolve multiple signal drivers

Generally used instead of bit/bit_vector

library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.std_logic_1164.all;

Actel Corporation Confidential © 2009 41

std_logic_1164 Types

std_ulogic, std_ulogic_vector
Unresolved type
Only one signal driver allowed

std_logic, std_logic_vector
Resolved type - multiple drivers allowed
Used when tri-state logic required

std_logic is best choice for behavioral

Actel Corporation Confidential © 2009 42

“Legal” Values for std_logic Type

Unresolved data type
type STD_ULOGIC is (type STD_ULOGIC is (

'U''U' ---- UninitializedUninitialized
'X''X' ---- Forcing UnknownForcing Unknown
'0''0' ---- Forcing Low (driven)Forcing Low (driven)
'1''1' ---- Forcing High (driven)Forcing High (driven)
'Z''Z' ---- High ImpedanceHigh Impedance
'W''W' ---- Weak UnknownWeak Unknown
'L''L' ---- Weak Low (read)Weak Low (read)
'H''H' ---- Weak High (read)Weak High (read)
''--'' ---- Don't CareDon't Care
) ;) ;

Synthesizable
for

FPGA

Actel Corporation Confidential © 2009 43

Six classes

Operators

LLOGIC OGIC OOPERATORPERATOR

RRELATIONAL ELATIONAL OOPERATORPERATOR

AADDING DDING OOPERATORPERATOR

SSIGNIGN

MMULTIPLYING ULTIPLYING OOPERATORPERATOR

MMISCELLANEOUS ISCELLANEOUS OOPERATORPERATOR

and , or , and , or , nandnand , nor , , nor , xorxor
= , /= , < , <= , > , >== , /= , < , <= , > , >=

+ , + , -- , &, &
+ , + , --

* , / , mod , * , / , mod , remrem
** , abs , not** , abs , not

PPRECEDENCERECEDENCE OORDERRDER

Actel Corporation Confidential © 2009 44

Require opening the following packages:

May be used on real, integer, bit or std_logic types.

Arithmetic Operators

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;
--OR

use ieee.std_logic_unsigned.all;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;
--OR

use ieee.std_logic_unsigned.all;

Depending on
whether signed or
unsigned arithmetic
is used.

Actel Corporation Confidential © 2009 45

Operators: Example

library ieee;
use ieee.std_logic_1164.all;
entity LOGIC is
port (A, B, C: in std_logic;

Y, Z : out std_logic);
end LOGIC;

architecture BEHAVE of LOGIC is
begin

Z <= A and B;
Y <= (A and B) or not C;

end BEHAVE;

library ieee;
use ieee.std_logic_1164.all;
entity LOGIC is
port (A, B, C: in std_logic;

Y, Z : out std_logic);
end LOGIC;

architecture BEHAVE of LOGIC is
begin

Z <= A and B;
Y <= (A and B) or not C;

end BEHAVE;

() prevent ambiguity. Otherwise this could be:
(A and B) or not C

OR
A and (B or not C)

A
B

C Y

AB

C
Y

Actel Corporation Confidential © 2009 46

4-bit multiplier

Arithmetic Operators: Example

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity MULT is
port(A: in std_logic_vector(3 downto 0);

B: in std_logic_vector(3 downto 0);

Y: out std_logic_vector(7 downto 0));
end MULT;

architecture BEHAVE of MULT is
begin

Y <= A * B;
end BEHAVE;

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity MULT is
port(A: in std_logic_vector(3 downto 0);

B: in std_logic_vector(3 downto 0);

Y: out std_logic_vector(7 downto 0));
end MULT;

architecture BEHAVE of MULT is
begin

Y <= A * B;
end BEHAVE;

A

B
*

Actel Corporation Confidential © 2009 47

8-bit adder with 9-bit result

Concatenation: Example

A

B
+

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity ADDER is
port(

A, B : in std_logic_vector(7 downto 0);
S : out std_logic_vector(8 downto 0)
);

end adder;

architecture BEHAVIORAL of ADDER is
begin
S <= (A(7) & A) + (B(7) & B);

end BEHAVIORAL;

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity ADDER is
port(

A, B : in std_logic_vector(7 downto 0);
S : out std_logic_vector(8 downto 0)
);

end adder;

architecture BEHAVIORAL of ADDER is
begin
S <= (A(7) & A) + (B(7) & B);

end BEHAVIORAL;

Actel Corporation Confidential © 2009 48

A Data Attached to VHDL Objects
S'LEFT : Index of the leftmost element of the data type
S'RIGHT : Index of the rightmost element of the data type
S'HIGH : Index of the highest element of the data type
S'LOW : Index of the lowest element of the data type
S'RANGE : Index range of the data type
S'REVERSE_RANGE : Reverse index range
S'LENGTH : Number of elements of an array
S'EVENT : A change value at the current simulation time
S'STABLE : No change value at the current simulation time

Operands: Attribute Names

Actel Corporation Confidential © 2009 49

Concurrent Statements
Concurrent Signal Assignment
Conditional Signal Assignment
Selected Signal Assignment
Block Statement
Concurrent Assertion Statement
Process Statement

VHDL Statements

Actel Corporation Confidential © 2009 50

Execute at the same time
Signals impacted by an event are resolved in the same
simulation time

Concurrent Statements

Aout <= A;
Y0 <= A and B;
Y1 <= ‘1’ when A = ‘1’ else ‘0’;
u1: INV port map (ina => A, outb => B);
p1: process (CLK, A)
begin

if (clk’event and clk = ‘1’) then
if (A = ‘1’) then

Y <= data_in ;
end if;

end if ;
end process ;

Aout <= A;
Y0 <= A and B;
Y1 <= ‘1’ when A = ‘1’ else ‘0’;
u1: INV port map (ina => A, outb => B);
p1: process (CLK, A)
begin

if (clk’event and clk = ‘1’) then
if (A = ‘1’) then

Y <= data_in ;
end if;

end if ;
end process ;

If an event occurs on A, then all
these statements will execute
at the same time (concurrently)

Signal Assignment
Boolean equations
Conditional assignments
Component instantiation

Process

Actel Corporation Confidential © 2009 51

Always used within an architecture
Change on the right-hand side causes immediate
reassignment to the left-hand side
Used in behavioral and structural descriptions
Signals are associated with TIME
With "after", the assignment is scheduled to a future
simulation time
Without "after", the assignment is scheduled at a DELTA
TIME after the current simulation time
Assignment operator is <=

Concurrent Signal Assignment

target <= expression [target <= expression [afterafter time_expressiontime_expression] ;] ;

Actel Corporation Confidential © 2009 52

Concept of a Resolution Function; attached to a signal or a
type, and is called every time the value of signal needs to be
determined -- that is every time a driver changes value

Signals with Multiple Drivers

Y <= A; -- in process1
and, Y <= B; -- in process2

What is the value of the signal in such a case?

Actel Corporation Confidential © 2009 53

Conditional Signal Assignment

Concurrent Version of IF statement
Condition/expression except for last expression
One and only one of the expressions is used at a given time
Syntax:
Example:

Y <= “00” when COUNT >= 8 else
“11”;

Y <= “00” when COUNT >= 8 else
“11”;

Y <= IN1 when S = ‘0’ else
IN2 when S = ‘1’ else
‘0’;

Y <= IN1 when S = ‘0’ else
IN2 when S = ‘1’ else
‘0’;

“else” clause is required

target <= first_value when (condition1) else
second_value when (condition1) else
third_value;

target <= first_value when (condition1) else
second_value when (condition1) else
third_value;

Actel Corporation Confidential © 2009 54

Selected Signal Assignment

Concurrent Version of CASE Statement
Syntax:

Example:

with DATAIN select -- selected signal assignment
Y <= IN0 when “00”,

IN1 when “01”,
IN2 when “10”,
IN3 when others;

with DATAIN select -- selected signal assignment
Y <= IN0 when “00”,

IN1 when “01”,
IN2 when “10”,
IN3 when others;

“with” selection must be a signal, not an expression

Note that
commas are
used here.

with EXPRESSION
TARGET <= {expression when choices};

with EXPRESSION
TARGET <= {expression when choices};

Actel Corporation Confidential © 2009 55

When-Else Example: Tri-State Buffers

library ieee;

use ieee.std_logic_1164.all;
entity MY_TRI is
port(A: in std_logic_vector(3 downto 0);

EN: in std_logic;
Y: out std_logic_vector(3 downto 0));

end MY_TRI;

architecture BEHAVE of MY_TRI is
begin
Y <= A when EN = ‘1’ else

(others => ‘Z’) ;

end BEHAVE;

library ieee;

use ieee.std_logic_1164.all;
entity MY_TRI is
port(A: in std_logic_vector(3 downto 0);

EN: in std_logic;
Y: out std_logic_vector(3 downto 0));

end MY_TRI;

architecture BEHAVE of MY_TRI is
begin
Y <= A when EN = ‘1’ else

(others => ‘Z’) ;

end BEHAVE;

EN

A(0) Y(0)

EN

A(1) Y(1)

EN

A(2) Y(2)

EN

A(3) Y(3)

means Y <= “ZZZZ”;

Actel Corporation Confidential © 2009 56

With-Select Example: Truth Table

library ieee;
use ieee.std_logic_1164.all;
entity TRUTH_TABLE is
port(A, B, C: in std_logic;

Y: out std_logic) ;
end TRUTH_TABLE;

architecture BEHAVE of TRUTH_TABLE is
signal S1: std_logic_vector(2 downto 0);

begin
S1 <= A & B & C; -- concatenate A, B, C
with S1 select
Y <= ‘1’ when “000” | “010” | “100” ,

‘0’ when “001” | “011” | “101”,
‘-’ when others;

end BEHAVE;

library ieee;
use ieee.std_logic_1164.all;
entity TRUTH_TABLE is
port(A, B, C: in std_logic;

Y: out std_logic) ;
end TRUTH_TABLE;

architecture BEHAVE of TRUTH_TABLE is
signal S1: std_logic_vector(2 downto 0);

begin
S1 <= A & B & C; -- concatenate A, B, C
with S1 select
Y <= ‘1’ when “000” | “010” | “100” ,

‘0’ when “001” | “011” | “101”,
‘-’ when others;

end BEHAVE;
‘-’ means don’t care

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

“|” means OR only when
used in “with” or “case”

Actel Corporation Confidential © 2009 57

Block Statement

Used in synchronous descriptions

latch : block (CLK = '1')
begin

Q <= GUARDED D ;

end block latch ;

latch : block (CLK = '1')
begin

Q <= GUARDED D ;

end block latch ;

DD

CLKCLK

QQ
LATCHLATCH

Actel Corporation Confidential © 2009 58

Assertion Statement

If the condition is false, it reports a diagnostic message
Useful for detecting condition violation during simulation
Not used in synthesis

Syntax:

assert condition
[report error_message]
[severity severity_level] ;

assert condition
[report error_message]
[severity severity_level] ;

Actel Corporation Confidential © 2009 59

Process Statement

A Set of Sequential Statements
All processes in a design executes CONCURRENTLY
At a given time, ONLY ONE sequential statement executed
within each process
Communicates with the rest of a design through signals

Syntax:

[label :] process [(sensitivity_list)]
{ process_declarative_part }

begin
{ sequential_statements }

end process [label] ;

[label :] process [(sensitivity_list)]
{ process_declarative_part }

begin
{ sequential_statements }

end process [label] ;

Actel Corporation Confidential © 2009 60

Process Statement (cont’d)

A Pseudo Infinite Loop
A Synchronization Mechanism is Needed

Sensitivity list or wait statement will be used

process
begin

sequential_statement_1 ;
sequential_statement_2 ;

sequential_statement_n ;

end process;

process
begin

sequential_statement_1 ;
sequential_statement_2 ;

sequential_statement_n ;

end process;

Actel Corporation Confidential © 2009 61

Process With Sensitivity List

PQR:process (A, B, C)
begin
X <= A and B;

if (B = ‘1’) then
Y <= A xor C;

else
Y <= A xnor C;

end if;
end process PQR;

PQR:process (A, B, C)
begin
X <= A and B;

if (B = ‘1’) then
Y <= A xor C;

else
Y <= A xnor C;

end if;
end process PQR;

Statements
executed
sequentially

End statement matches process label

Sensitivity list
Process label
(recommended)

Actel Corporation Confidential © 2009 62

Process With Wait Statements

AORB: process
begin

wait until rising_edge(clk);
if (B = ‘1’) then

Y <= A xor C;
else

Y <= A xnor C;
end if ;

end process AORB;

AORB: process
begin

wait until rising_edge(clk);
if (B = ‘1’) then

Y <= A xor C;
else

Y <= A xnor C;
end if ;

end process AORB;

NOTE! No sensitivity list

Assignments execute
when their WAIT
condition is satisfied

WAIT condition
is on signals only

Actel Corporation Confidential © 2009 63

Sequential Statements in Processes

Executed line-by-line inside of a process or sub-program
Typically include:

WAIT statements
Signal and variable assignments
Conditionals like IF-THEN-ELSE, CASE, LOOP

Support other advanced statements

Actel Corporation Confidential © 2009 64

Variable Assignment Statement

Always executed in Zero Simulation Time
Used as temporary storages
Can not be seen by other concurrent statements

Syntax:

target_variable := expression ;target_variable := expression ;

Actel Corporation Confidential © 2009 65

Signal Assignment Statement

Defines a Driver of the Signal
Within a process, Only One driver for each signal
When assigned in multiple processes, it has Multiple
Drivers. A Resolution Function should be defined

Syntax:

target_signal <= [transport] expression [after time] ;target_signal <= [transport] expression [after time] ;

Actel Corporation Confidential © 2009 66

Inertial & Transport Delay Models

Default mode is Inertial
Inertial is useful in modeling devices that ignore spikes on
the inputs

Actel Corporation Confidential © 2009 67

Inertial Delay Model

This is the default mode
It is useful in modeling devices that ignore spikes on the
inputs

signal S : BIT := '0' ;
process

S <= '1' after 5 ns ;
S <= '0' after 10 ns ;

end ;

signal S : S : BIT := '0' ;:= '0' ;
process

S <= '1' after 5 ns ;5 ns ;
S <= '0' S <= '0' after 10 ns ;10 ns ;

end ;;

signal S : BIT := '0' ;
process

S <= '0' after 10 ns ;
S <= '1' after 5 ns ;

end ;

signal S : S : BIT := '0' ;:= '0' ;
process

S <= '0' S <= '0' after 10 ns ;10 ns ;
S <= '1' S <= '1' after 5 ns ;5 ns ;

end ;;

Overrides the first
assignment

Overrides the first
assignment

Actel Corporation Confidential © 2009 68

Transport Delay Model

Signals are propagated without filtering

signal S : BIT := '0' ;
process

S <= '1' after 5 ns ;
S <= '0' after 10 ns ;

end ;

signal S : S : BIT := '0' ;:= '0' ;
process

S <= '1' after 5 ns ;5 ns ;
S <= '0' S <= '0' after 10 ns ;10 ns ;

end ;;

signal S : BIT := '0' ;
process

S <= '0' after 10 ns ;
S <= '1' after 5 ns ;

end ;

signal S : S : BIT := '0' ;:= '0' ;
process

S <= '0' S <= '0' after 10 ns ;10 ns ;
S <= '1' S <= '1' after 5 ns ;5 ns ;

end ;;

5 10 time 5 10 time

Actel Corporation Confidential © 2009 69

If-Then-Else Statement

if CONDITION then
--sequential statements

end if;

if CONDITION then
--sequential statements

end if;
if CONDITION then
--sequential statements

else
--sequential statements
end if;

if CONDITION then
--sequential statements

else
--sequential statements
end if;

if CONDITION then
--sequential statements

elsif CONDITION then
--sequential statements
elsif CONDITION then
--sequential statements
else
-- sequential statements
end if;

if CONDITION then
--sequential statements

elsif CONDITION then
--sequential statements
elsif CONDITION then
--sequential statements
else
-- sequential statements
end if;

More than one elsif allowed
“elsif” is one word

Only one else allowed

“end if” is two words

Actel Corporation Confidential © 2009 70

If-Then-Else Example
library ieee;
use ieee.std_logic_1164.all;
entity IF_MUX is
port (C, D, E, F : in std_logic;

S : in std_logic_vector(1 downto 0);
POUT : out std_logic);

end IF_MUX;
architecture BEHAVE of IF_MUX is
begin
ONE: process (S, C, D, E, F)
begin

if (S = “00”) then
POUT <= C;

elsif (S = “01”) then
POUT <= D;

elsif (S = “10”) then
POUT <= E;

else POUT <= F;
end if ;

end process ONE;
end BEHAVE;

library ieee;
use ieee.std_logic_1164.all;
entity IF_MUX is
port (C, D, E, F : in std_logic;

S : in std_logic_vector(1 downto 0);
POUT : out std_logic);

end IF_MUX;
architecture BEHAVE of IF_MUX is
begin
ONE: process (S, C, D, E, F)
begin

if (S = “00”) then
POUT <= C;

elsif (S = “01”) then
POUT <= D;

elsif (S = “10”) then
POUT <= E;

else POUT <= F;
end if ;

end process ONE;
end BEHAVE;

IF implies Priority

f

e

d
cs = 10

s = 00

s = 01

pout

Actel Corporation Confidential © 2009 71

Case Statement

case (SELECTOR) is
when value =>
--sequential statements

when value1 | value2 | value3 =>
--sequential statements

when value1 to value2 =>
--sequential statements

when others =>
--sequential statements

end case;

case (SELECTOR) is
when value =>
--sequential statements

when value1 | value2 | value3 =>
--sequential statements

when value1 to value2 =>
--sequential statements

when others =>
--sequential statements

end case;

‘when SELECTOR = value, then ...’
‘when SELECTOR = value1 OR value2 OR value 3, then …’’

‘when SELECTOR = any other value, then …’

‘when SELECTOR falls within the range from value1 to value2, then ...’’

Actel Corporation Confidential © 2009 72

Case Example: 4-to-1 Mux

library ieee;
use ieee.std_logic_1164.all;
entity CASE_MUX is
port (C, D, E, F: in std_logic;

S : in std_logic_vector(1 downto 0);
MUX_OUT : out std_logic);

end CASE_MUX;

architecture BEHAVE of CASE_MUX is
begin
mux1: process (S, C, D, E, F)
begin
case S is

when “00” => MUX_OUT <= C;
when “01” => MUX_OUT <= D;
when “10” => MUX_OUT <= E;
when others => MUX_OUT <= F;

end case;
end process mux1;
end BEHAVE;

library ieee;
use ieee.std_logic_1164.all;
entity CASE_MUX is
port (C, D, E, F: in std_logic;

S : in std_logic_vector(1 downto 0);
MUX_OUT : out std_logic);

end CASE_MUX;

architecture BEHAVE of CASE_MUX is
begin
mux1: process (S, C, D, E, F)
begin
case S is

when “00” => MUX_OUT <= C;
when “01” => MUX_OUT <= D;
when “10” => MUX_OUT <= E;
when others => MUX_OUT <= F;

end case;
end process mux1;
end BEHAVE;

4:1 Multiplexer

C
D
E
F

S(1:0)

MUX_OUT

Actel Corporation Confidential © 2009 73

Case Example: Bi-Directional Buffers

library ieee;
use ieee.std_logic_1164.all;
entity BIBUF is
port (A, E: in std_logic;

Y : inout std_logic;
B : out std_logic);

end BIBUF ;
architecture BEHAVE of BIBUF is
begin
ONE:process (A,E)
begin
case E is

when ‘1’ => Y <= A;
when ‘0’ => Y <= ‘Z’;
when others => Y <= ‘X’;

end case;
end process ONE;
B <= Y;
end BEHAVE;

library ieee;
use ieee.std_logic_1164.all;
entity BIBUF is
port (A, E: in std_logic;

Y : inout std_logic;
B : out std_logic);

end BIBUF ;
architecture BEHAVE of BIBUF is
begin
ONE:process (A,E)
begin
case E is

when ‘1’ => Y <= A;
when ‘0’ => Y <= ‘Z’;
when others => Y <= ‘X’;

end case;
end process ONE;
B <= Y;
end BEHAVE;

A

B

E

Y

Actel Corporation Confidential © 2009 74

Questions ?

