The Abdus Salam
International Centre for Theoretical Physics (&)
N

PO

2065-16

Advanced Training Course on FPGA Design and VHDL for Hardware
Simulation and Synthesis

26 October - 20 November, 2009

VHDL & FPGA Architecturs
Synthesis III - Advanced VHDL

Nizar Abdallah

ACTEL Corp. 2061 Stierlin Court Mountain View
CA 94043-4655
USA.

Strada Costiera | I, 34151 Trieste, ltaly - Tel.+39 040 2240 || 1; Fax +39 040 224 163 - sci_info@ictp.it

Outline

Synthesis Il - Introduction to VHDL
Synthesis |1l - Advanced VHDL

Design verification & timing concepts
Programmable logic & FPGA architectures
Actel ProASIC3 FPGA architecture

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Inferring Latches and Flip-Flops VActel

B A latch or flip-flop is inferred if all branches of
an |IF statement are not assigned

B Latch is inferred when If statement includes
level value

B Flip-Flop is inferred when iIf statement detects
an edge

B Simulator needs to hold previous output under
certain conditions iIf no else statement is
Included

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Inferring Latches

B Latch is inferred when if statement detects a
level (O or 1) and all branches of an IF
statement are not assigned

process (SEL, A)

begin A— jlatch—Y
if (SEL = “17) then Y <= A; q
end 1f . SEL —

end process; 1

To avoid unwanted latches, include an ELSE condition

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Inferring Latches (cont’d)

B CASE statements using “when others => null”
can infer latches if type is std _logic or
std _logic_vector

-- sel, A, B are std_logic SEL[1]

process (SEL, A, B)

begin A —

case SEL 1is ‘ | L v
when “00” =>Y <= A; B — fateh
when “10” => Y <= B;
when others => null; SELW]—I@

end case;
end process;

To avoid unwanted latches, actually define Y for the "others” condition, for example:
when others => Y <= “07;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Inferring Flip-Flops

B Use Processes and IF statements to describe
sequential logic

B |IF statement detects clock edge
® rising edge = 1T (CLK”’event and CLK=“17)
e falling edge= 1f (CLK”event and CLK=“07)

architecture BEHAVE of DF is
begin

INFER: process (CLK) begin D Q[

1T (CLK”event and CLK =“17) then

Q <= D; >

end 1f ;

end process INFER; —I> CLK

end BEHAVE;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 H

Sequential Logic: Example 1 VActel

D flip-flop with
asynchronous low
reset and active high

architecture FLOP of DFCLR 1is clock edge
begin
INFER: process (CLK, RST)
begin |
if (RST =0”) then —P Q
Q <= ‘O,,
elsit (CLK?’event and CLK =“17) then ‘
Q <= D; —P>CLK
end 1f ; RST
end process INFER;
end FLOP; AT

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Sequential Logic: Example 2 VActel

architecture FLOP of DFSLRHE 1is
begin
INFER: process (CLK)
begin
iIT (CLK”event and CLK =“17) then
iIT (SRST = “07) then
Q <= 073
elsit (EN = “17) then
Q <=D;
end 1f ;
end 1f ;
end process INFER;
end FLOP;

D flip-flop with
synchronous low reset,
active high enable and
rising edge clock

‘ — EN

—>CLK
SRST

1

VHDL & FPGA Architectures © 2005 Nizar Abdallah

November, 2005 n

Sequential Logic: Example 3 VActel

architecture FLOP of EN_FLOP 1is
begin
INFER:process (CLK) begin
iIT (CLK”event and CLK =“07) then
iIT (EN = “07) then

Q <=D;
end 1T ;
end 1f ;
end process INFER;
end FLOP;

Will this model a positive edge or negative edge triggered flip-flop?
Is the enable synchronous or asynchronous?

Is the enable active high or active low?
|

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 n

Sequential Logic: Example 4

library ieee; 4-bit register
use ieee.std_logic_1164.all; using WAIT
entity DF 4 1is
port (D: 1n std _logic _vector(3 downto 0); SLCLELl
CLK: 1n std logic;
Q: out std logic vector(3 downto 0));
end DF 4 ; —|D[3:0] Q[3:0]—
architecture FLOP of DF 4 1s
begin ‘
INFER: process <——Where's the sensitivity list?
begin
wait until (CLK?’event and CLK =<17); '——>>CLK
Q <= D;
end process INFER;
end FLOP;
|
© 2005 Nizar Abdallah November, 2005

VHDL & FPGA Architectures

8-bit Counter Example

— -7 b

incrementor CNT-EN CLK CLR

NOTE: The output, Q, must be copied to an
internal signal, CNT, since an output port can not
appear on the right-hand side of an assignment
operator

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

8-bit Counter Example (cont'd) VActel

library i1eee; use 1eee.std logic 1164.all;
use i1eee.std logic unsigned.all;
entity COUNTER 1s
port (CLK,CNT_EN,CLR:in std _logic;
Q out std logic _vector(7 downto 0));
end COUNTER;
architecture BEHAVE of COUNTER 1s
signal CNT:std logic vector(7 downto 0);
begin
FIRST: process (CLK, CLR)
begin
iIT (CLR = “0”) then
CNT <= "00000000";
elsit (CLK"event and CLK = “17) then
iIT (CNT_EN = “07) then
CNT <= CNT + “17;
end 1f ;
end 1f ;
end process FIRST;
Q <= CNT;
end BEHAVE;

VHDL & FPGA Architectures © 2005 Nizar Abdallah

November, 2005

8-bit Shift Register

library ieee;
use i1eee.std logic 1164 ._all;
entity SHIFTER 1s
port(CLK, DIN: in std _logic;
Z: out std logic vector(7 downto 0));

end SHIFTER;
architecture RTL of SHIFTER 1is
signal A: std logic vector(7 downto 0);
begin
process (CLK)
begin
1T (CLK"event and CLK="1") then

A <= A (6 downto 0) & DIN; —-- shift left
end 1f;
end process;

DIN

A[6:0]

D[7:0] Z[7:0]

> CLK

Z <= A;
end RTL
VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

State Machine Overview

B Typically include:

® At least 2 process statements (one MUST control the clocking)
® |IF-THEN-ELSE statements

® CASE statements

® User defined types to hold current state and next state

B Transitions depend on current state and
optionally, the inputs

B Outputs depend on:

® Current state (Moore machine)
® Current state & inputs (Mealy machine)

B Definition:
State (t+1)<= F(1,...,in,State(t))

Output <= F(11,...,in,State(t))
|

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

FSM: Two Machine Types

Moore —> > O
Machine
I >
ckT
!
Mealey —> > O
Machine | .

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Common FSM Structure in VHDL VActel

Next state
. "Second process ! . Firstprocess
Inputs ! ! !
— Next State e CUIrent State
i Logic i Register
inati 5 - (sequential
(combinational) . Clock (seq)

Current state

Asynchronous
reset

Third process

Output Outputs
=sssssesansPp-| (COMbinational) | :

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

FSM Example: 4 Consecutive Ones

Counter VAcltel

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

FSM Example: 4 Consecutive Ones

Counter (cont’d) VActel

Entity counter i1s port (ck, I, reset: in bit; O: out bit);
End counter;

Architecture automate of counter is

type STATE TYPE is (EO, E1, E2, E3, E4);
signal CURRENT_STATE, NEXT_STATE: STATE TYPE;
-- pragma CUR_STATE CURRENT_STATE;

—-— pragma NEX STATE NEXT_STATE;

-— pragma CLOCK ck;

begin
Process(CURRENT _STATE, 1, reset)
begin
IT (reset = "1%) then
NEXT STATE <= EO;
O <= "0%;

else

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

FSM Example: 4 Consecutive Ones
Counter (cont’'d)

VActel

case CURRENT_STATE 1s
WHEN EO =>
it (I="1") then
NEXT_ STATE <= E1;

else
NEXT_STATE <= EO;
end 1f;
0 <= "0";
WHEN E1 =>

it (I="1") then
NEXT_STATE <= E2;

else
NEXT_STATE <= EO;
end 1f;
O <: - O - ;
|
VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

FSM Example: 4 Consecutive Ones

Counter (cont’d) VActel

WHEN E2 =>
it (I="1") then
NEXT_STATE <= E3;

else
NEXT_STATE <= EO;
end 1f;
0O <= "07;
WHEN E3 =>

it (I="1") then
NEXT_STATE <= E4;

else

NEXT_STATE <= EO;
end 1f;
0 <= "0";

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

FSM Example: 4 Consecutive Ones

Counter (cont’d) VActel

WHEN E4 =>
it (I="1") then
NEXT_STATE <= E4;

else

NEXT_STATE <= EO;
end 1F;
0 <= "1%;

WHEN others =>
assert ("1%)
report "lIllegal State';

end case;
end 1f;
end process;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

FSM Example: 4 Consecutive Ones

Counter (cont’d) VActel

Process (ck)
begin
iIT (ck = "0" and not ck"stable) then
CURRENT_STATE <= NEXT_STATE;
end i1f;
end process;
end counter;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

FSM Example: 4 Consecutive Ones

Counter (cont’d) VActel

Currentl /-» E)

Next | El E2

f/

What happens if a glitch occurs on the input I ?

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

FSM Warnings

B All Sighals which are Assigned to within a
Clocked Process Have Registers on their
Outputs

B Sighal Assignments within a Process are
Effective only before the wait (implicit or
explicit) Statement

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Design Verification

B Three step process:

® Simulate RTL vs. specification
® Simulate structural (using VITAL) vs. RTL
® Simulate structural (using VITAL) with back-annotated timing

B Procedure

® Use testbench or manually apply stimulus
® Check for correct results and produce a trace file

B Choices

® Use vendor-specific stimulus file (non-portable)
® \Write generic VHDL testbench

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Generic VHDL Testbench

B Written by designer using standard VHDL
® Portable to any VHDL simulator

B Creates a new level of design hierarchy

® Component instantiation of design under test
® VHDL processes to apply stimulus and record outputs

B Uses VHDL textio package

® Read or write to ASCII data files
® Input test vectors (times and values)
® Tabular trace, print-on-change, strobe

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Assert Statement

B Writes out text messages during simulation

m Useful for timing checks, out of range
conditions, etc.

B Four levels
® Failure
® Error
® \Warning
® Note

assert (Y > 2)
report “SETUP VIOLATION”
severity Warning;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Walit Statement

B Suspends execution of the process or sub-

program
B Usage:
: walt for 10 NS;
® wait
® wait for <time> wait until X > 10;

® wait until <condition>
® wait on <signals>

B Remember!
Processes with a sensitivity list cannot have a
WAIT statement

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Generating Waveforms

B A sequential waveform can be generated using

® Multiple signal assignments in a single concurrent signal

assignment ENABLE <= “07, “1” after 100 ns,
“0” after 180 ns, “1° after 210 ns;

® sequential signal assignments in a process

process
begin

ENABLE <= “07;
wailt for 100 ns;
ENABLE <= “17;
wait for 80 ns;
ENABLE <= “07;
wait for 30 ns;
ENABLE <= “17;
wait;

end process;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Generating Repetitive Waveforms PActel

B \Waveforms with

® Constant 50% duty cycle
can be created with a

single concurrent signal —‘
assignment or in aprocess, A |

A <= not A after 20 ns;

20 40 60 80 100 120
® Varying on-off delays can | _ .
be created using a CLK: process
constant OFF_PERIOD: TIME:= 30 ns;
PrOCesS statement constant ON_PERIOD: TIME:= 20 ns;

begin
wait for OFF_PERIOD;
D CLK <= “17;
wait for ON_PERIOD;
D CLK <= “07;

end process;

D_CLK
- 30 50 80 100

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Testbench Example:

8-Bit Counter

library i1eee; use 1eee.std logic 1164.all;
use i1eee.std logic arith.all;

en?%&g;iﬁ'}lw‘is Testbench entity does
en . not include ports

architecture BEHAVE of TESTBENCH 1s

Counter declared
component COUNTER — Cy .
b within testbench

port (CLK,CNT_EN,CLR:in std _logic;

Q:out std logic vector(7 downto 0));
end component;
signal CLKIN,ENABLE,RESET:std logic;
signal Qout:std logic vector(7 downto 0);

begin -- Instantiate Counter < Counjerlnsfanhafed
ithin testbench

U1:COUNTER port map(CLK=>CLKIN, CNT_EN=>ENABLE, !
CLR=>RESET, Q=>Qout);

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Testbench Example:

8-Bit Counter (cont.)

—— 1nitialize i1nputs, and toggle the reset line
INIT: process begin
ENABLE <= "1°%;
RESET <= "1°;
wailt for 250 ns;
RESET <= "0°7;
wailt for 250 ns;
RESET <= "1°;
wait; -- this iInstruction suspends the Init process
end process INIT;
—— process to cause clock to toggle (20 MHz)
CLK _TOG: process begin
CLKIN <= "0°";

=+ wave - default

File Edit Cursor Zoom Format Window

=] E3

wait for 25 ns; >

walt for 25 ns; | Mtestbench/clkin | 1
end process CLK TOG; —

end BEHAVE;

1438 ns to 1620 ns

CLKIN <= "1°7; =EHE sBBR: GE 2 ®Q

s L

VHDL & FPGA Architectures © 2005 Nizar Abdallah

November, 2005

Testbench Example:
8-Bit Counter (cont.)

P list
File Edit Markers Prop window
ns—, Jtestbench/clkin— d
delta— | ftesthench/enable—,
Jtestbhench/reset—,
ftesthench/gout—, J
482 40 110]
538 40 111 1
588 40 111 2
63is +0 | 111 3 -
N 2]
Default dataset: sim S

=t wave - default

File Edit Cursor Zoom Format wWindow

SIS 4BRBIRNX ¥ Q@ EEE®
estbenchickn | 0 L1 fririr1ririririmp
o~ :I. D D . D

E-“ ! =iy 4=y |

- 1 1/ "1 -
:: 2 [J3 @l T 7 8 J8

400 EO0 800 I
o

i

376 ns to 967 ns

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Common Issues:

Combinational Processes

process (A, B, SEL)
begin
1T (SEL=“1") then
OUT <= A;
else
OUT <= B;
end 1f;
end process;

B Sensitivity list must consist of all signals that
are read inside the process

® Synthesis tools often ignore sensitivity list, but simulation
tools do not...

® A forgotten signal will lead to difference in behavior of the
simulated model and the synthesized design

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Common Issues:

Combinational Processes

process (A, B, SEL)
begin

1T (SEL=“1") then OUT <= A;

else OUT <= B;
end 1f;
end process;

process
begin
1T (SEL=“17) then
OUT <= A;
else
OUT <= B;
end 1f;
wait on A, B, SEL;
end process;

B Can use WAIT ON instead of sensitivity list

H But not both!

VHDL & FPGA Architectures

© 2005 Nizar Abdallah

November, 2005

Common Issues:

Walit-free Paths

process
begin
1T (condition)
wait on CLK?”event and CLK=1;
end 1f;
end process;

B Every path through a process body without
sensitivity list must have a wart
® Otherwise the process can hang

VHDL & FPGA Architectures

© 2005 Nizar Abdallah

November, 2005

Common Issues:

Mistakenly Inferences Latches

process (A, B)
begin
1T (condition_1)
X <= A + B;
elsit (condition_2)
X <= X — B;
end 1f;
end process;

B Remember, incomplete assignments imply
latches

® In the above example, if neither condition_1 nor condition_2 is
true then X will retain its value ... basically, X is stored in a
latch

® If you are writing combinational logic, make sure that every
output gets assigned a value along each path (e.g. if
statements, case statements) through the process body

® In general, latches are not recommended anyway in
synchronous designs (not testable via scan paths) |

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Common Issues:

The Problem with Latches

B Most EDA software tools have difficulty with
latches because of transparency

® Timing analysis must consider both open and closed cases
® Test vector generation is complicated
® Latches are not scan testable

B Good design practice:

® ASICs and FPGAs are a flip-flop’s world
® Don’t use latches unless you absolutely have to

B Poorly coded if and case statements can yield
unintended latches

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Common Issues:

Implicit Register Inference

process (A, B)
begin
wait until CLK”’event and CLK=1;

iT (COUNT >= 9) then ' _
COUNT <= 0; L COUNT
else
CLK

COUNT <= COUNT +1;
end 1f;
end process;

B Storage registers are synthesized for all signals
that are driven within a clocked process

B Storage registers are also synthesized for all
variables that are read before being updated

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Common Issues:

Reset (or Set) in Synthesis

process
begin
wait until CLK”’event and CLK=1;
1T (RST=“1") then
-- synchronous reset
else
-— combinational code
end 1f;
end process;

Process (CLK, RST)
begin
1T (RST=“1") then
-— asynchronous

reset

elsit (CLK’event and

—-— combinational
end 1f;
end process;

CLK=1) then

code

B Must reset all registers, otherwise synthesized

chip won’t work

® Unlike simulation, you can’t set initial values in synthesis!

B Asynchronous reset possible only with a
process that has a sensitivity list

VHDL & FPGA Architectures © 2005 Nizar Abdallah

November, 2005

Common Issues:

Coding Style Influence

process(A, B, C, SEL)

begin
1T (SEL=“1") then
7 <= A + B; C SEL
else :§:>
Z <= A +C A
end if; To—
end process; B

Process (A, B, C, SEL)
variable tmp: bit;

begin
1T (SEL=“1") then
tmp = B; SEL
else
tmp = C; B —
end 1f;
C_

Z <= A + tmp;
end process;

B Structure of initially generated hardware is
determined by the VHDL code itself

® Synthesis optimizes that initially generated hardware, but

cannot do dramatic changes

® Therefore, coding style matters!

VHDL & FPGA Architectures

© 2005 Nizar Abdallah

November, 2005

Common Issues:

IF vs. CASE

B |IF-THEN-ELSIF-THEN-...-ELSE maps to a chain of
2-to-1 multiplexers

1T (COND1) then OUT <= X1;
elsit (COND2) then OUT <= X2;

else OUT <= Xn;

B CASE maps to a single N-to-1 multiplexer

case EXPRESSION 1s
when VALUEl1 =>

OUT <= X1;
when VALUE2 =>

OUT <= X2;

when others =>
OUT <= Xn;
end case;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Common Issues:

Let the tool do the Synthesis VActel

B Don’t do synthesis by hand!

® Do not come up with Boolean functions for outputs of
arithmetic operator

® Let Synthesis tool decide which adder, multiplier to use
® You will only restrict the synthesis process

B Let synthesis tool decide the numeric encoding

of the FSM states
® Use enumerated type for state

B Split into multiple simpler processes

B Keep module outputs registered
® Simplifies timing constraints

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

