

2065-19

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis

26 October - 20 November, 2009

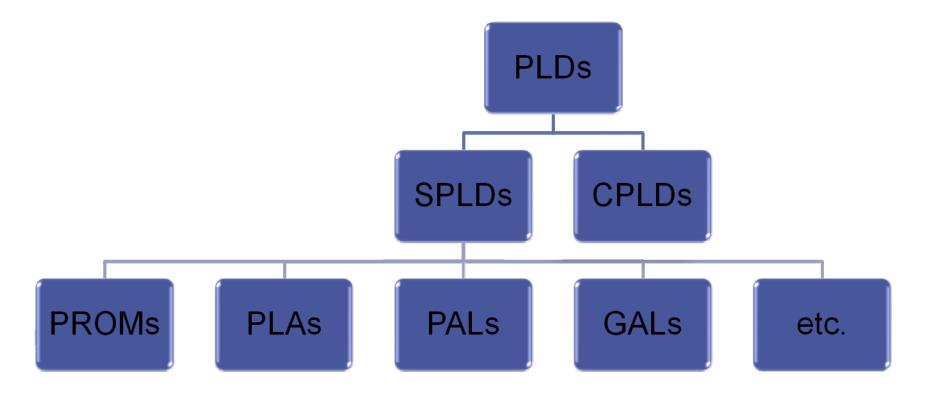
FPGA Design & VHDL Fundamentals of FPGAs

Nizar Abdallah ACTEL Corp. 2061 Stierlin Court Mountain View CA 94043-4655 U.S.A.

FPGA Design & VHDL

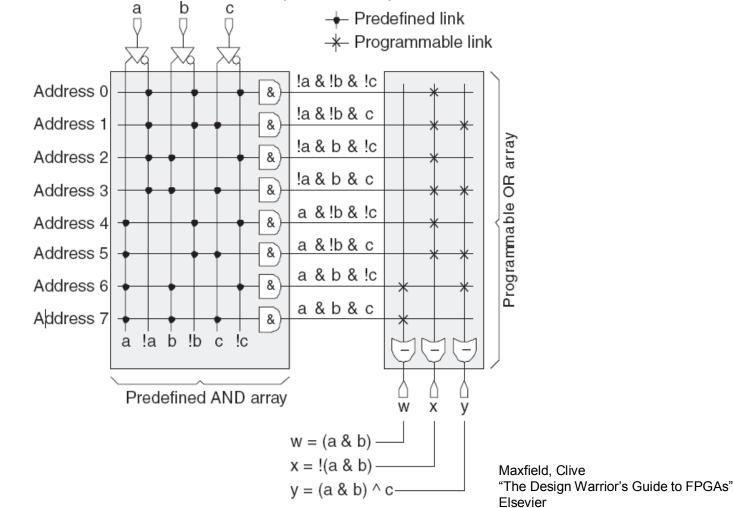
Nizar Abdallah nizar@ieee.org

October 2009

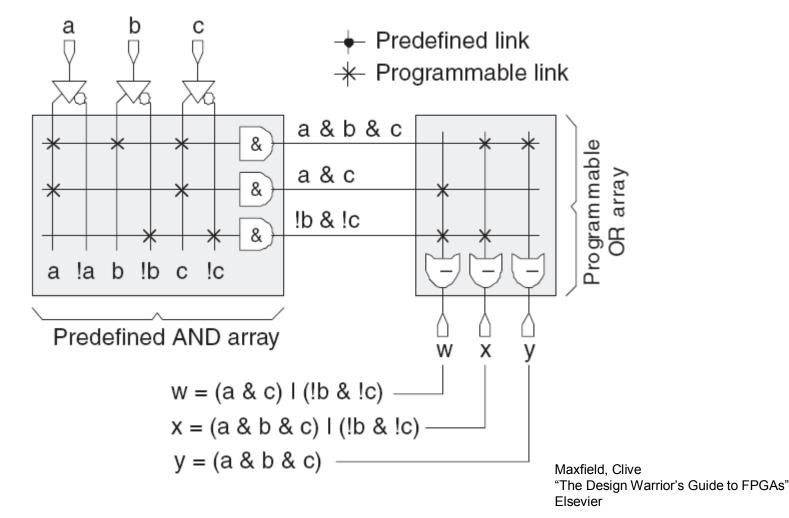

Fundamentals of FPGAs

Agenda

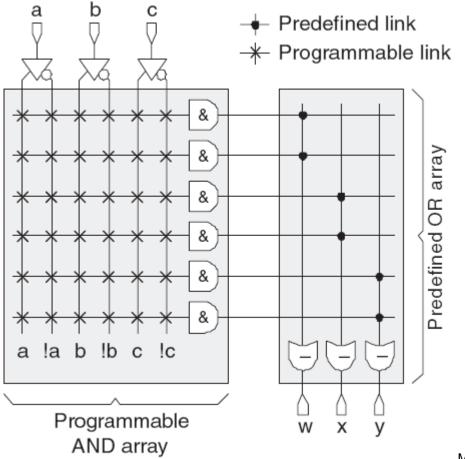
- FPGA Fundamentals
- Mixed-Signal FPGAs
- Actel Fusion Architecture
- FPGA Design Considerations
- Trends
- Choosing an FPGA
- Development Tools
- Summary



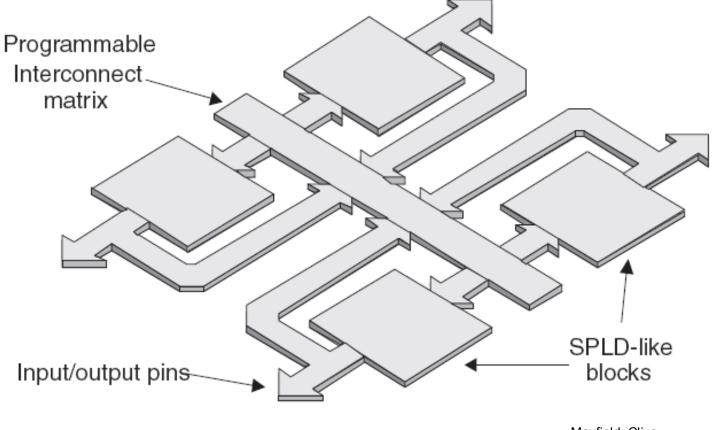
Before FPGAs

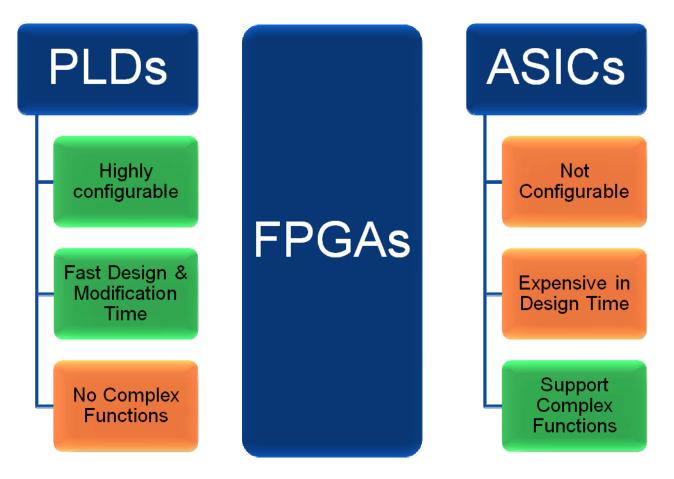


Before FPGAs: Simple PLDs (SPLDs)–PROMs




Before FPGAs: Simple PLDs (SPLDs)–PLAs


Before FPGAs: Simple PLDs (SPLDs)–PALs


Before FPGAs: Complex PLDs (CPLDs)

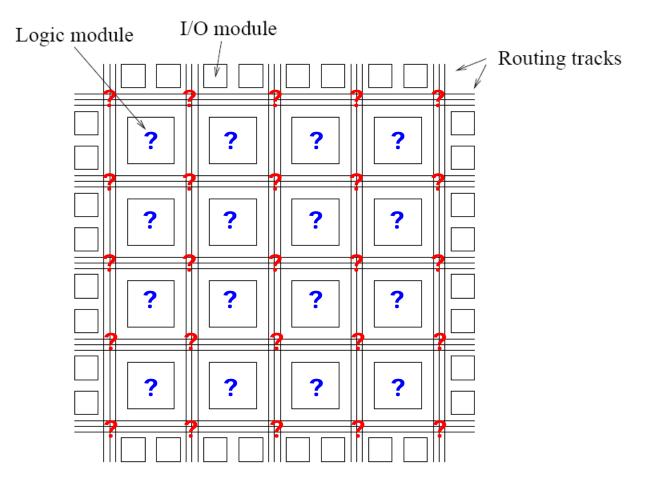
Maxfield, Clive "The Design Warrior's Guide to FPGAs" Elsevier

The GAP

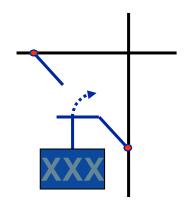
FPGA Fundamentals: Definition

Field Programmable Gate Array

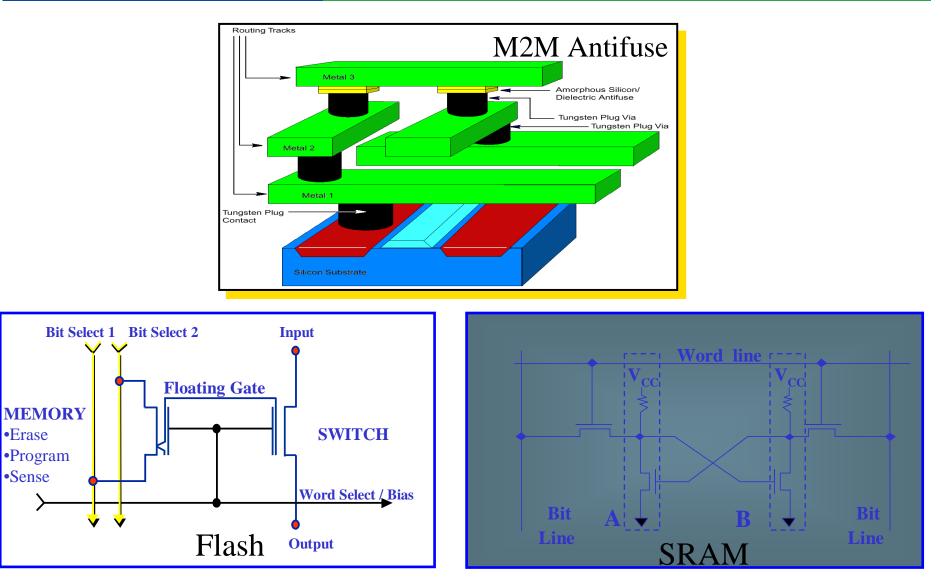
A large number of logic gates in an IC array that can be connected (configured) electrically

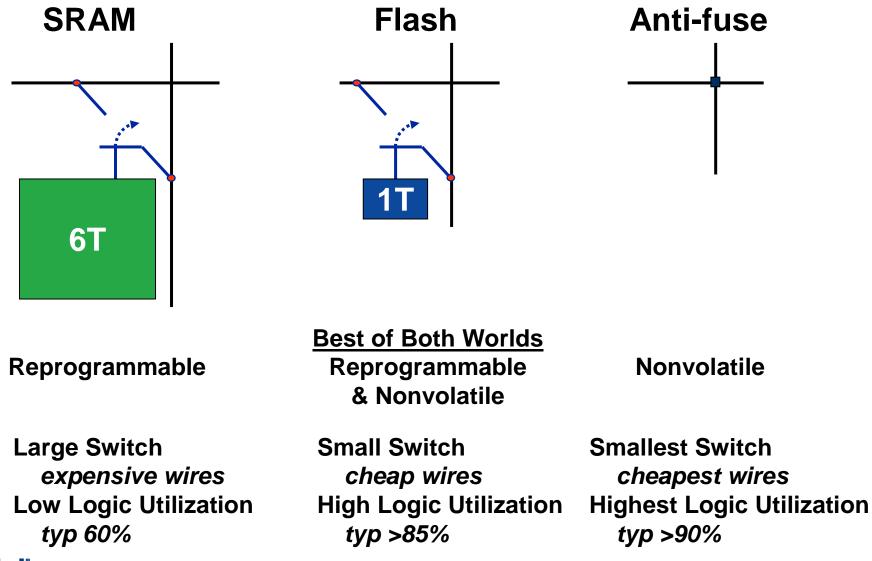

The Four Components of FPGAs

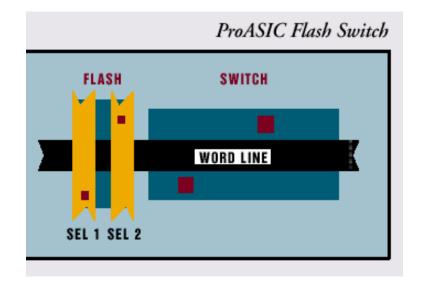
- The Configuration Element
- The Logic Module
- The Memory
- Control Circuits/Special Features

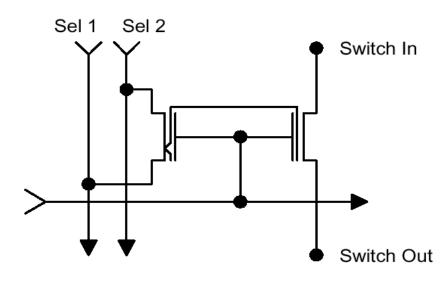

FPGA Fundamentals: Basic Architecture

Generic FPGA Architecture

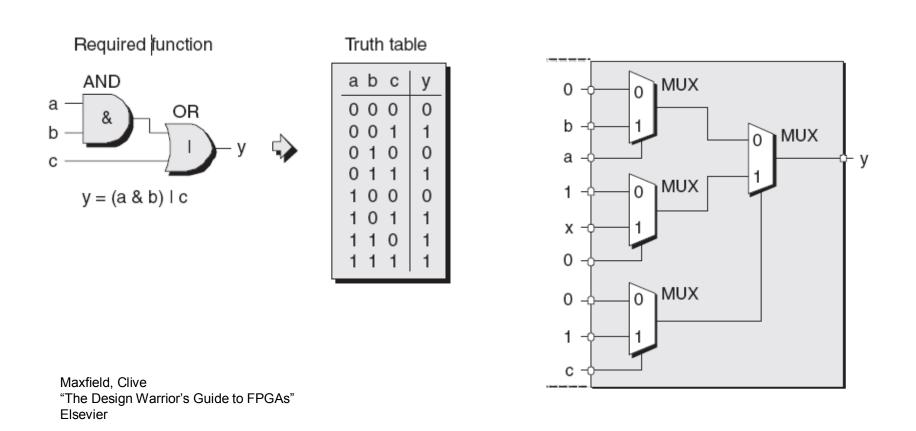



The Interconnect Switch



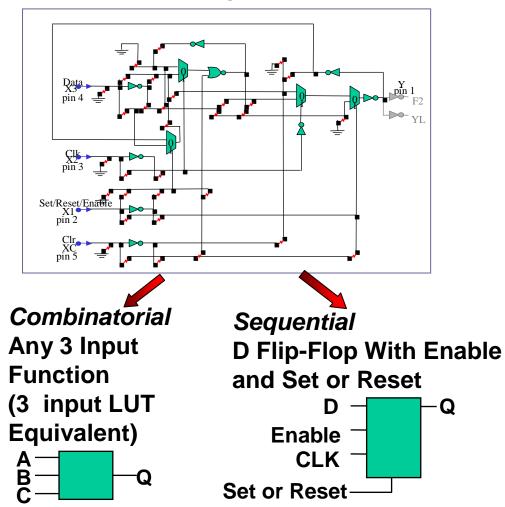


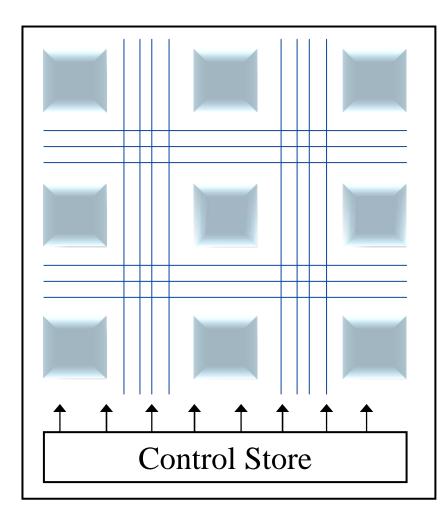
ProASIC, **ProASIC**^{Plus}, **ProASIC3** Routing Switch

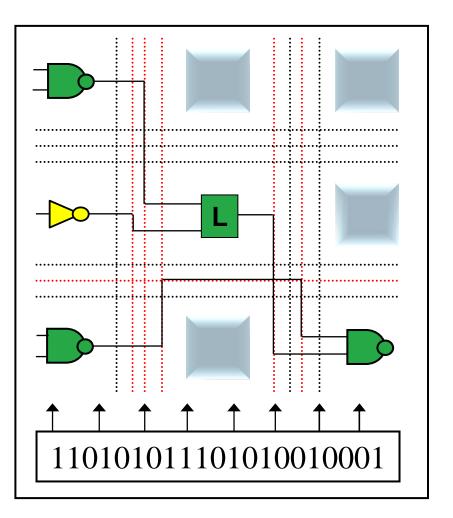

Programming Technologies

Feature	SRAM	Anti-fuse	Flash
Technology node	State of the art	Behind by 1-2 generations	Behind by 1-2 generations
Reprogrammable	Yes	No	Yes
Preserves configuration when off	No	Yes	Yes
Requires external configuration file	Yes	No	No
Instantly on	No	Yes	Yes
IP security	Acceptable	Excellent	Excellent
Power consumption	Medium	Low	Low

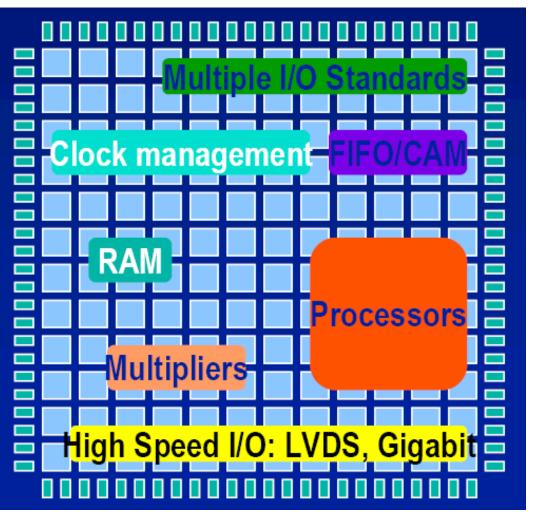
FPGA Fundamentals: Logic Elements


LUT based vs. MUX based


FPGA Fundamentals: Logic Elements


Actel's Flash MUX based Logic Module

FPGA Fundamentals: An Example



FPGA Fundamentals: Complex Architecture

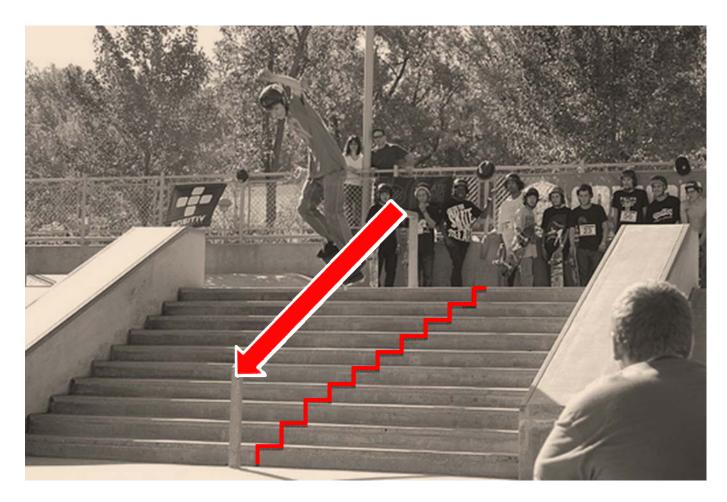
A Plethora of IPs...

Fundamentals of Mixed-Signal FPGAs

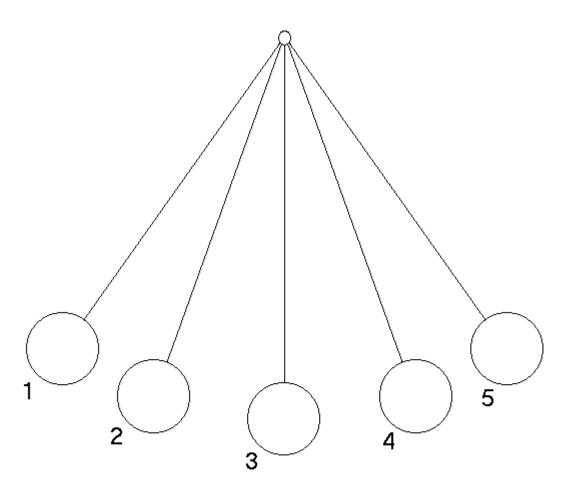
Actel Fusion® FPGA

FUSION

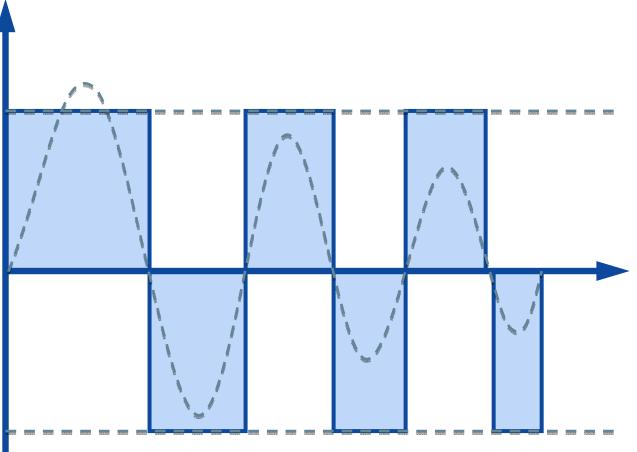
Analog Signal



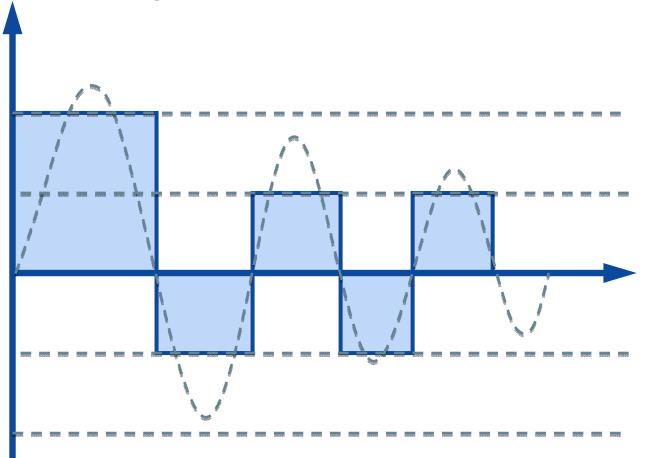
Digital Signal

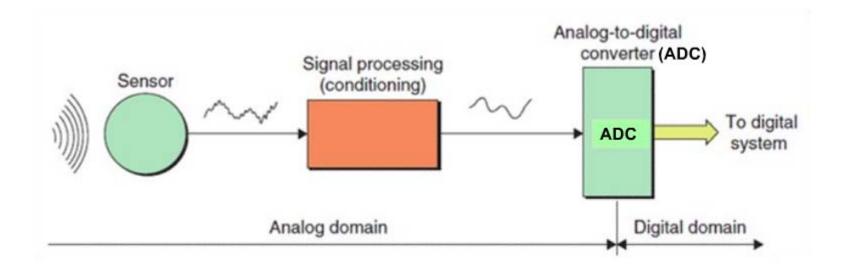


Quanta

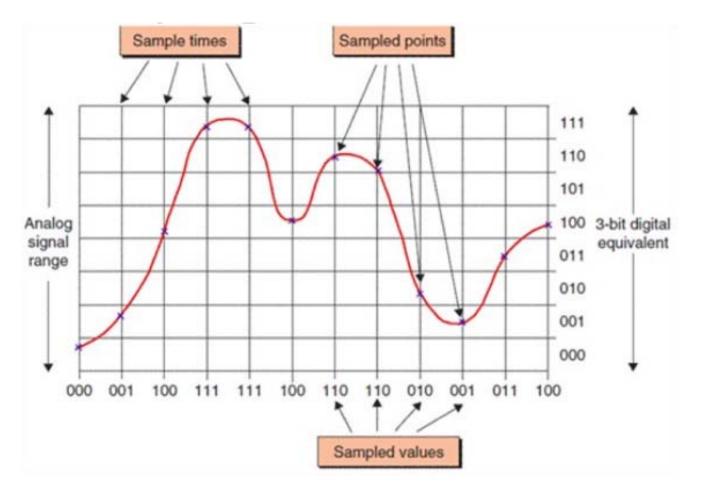


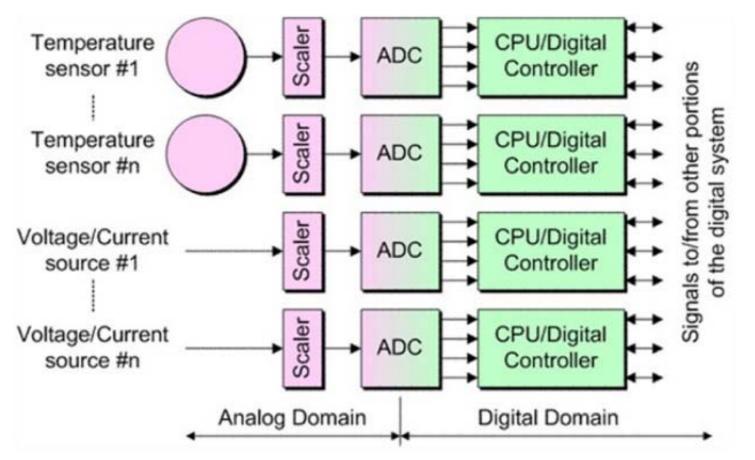
Pendulum Tracking



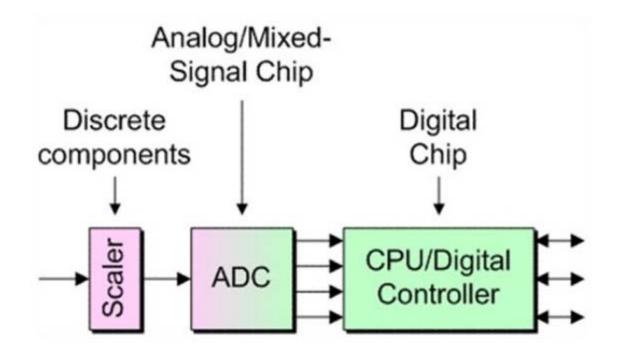


Pendulum Tracking-5 Quanta-

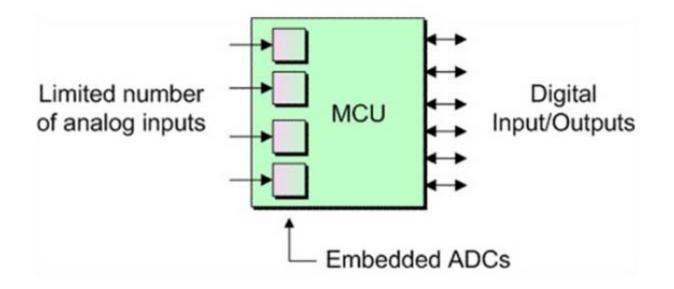




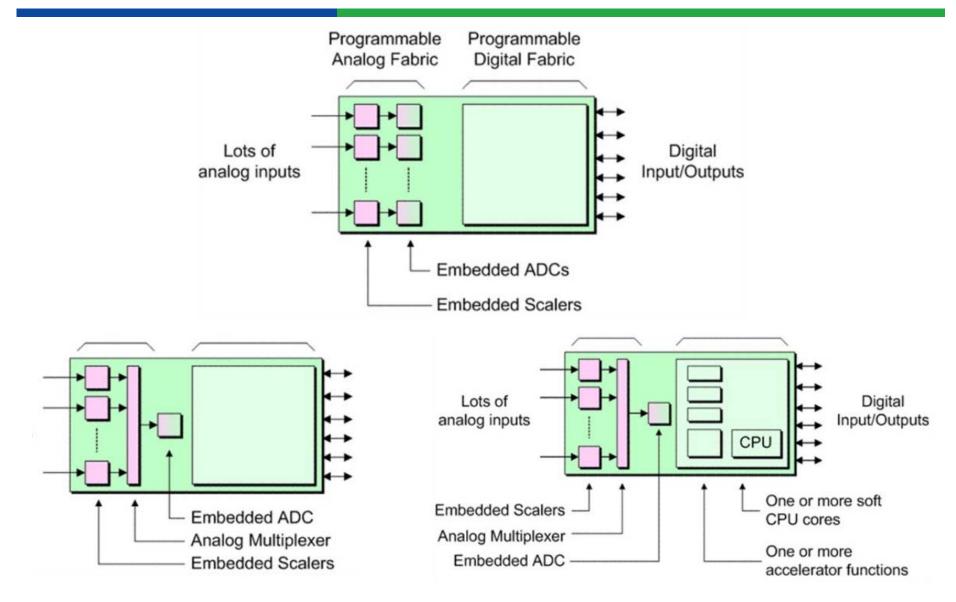
Sampling and Quantization



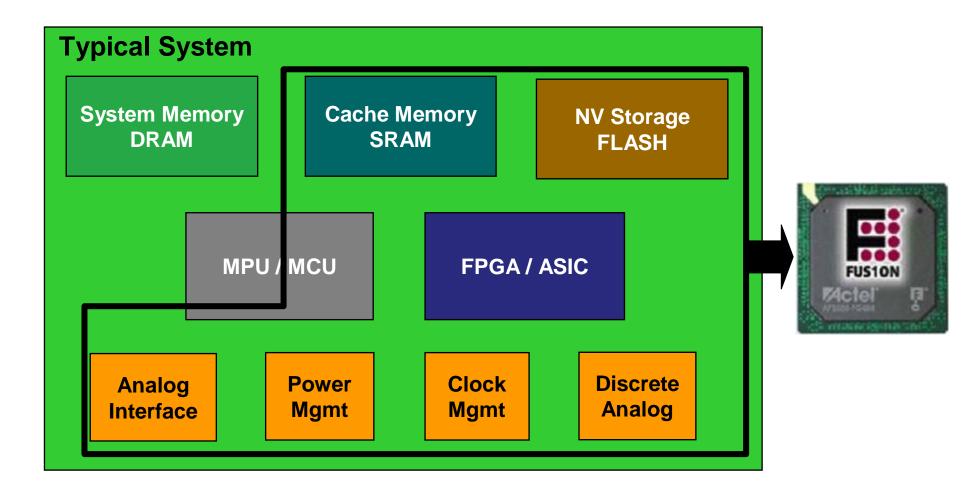
System Monitoring



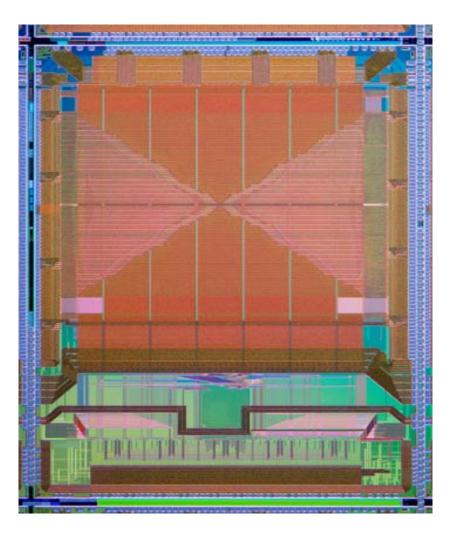
Separate Analog and Digital



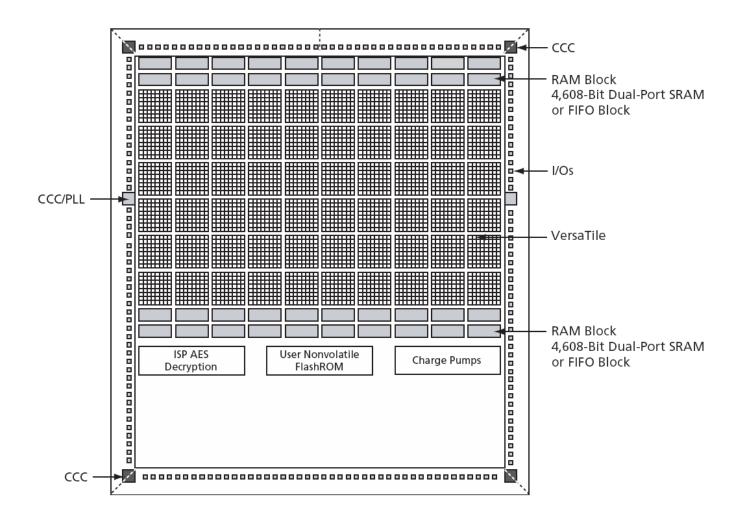
Microcontrollers



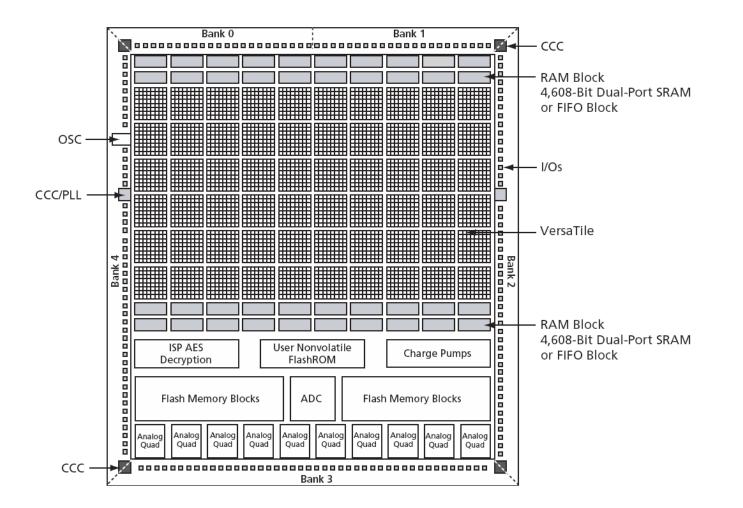
Mixed-Signal FPGAs: All in one


Actel's Fusion Mixed-Signal FPGA

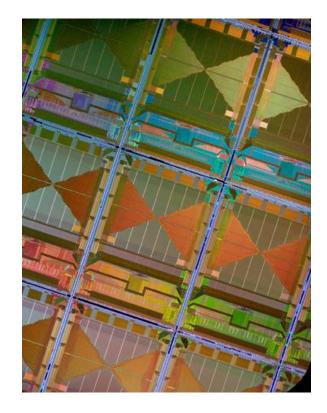
Actel's Fusion Mixed-Signal FPGA


- Flash based
- Up to 30 analog inputs
- ADC (12 bits, 600 ksps)
- Up to 1.5M system gates
- Advanced I/O support
- SRAM / FIFO blocks
- Embedded Flash Memory
- ... and much more...

Fusion Architecture

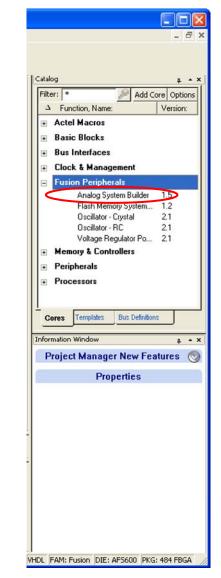

Fusion starts with ProASIC3...

Fusion Architecture


And adds Flash Memory Blocks and Analog Peripherals...

Fusion PSC: Target Applications

- Power and Temperature Management
 - Power sequencing with tracking control
 - Smart battery charging
 - Voltage, current, temperature monitors and alarms
 - Fan and heat-element control and monitoring
 - Intelligent Platform Management Interface (IPMI)
- Motor and Motion Control
 - Motor control stepper, 3-phase and solenoid control
 - Anti-lock brakes
- System initialization and configuration
 - Context save and restore
 - Context switching
 - System boot codes
- Storage
 - Program code storage
 - EEPROM emulation
 - Data acquisition and logging
- Low Power and Clocking
 - Control for sleep mode and wake-up
 - Live at power-up clock generation, conditioning, and distribution



Fusion Family

	Part #	AFS090	AFS250	AFS600	AFS1500
	ARM enabled	-	-	M7AFS600	-
	Cortex M1 enabled			M1AFS600	M1AFS1500
	System Gates	90K	250K	600K	1,500K
ส	Tiles (D-FF)	2,304	6,144	13,824	38,400
General	Secure (AES) ISP	Yes	Yes	Yes	Yes
ő	PLLs	1	1	2	2
	Globals	18	18	18	18
	RAM blocks (512x9)	6	8	24	60
>	Total RAM	27 Kbits	36 Kbits	108 Kbits	270 Kbits
Jor	FlashROM bits	1Kbits	1Kbits	1Kbits	1Kbits
Memory	Flash Memory Blocks	1	1	2	4
	Total Flash Memory	2 Mbits	2 Mbits	4 Mbits	8 Mbits
bo	Analog Quads	5	6	10	10
Analog	Analog Inputs	15	18	30	30
Ā	Output Gate Drivers	5	6	10	10
	I/O Types	Analog / LVDS / Std+	Analog / LVDS / Std+	Analog / LVDS / Pro	Analog / LVDS / Pro
<u>Q</u>	I/O Banks (+ JTAG)	4	4	5	5
≦ _	Max Digital I/O	75	114	172	252
	Analog I/O	20	24	40	40
g ,	QN108	37/9 (16)			
le / de	QN180	60/16 (20)	65/15 (24)		
Single / ble ende nalog)	PQ208		93/26 (24)	95/46 (40)	
D: Single uble enc (analog)	FG256	75/22 (20)	114/37 (24)	119/58 (40)	119/58 (40)
I/O: Single / Double ended (analog)	FG484			172/86 (40)	228/86 (40)
	FG676				252/126 (40)

- Creates Complete Analog System Including
 - AB Hard-Macro
 - Analog System Soft-IPs (RTL)
 - Analog System data storage RAMs
 - Memory files for simulation
 - Configuration file for import into NVM System

Analog System Builder: Supported Peripherals

- Voltage Monitor
- Current Monitor
- Differential Voltage Monitor
- Temperature Monitor
- Direct Digital Input
- Output Gate Driver
- Internal Temperature Monitor
- Internal Voltage Monitor
- RTC (Real Time Counter)

ADC Configuration	MHz	ADC Clock:	Re <u>s</u> oluti	on: 10	▼ bits	4	Advanced Options
Available p <u>e</u> ripherals:	Peripher	als used in system:					_0
Voltage Monitor Current Monitor Temperature Monitor		Peripheral	Signal	Туре	Acquisition time (us)	Sampling Rate (ksps)	Package Pin
Gate Driver Real Time Counter Internal Temperature Monito Internal Voltage Monitor							
		y Sampling Seguence	-1				Generate

Modify Analog System Buil	der - [analog_sys]					
ADC Configuration			↓			
System Clock: 40.000	MHz ADC Clock:	10.000 MHz Re:	solution: 12	▼ bits		Advanced Options.
For recommended clock scher	_		- , ,		_	
For recommended clock scher	me piease click <u>nere.</u>					
Available p <u>e</u> ripherals:	Peripherals used in system:					=
Voltage Monitor Current Monitor Temperature Monitor	Peripheral	Signal	Туре	Acquisition time (us)	Sampling Rate (ksps)	Package Pin
Differential Voltage Monitor	1 Input Voltage		Voltage	10.000	32.154	Unassigned
Direct Digital Input	2 Input Voltage	V1P8	Voltage	1.000		Unassigned
Gate Driver Real Time Counter	3 Temperature	Temp	Temperature	10.000		Unassigned
Internal Temperature Monito	4 Gate Driver	V2P5bad	Gate Driver			Unassigned
Internal Voltage Monitor	5 Gate Driver	V1P8bad	Gate Driver			Unassigned
T	6 Gate Driver	over_temp	Gate Driver			Unassigned
	-	channe	ng rate fo :I		Assign	 pins for
					analoa	channels
.	h Nafina	ADC complian			analog	chumers
Select periphero	als Define /	ADC sampling				
	sequence					
	· · ·					
	¥					
	Mandalia Consultana Consulta	ce				<u>G</u> enerate
	Modify Sampling Seguen					

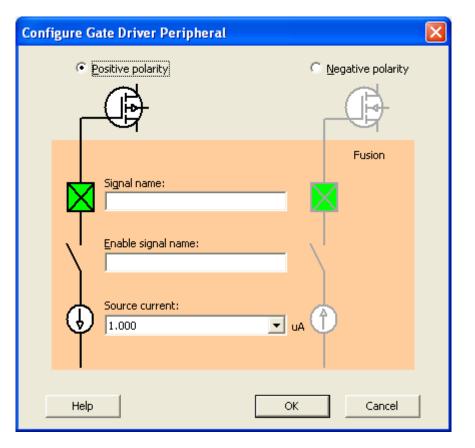
POWER MATTERS

To Configure a Voltage Monitor

Configure Volt	tage Mo	nitor Periphe	ral						×
:	AV pad Signal name:			1	Prescaler				
Digital fil Filtering Initial v	g factor:	None	▼ V Comparis	on Flag Spec	Acguisition ti M <u>a</u> ximum volt ification	·····)	10.000 12.000000	us V	
	Fla	g Name	Flag	д Туре	Threshold (V)	Assert Samples	De-asse Sample		
2 3 4									
Help					[ОК		ancel	

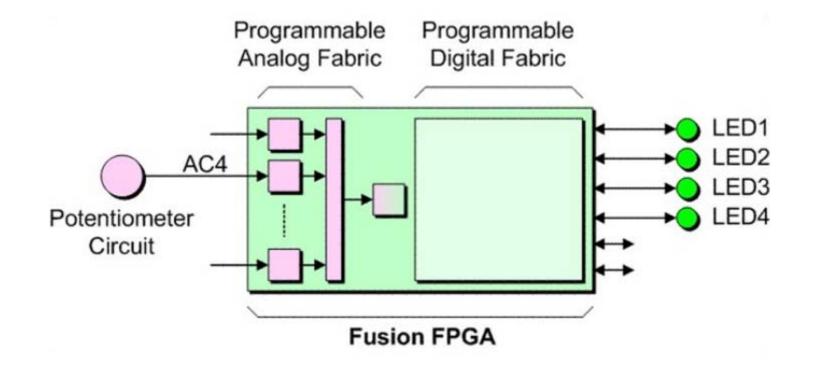
To Configure Differential Voltage Monitor

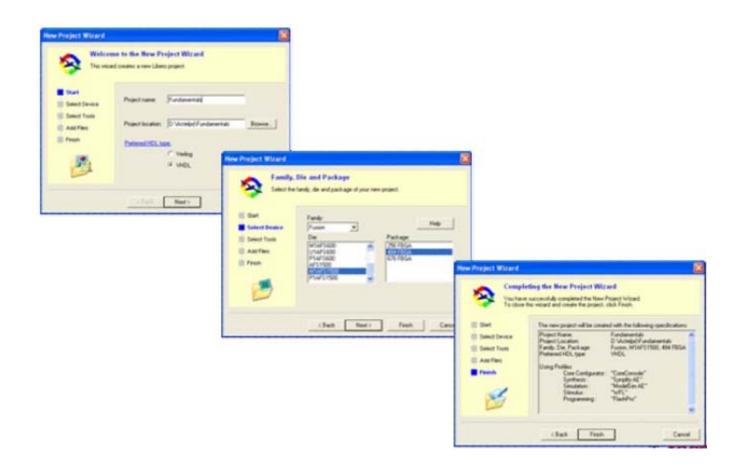
ngure Differentia	al Voltage Monitor				
	Differential Vo	oltage Monitor Peripheral	Configuration		
Digital filtering Filtering factor:	None	Acgui	sition time:	5.000	JS
Ini <u>t</u> ial value:	0.000000 V	Signal	polarity:	Positive	C Negative
		Comparison Flag Specifica	ation		* ×
	Flag Name	Flag Type	Threshold (V)	Assert Samples	De-assert
1 2				Jampies	
3					<u> </u>
AC pad	Signal name:	r	_	_	
			<u> </u>	Current	
AV pad	Signal name:		scaler	Voltage	Use Voltage Monitor
– Digital filtering —	Volta	ge Monitor Peripheral Cor	figuration		
Filtering factor:	None	Acc	juisition time:	10.000	us
Ini <u>t</u> ial value;	0.000000 V	Maj	<u>k</u> imum voltage:	13.200000	A
	c	 Comparison Flag Specifica	ition		* ×
	Flag Name	Flag Type	Threshold (V)	Assert Samples	De-assert A
1 2 3					
3					

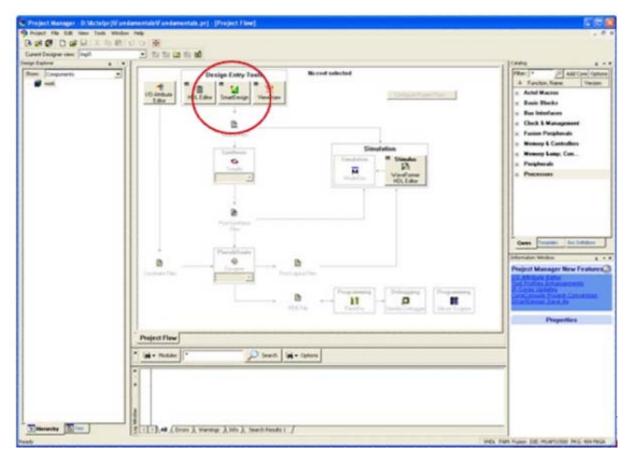


To Configure Current Monitor

Configure Current A	Aonitor Periphera	d			×
	Curre	nt Monitor Peripheral Config	guration		
Digital filtering Filtering factor: Initial value:	None 💌		sition time: polarity:	• Positive	us
L		Comparison Flag Specifica	ation		<u>*</u> ×
	Flag Name	Flag Type	Threshold (A)	Assert Samples	De-assert A
1 2 3					
AC pad	Signal name	; ;; [~	_		
External resistor: 0.005 AV pad	Ohm Signal nam		- C - +	Current Voltage	Use Voltage
	Volt	age Monitor Peripheral Con	•		Monitor
– Digital filtering – Filtering factor Ini <u>t</u> ial value:			uisition time: gimum voltage:	10.000	us V
		Comparison Flag Specifica	tion		⊁ ×
1 2 3	Flag Name	Flag Type	Threshold (V)	Assert Samples	De-assert A
Help				ок	Cancel


To Configure Gate Driver Outputs


Displaying Flags for Different Voltage Thresholds

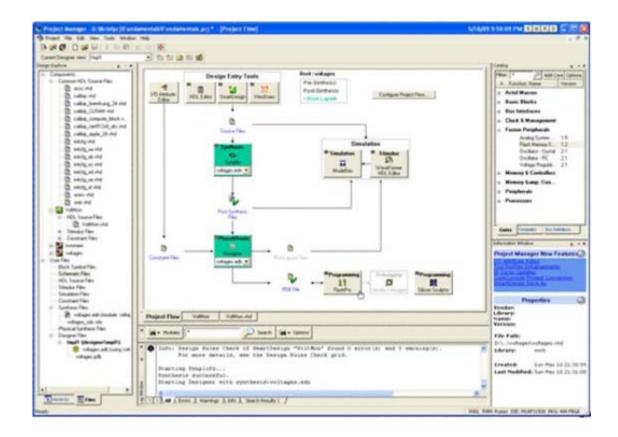


Creating a Libero Project

 Use SmartDesign to Connect Various Analog & Digital Blocks on a Virtual Canvas

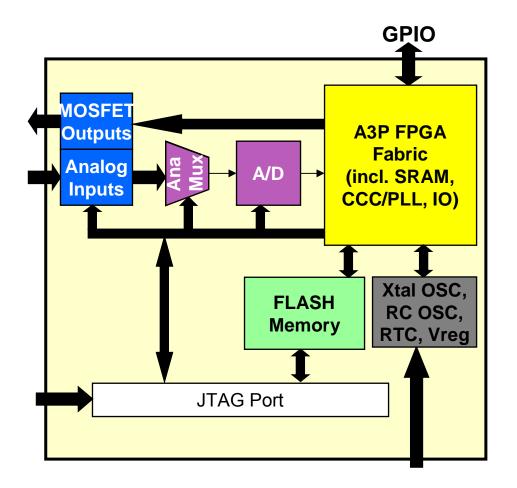
 Within SmartDesign, use the Analog System Builder to Create the Voltage Monitor – Max from Potentiometer=3.3V

tage Hordus met Hordus Palat	aland Signal	1,000	Sampletion Sample		12			
ngan aliure Manifur Weeksal Yakaga Manifur eci Dagha Dapad In Dhina		1						
e Trea Capitar et Trea Capitar Ind Tange stude Nords								
and the second		Configur	re Vellage Mon	iter Periol	recal			
			- poly	Signal name: Volt3			-	2
				1.000		Prescaler		
			Ngtal filtering					
and classes	Constraint of		rikeng faitari	None	•	Acquisition to	- 1	0.000 uii
	a traperta de la			None		Acquisition to Maximum volt	- 1 <u>1</u>	0.000 uii 1.3 V
	a (anaise)		FilterngFactors		- <u>*</u>	Hannun vol	- 1 <u>1</u>	v v
			Pitering Factors (Piter value)			Hannun vol	- 1 <u>1</u>	


Assigning to a Voltage Channel (ex. AC4)

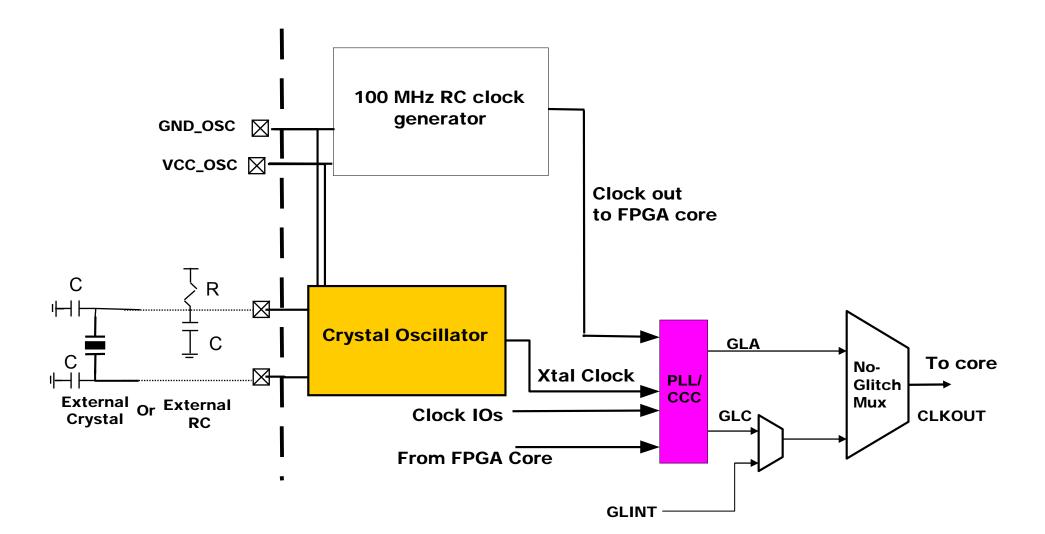
alog System Duilder: Cr	eate core*					SUR	Þ
ADC Configuration System Cluck:	MHE ADC Clock:	Resck	tors [10	• bits	19	Advanced Options	.]
Available peripherals:	Pergherals used in system:					1	2
Vokage Monitor Current Honitor Temperature Monitor	Peripheral	Signal	Type	Acquisition time (us)	Sampling Rate (Raps)	Package Pin	Γ
Differential Voltage Hunder Dent Digital Ispat Gate Drive Red Tane Counter Deternal Toporature Hondu Deternal Voltage Hondur	1 Provid Violitage V	at .	Voltage	10.000		Charangewell All14 (Al17) All14 (Al17) All15 (Al17) All15 (Al17) All17 (Al19) T12 (Al19	
	Hodify Sanpling Sequence	L				Generate	
Help						Obse	-

Synthesis -> P&R -> Programming



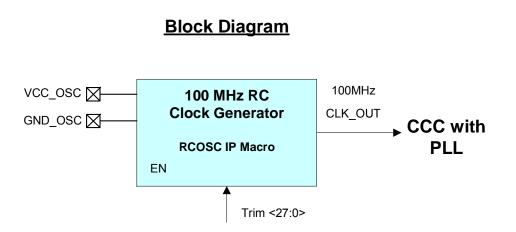
Fusion Peripherals

- Clocking
 - RC and Crystal Oscillators
 - Clock Conditioning Circuitry
 - No-Glitch MUX
- Embedded Memory
- Analog Block


Fusion Clock Resources

- Fusion Provides Multiple Clocking Resources:
 - On chip clock sources:
 - RC oscillator @ 100MHz
 - Crystal Oscillator Circuit
 - Six CCC Blocks / PLLs (1 or 2)
 - No-Glitch MUX
 - Real Time Counter (RTC)
- Use Models
 - Internal 100MHz RC oscillator
 - Crystal OSC circuit
 - 32 KHz 20 MHz
 - CCC/PLLs can multiply, divide, and phase shift clock signals for user applications
 - Sources include: crystal Osc, RC Osc, or external clock
 - RTC enables low power sleep mode

Fusion Clock Resources System Block Diagram



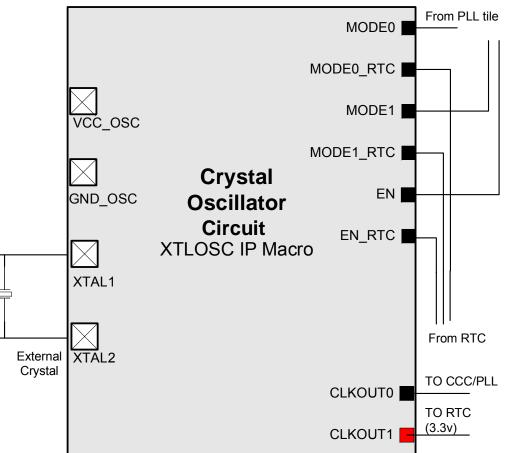
RC & Crystal Oscillators

Fusion RC Oscillator Features

- Summary
 - Clock frequency: 100 MHz
 - +/-1%: 0 to 70 C
 - Duty cycle 40% 60%
 - Requires no external components
 - Can be used to drive either a PLL or Output Pad
 - Provides an integrated, accurate on-chip clock source
- Additional Features
 - Factory trim capability for high precision

Note*: Crystal oscillator and RC oscillator physically share the same VCC and GND power pads.

Fusion Crystal Oscillator


Features

- High-precision Clock Source

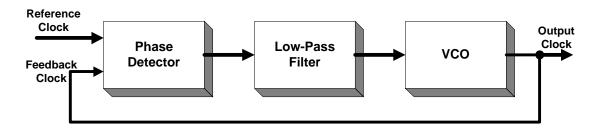
 Up to 100ppm (0.01%) precision

 Supports Both On-chip and Off-chip Resources

 Source for PLL/CCC
- Modes
 - External Crystal:
 - High gain: 2 20 MHz
 - Med gain: 0.2 2 MHz
 - Low gain: 32 200 KHz
 - RC Network: 32kHz 4MHz
- Specifications
 - Maximum output jitter 50pS RMS
 - 10 MHz crystal (0.05%)
 - Duty cycle: 40% 60%

Note: Crystal oscillator and RC oscillator physically shared the same VCC and GND power pads.

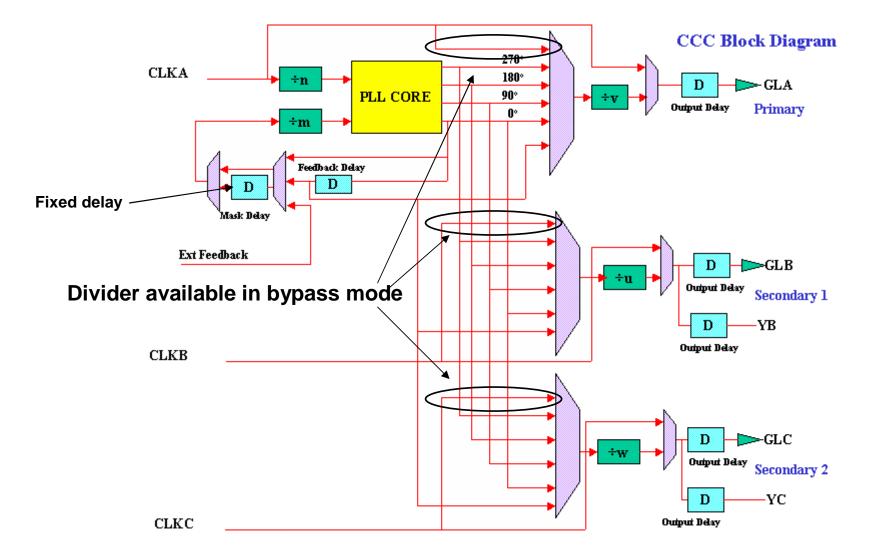
Fusion


Clock Conditioning Circuitry (CCC)

- All Devices Have 6 Clock Conditioning Circuitry (CCC) Blocks, BUT ...
 - ... Some CCC Blocks do not contain PLLs
 - AFS090 / AFS250 1 PLL
 - AFS 600 / AFS1500 2 PLLs
 - ... Non-PLL Functionality Still Available
 - Divider and Delay Elements
 - Global Access from I/O or Internal Signal
- 3 Global MUX Blocks
 - Steer Signals from Global Pads and FPGA Fabric into Global Networks

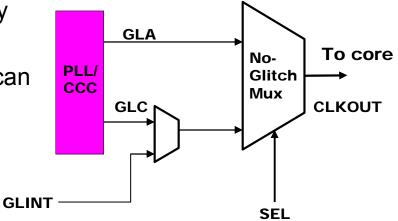
Fusion PLL

- Functions
 - Clock Phase Adjustment
 - Clock Delay Minimization
 - Clock Frequency Synthesis
 - Allows Access From Global Pads To Global Network and PLL
 - Allows Access From PLL To FPGA Core
- Input Sources:
 - Single Ended I/O, Differential I/O, FPGA Core, RC Osc, XTAL Osc



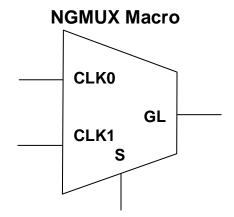
Fusion PLL *Features*

- Delay Blocks (6 Programmable and 1 Fixed)
 - Programmable Delay/Advance up to 5.56 ns in 160 ps increments for Clock Skew Minimization
- 5 Frequency Divider Blocks
 - Provide Frequency Multiplication/Division
- Clock Phase Adjustment
 - 0°, 90°, 180°, and 270°
- Dynamic Shift Register
 - Provides Dynamic Reconfiguration Capability



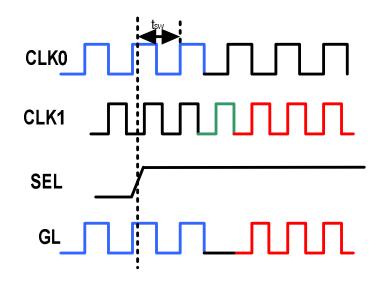
No-Glitch MUX (NGMUX)

Fusion No-Glitch MUX (NGMUX)

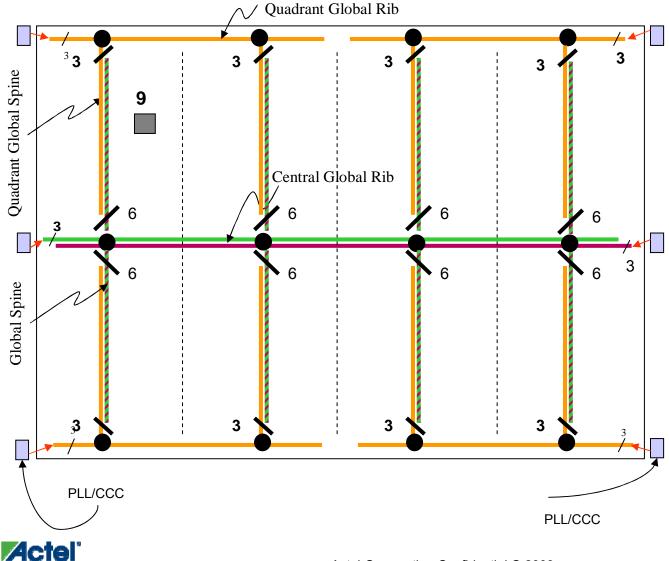

- Provides Special Switching Sequence
 Between Two Asynchronous Clock Domains
 - User-configurable to select between 2 of 3 possible clock sources – GLA, GLC, or other internal signal
 - Time-out circuitry included in case one of the clocks stops or runs at very low frequency
- Advantage
 - Eliminates narrow pulses/glitches which can cause clocking errors
 - Especially critical in hi-rel apps
- Uses
 - Clock domain control
 - Power reduction by transitioning to lower frequency

Fusion No-Glitch MUX Usage

- NGMUX is Implemented as a 2:1 Mux in the Software
 - Instantiate NGMUX in VHDL or Verilog Description



Signal Name	Direction	Function
CLK0	Input	Clock Input
CLK1	Input	Clock Input
		Mux Select
S	Input	0 -> 1 CLK1
		1 -> 0 CLK0
CLKOUT	Output	Clock Output

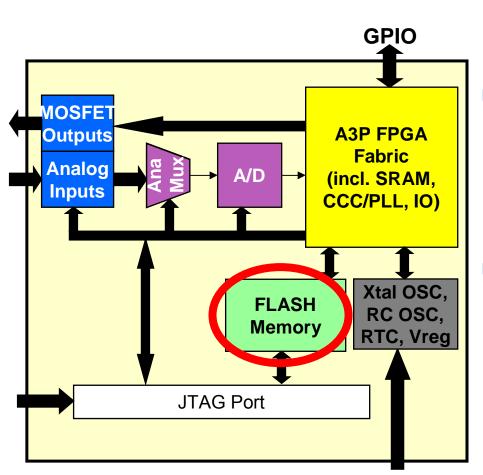

Fusion No-Glitch MUX Operation

- Switching from CLK0 to CLK1:
 - GL will drive one last complete CLK0 positive pulse (i.e. one rising edge followed by one falling edge).
 - From that point GL stays low until the second rising edge of CLK1 occurs.
 - At the second CLK1 rising edge, GL will continuously deliver CLK1 signals.

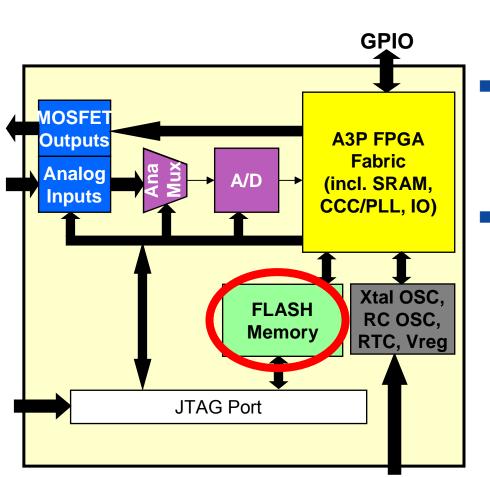
Fusion: Global Distribution Network

- Left and Right CCCs Provide 6 Chip-wide **Global Networks** (Access from I/Os in Middle of Left and Right Sides)
- 12 Quadrant Global Networks (3 per Quadrant – Access from I/Os in 4 Corners)
- Each VersaTile Has Access to 9 Global Resources
- Access from PLLs and Internal Signals

Fusion Peripherals


- Clocking
- Embedded Memory
 - Flash Memory Block
 - FlashROM
 - SRAM and FIFO
- Analog Block

Fusion Only FPGA with Flash Memory


Fusion Flash Features

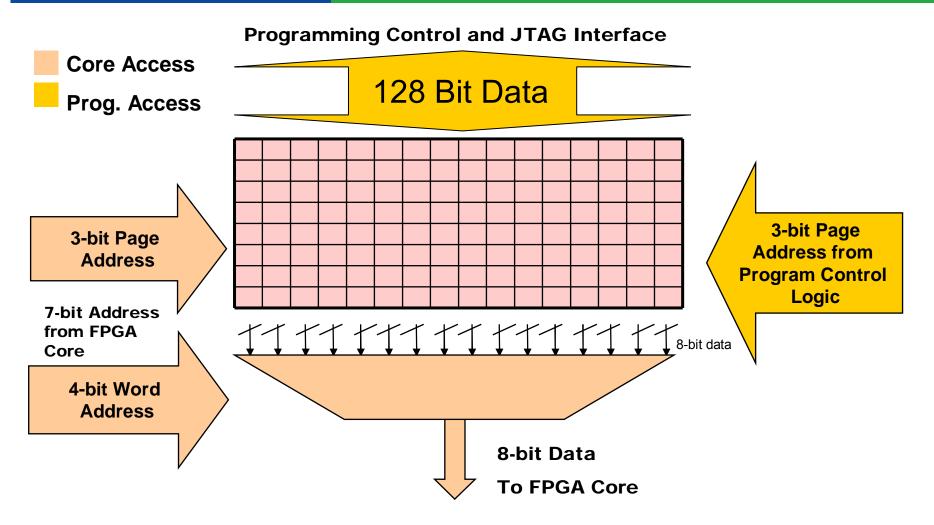
- Flash Memory 2 Mb Density
 - 1 4 blocks/device
 - Each 2 Mb array has independent controller
 - Independent JTAG access
- Flexible Operation
 - x8, x16, and/or x32 FPGA
 - Each supports multiple partitions
 - Small page size (1kb)
 - Can be accessed by either on-chip or off chip resources
- High Performance
 - 60 ns random access
 - Pipelined 10 ns access of sequential memory addresses

Fusion Flash Features (cont.)

- Flash Memory Level:
 - FPGA access
 - Password security
 - JTAG access for programming
- Page Level:
 - JTAG read / write protection
 - Program/erase
 - Partition on page boundaries
- Block Level Error Detect:
 - Single error correct
 - Double error detect

Fusion Peripherals

- Clocking
- Embedded Memory
 - Flash Memory Block
 - FlashROM
 - SRAM and FIFO
- Analog Block

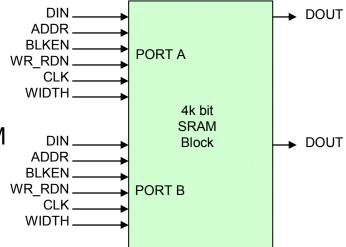


FlashROM (FROM) Memory

- 8 pages of 128 bits (8x128)
 - Same as ProASIC3\E FROM
- FPGA Core and FlashROM Memory Can Be Programmed Separately
 - Allows Changing FROM without Erasing Core
 - Core Powered Down during FROM Programming
- Example Applications
 - IP Addressing
 - User/System Preference Storage
 - Device Serialization
 - Inventory Control
 - Subscription Models (Set-top Boxes)
 - Secure Key Storage
 - Presets
 - Date Stamping
 - Version Management

FlashROM Logical View

Every 128-bit Page Can Be Reprogrammed Independently


Fusion Peripherals

- Clocking
- Embedded Memory
 - Flash Memory Block
 - FlashROM
 - SRAM and FIFO
- Analog Block

Dual-Port SRAM Blocks

- Multiple 4K bit Embedded Memory Blocks:
 - 2 Write/Read ports OR independent 2-port
 - Synchronous operation up to 250 MHz
- Fully programmable
 - Scalable aspect ratio from 256x18 to 4Kx1
 - Cascadable wide and deep
 - SmartGen tool automates memory generation
- FIFO Capability
 - Decoder, FIFO control and flag logic built into RAM block
 - Programmable FIFO depth and flag threshold

Fusion SRAM Implementation

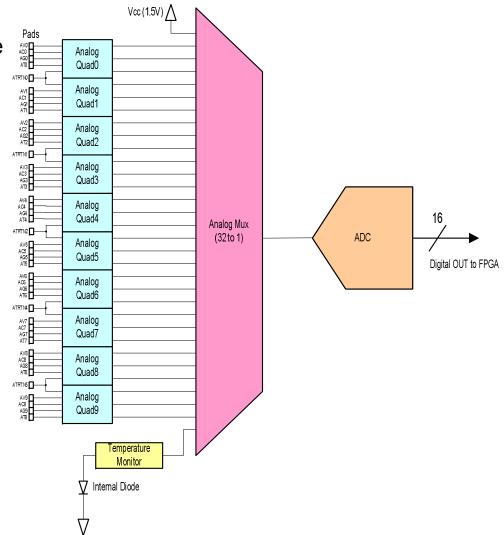
True Dual-port RAM:

- Variable Aspect Ratios 4096x1, 2048x2, 1024x4 or 512x9
 - Independent Read and Write Port Widths
- Dual-port Options Both Read, Both Write, One Read & One Write; Same Clock Frequency or Two Different Clock Frequencies
- Pass-through of Write Data or Hold Old Data on Output
- Two-port RAM:
 - Variable Aspect Ratios 512x9 or 256x18
 - Independent Read and Write Widths
 - Dedicated Read and Write Ports
- Both Macros Have
 - Synchronous Write
 - Synchronous Read Pipelined or Non-Pipelined
 - Asynchronous Output Reset

Fusion RAM *FIFO*

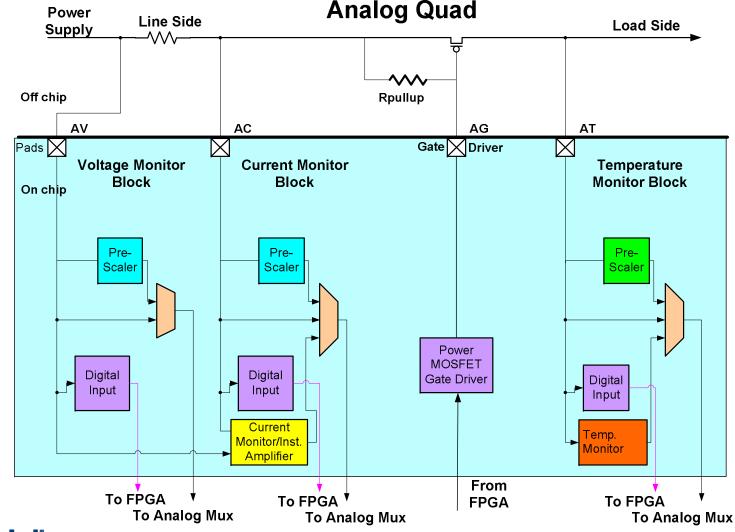
Fusion Has One FIFO Macro:

- Variable Aspect Ratios 4096x1, 2048x2, 1024x4, 512x9, or 256X18
 - Independent Read and Write Port Widths
- Four FIFO Flags Empty, Full, Almost-empty, Almost-full
 - FIFO Empty/Full Flags Synchronized to Read Clock and Write Clock, Respectively
 - Programmable Threshold Values of 'Almost' Flags
- Asynchronous Reset
- Active-low Block Enable
- Active-low Write Enable and Active-high Read Enable
- FSTOP and ESTOP FIFO Counters Can Count after FIFO Is Full or Empty
 - Allows Writing to FIFO Once and Repeatedly Reading Same Contents without Rewriting Contents


Fusion Peripherals

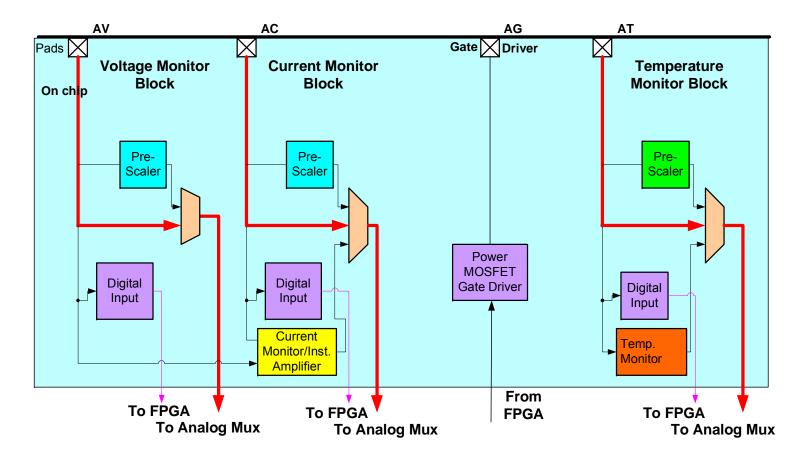
- Clocking
- Embedded Memory
 - Flash Memory Block
 - FlashROM
 - SRAM and FIFO
- Analog Block

Fusion Analog Block


- 1.5V Voltage regulator
- -3.3V Voltage converter (for internal use only)
- Bandgap voltage reference
- Power System Monitor (Generates Flash and ADC Reference)
- Real Time Counter System (RTC)
- Analog Quad (up to 10 Analog Quads)
 - Voltage monitor block
 - Current Monitor block
 - Temperature monitor block
 - Gate control/driver block
- Analog MUX
- ADC
 - Selectable 8/10/12 bit resolution
 - 32 input channels
 - Up to 600K samples per second

Analog Quad (AQ)

 Analog Quad is the Basic Analog I/O Structure *Power* Line Side

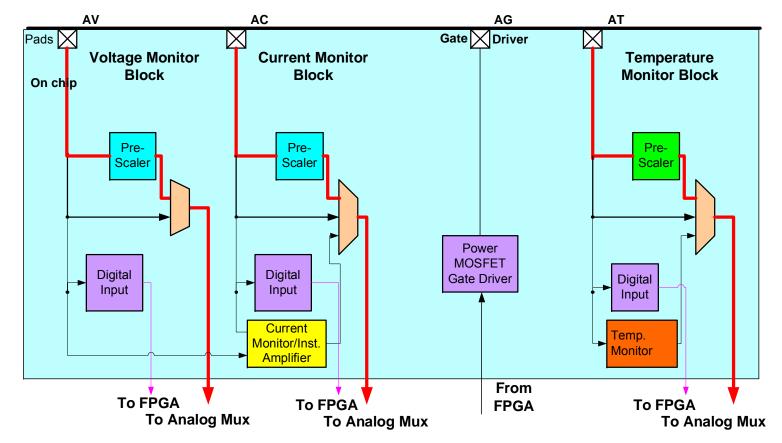

Fusion Analog Quad

- Features
 - Includes 4 analog interface pins
 - AV pin Input: direct and prescaler voltage monitor
 - AC pin Input: direct and prescaler voltage monitor, current monitor
 - AT pin Input: direct and prescaler voltage monitor, temp monitor
 - AG pin Output Power FET gate control or high voltage, high drive output
 - Input voltage range for AV and AC pads: 10.5V to 0 V or 0V to 12V +/- 10%
 - Input voltage range for AT pad: 0V to 16V +/- 10%
 - AV, AC, AT pads can be used as low speed digital inputs (Tr, Tf > 20nS)
 - Modular building block used on all Fusion family members
 - AFS090: 5 Quads
 - AFS250: 6 Quads
 - AFS600, AFS1500: 10 Quads

Analog Quad: Direct Input

Analog Quad

Direct Input used when Maximum Input Voltage is between 2V and V_{REF}



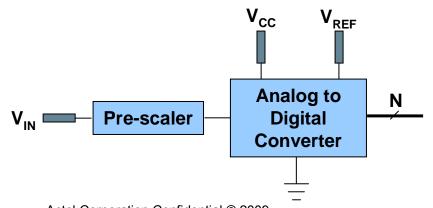
Analog Quad: Direct Input

- AV, AC, and AT pads can be Routed Directly to the Analog Mux by Configuring the Analog Quad
- Features
 - Best accuracy, lowest offset
 - No Buffers or Amplifiers between Input pin and ADC
 - No DC input current; capacitive load only (~20pF)
 - Resistive connection to ADC: ~4k ohm
 - One Input range: 0V to ADC reference level
 - Full scale level for internal reference is 2.56V
 - Decimal value of 8 most significant bits is input level in 'centiVolts' (i.e., ADC count of 207 = 2.07V at input)
 - Equivalent function to micro-controller style ADC
- Limitations
 - Positive input only
 - Single range
 - Needs low impedance input source for full bandwidth
 - Input capacitance varies greatly as input selection MUX is changed and Sample/Hold cycles

Analog Quad: Pre-scaler Input

Analog Quad

Pre-scaler Input used when Input Voltage is not between 2V and V_{REF}


Analog Quad: Pre-scaler Input

- Features
 - Input voltage ranges for AV and AC pads
 - Pre-Scaler input from -10.5V to 0V or 0V to 12V
 - Full scale ranges for ADC: ±16V, ±8V, ± 4V, ± 2V, ± 1V, ± 0.5V, ± 0.25V and ±0.125V
 - Input voltage ranges for AT pads
 - Pre-Scaler input from 0V to 16V
 - Full scale ranges for ADC: +16V and +4V
 - All ranges indicate input level in mV with a simple left or right shift of the binary value
 - On 4V range with 12 bit ADC setting, LSB = 1mV at input pin
 - Constant input impedance; ~1M ohm, 5pF
- Limitations
 - Pre-scale circuits add offset and gain error
 - Dynamic range changes are discouraged (will cause transient measurement errors on all channels)

Pre-Scaling

- Overdriving the ADC Input Can Result in:
 - Erroneous Conversions
 - Input Latch Up
 - Permanent Damage To Device Is Possible
- To Avoid Overdriving, The Input Can Be Pre-scaled To Ensure Maximum Voltage To ADC Does Not Exceed VREF
 - "Scale Down" Voltages That Are Greater Than VREF
 - "Scale Up" Voltages That Are Less Than VREF
 - Invert If Input Voltage Is Negative

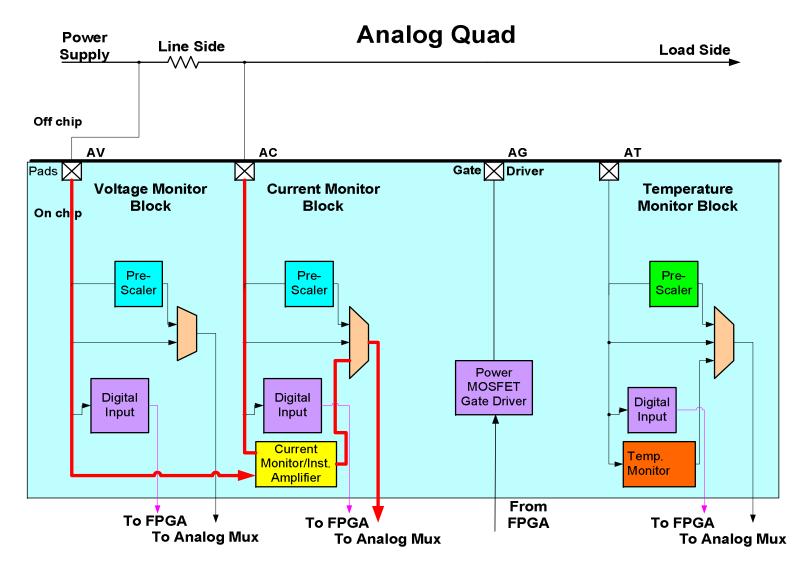
Pre-Scaling (Cont.)

- Pre-scaler Value (Gain) is Chosen to Ensure (Max V_{IN} * G) ≤ V_{REF}
- Gain May Be Chosen Such That the LSB of the Converter Output is a Convenient Number
 - Example:
 - For V_{REF} = 2.56V and V_{IN} = 6V, G = 0.4267 Ensures Input to ADC \leq V_{REF} But . . .
 - LSB of ADC equals the following:
 - 8 bit: 23.44 mV
 - 10 bit: 5.86 mV
 - 12 bit: 1.47 mV
 - Using A Different Gain Value Can Result In Simpler Calculations
- Limitations
 - Pre-scale Circuits Add Offset and Gain Error

Analog Quad: Pre-scaling Factors

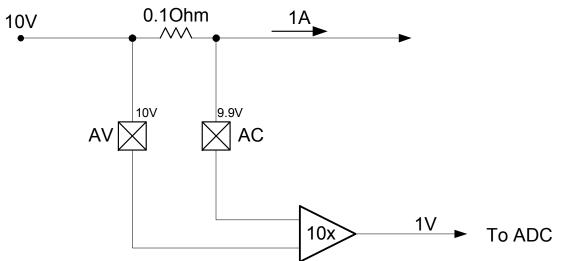
		Full Scale Voltage	LSB 8-bit conversion	LSB 10-bit conversion	LSB 12-bit conversion	
V _{IN}	Scaling Factor (G)	(VREF / G)	(mV)	(mV)	(mV)	Range Name
$12V \ge V_{IN} > 8V$	0.15625	16.368 V	64	16	4	16V
$8V \ge V_{IN} > 4V$	0.3125	8.184 V	32	8	2	8V
$4V \ge V_{IN} > 2V$	0.625	4.092 V	16	4	1	4V
$2V \ge V_{IN} > 1V$	1.25	2.046 V	8	2	0.5	2V
1V ≥ V _{IN} > 0.5V	2.5	1.023 V	4	1	0.25	1V
0.5V ≥ V _{IN} > 0.25V	5.0	0.5115 V	2	0.5	0.125	0.5V
0.25V ≥ V _{IN} > 0.125V	10.0	0.25575 V	1	0.25	0.0625	0.25V
V _{IN} ≤ 0.125V	20.0	0.127875 V	0.5	0.125	0.03125	0.125V

- Fusion Scaling Factors Give Convenient LSB Values For All ADC Resolutions
 - All Ranges Indicate Input Level in mV with Simple Left or Right Shift of Binary Value
- Maximum Allowable Input Voltage:
 - -10.5V or +12V for AV and AC pads
 - +16V for AT pad
- Pre-scaling Offset and Gain Error
 - Gain error
 - Positive DC inputs: 1% typ
 - Negative DC inputs: 2% typ
 - Offset error
 - 2 ± 0.2% of range



Analog Quad: Pre-scaler Input Examples

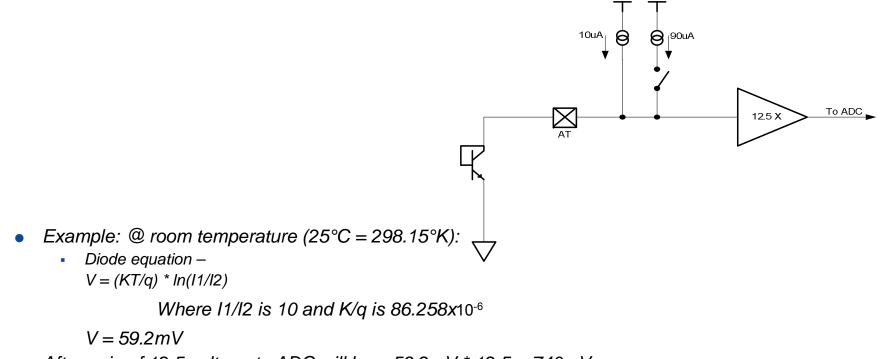
- Example 1
 - 8V Is Applied to AV Pad
 - Scaling Factor Is Set to 0.3125
 - Output of Pre-scaler (Input to ADC) is (8 * 0.3125) = 2.5V
 - For 12-bit Resolution, ADC output = 2¹² * (2.5 / 2.56) = 4000
 - LSB = (2.56 / 0.3125) / 2¹² = 2 mV
- Example 2
 - 12V Is Applied to AV Pad
 - Scaling Factor Is Set to 0.15626
 - Output of Pre-scaler (Input to ADC) is (12 * 0.15625) = 1.875V
 - For 12-bit Resolution, ADC output $= 2^{12} * (1.875 / 2.56) = 3000$
 - LSB = (2.56 / 0.15626) / 2¹² = 4 mV
- Example 3
 - –0.2V Is Applied to AV Pad
 - Scaling Factor Is Set to 10
 - Output of Pre-scaler (Input to ADC) is (0.2 * 10) = 2.0V
 - Input signal is inverted to make ADC input positive
 - For 12-bit Resolution, ADC output = $2^{12} * (2.0 / 2.56) = 3200$
 - LSB = (2.56 / 10) / 2¹² = 0.0625 mV


Analog Quad: Current Monitor

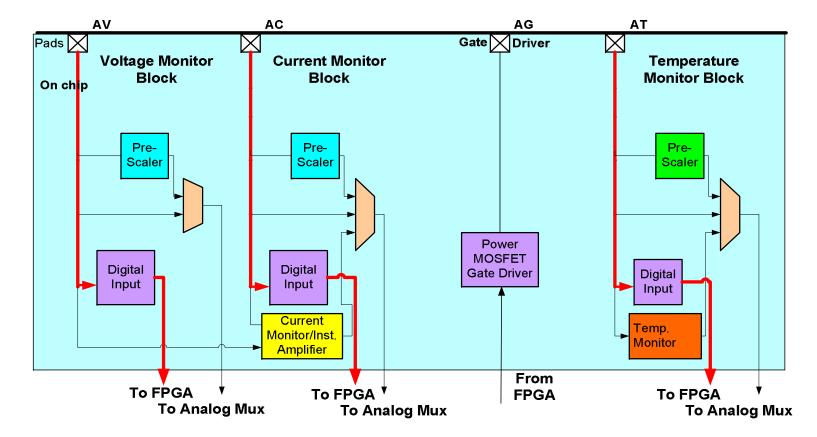
Analog Quad: Current Monitor


 Can sense Current by Measuring Voltage Drop Across an External Resistor

- If the Polarity bit is set to '0' (positive):
 - Current monitor output will be = 10 * (AV-AC)
- If the Polarity bit is set to '1' (negative):
 - Current monitor output will be = 10 * (mag(AV)-mag(AC))
 - Note: ADC input should be positive only


Analog Quad: Temperature Monitor

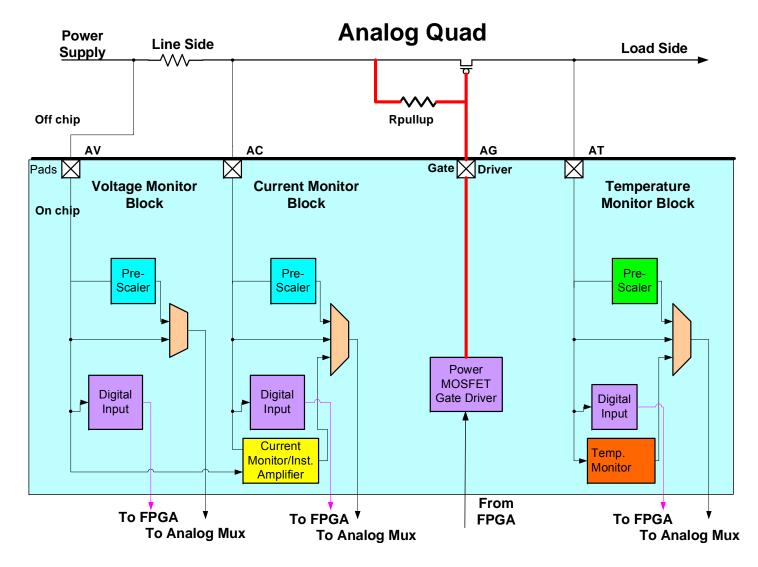
Analog Quad: Temperature Monitor


- Can Monitor Temperature of External Transistor Connected as Diode
 - Basic accuracy of 5 degrees C
 - Output count of ADC reads directly as absolute temperature (K)

• After gain of 12.5 voltage to ADC will be = 59.2mV * 12.5 = 740mV

Analog Quad: Direct Digital Input

Analog Quad

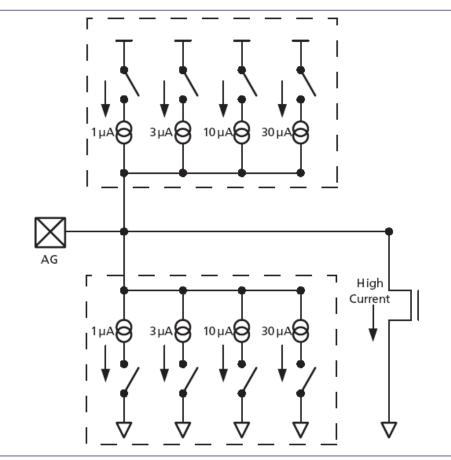


Analog Quad: Direct Digital Input

- AV, AC, and AT pads can be used as low speed Digital Inputs (LVTTL)
 - Operating speed 10MHz (Max)
 - (Tr, Tf > 20nS)
- Delay 10nS (Typ)
- The Digital Buffers can be Disabled if not used

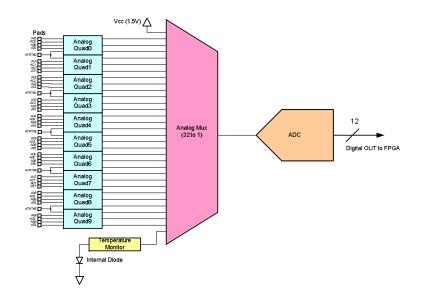
Analog Quad: Gate Driver

Analog Quad: Gate Driver


Features

- Controls turn on of external Power FET by pulling the gate towards ground
- FET Vgs limited to Ig * Rpullup
- Slew rate of load controlled by Ig/Cgd = dV/dt
- Works for positive supplies (with P-FET) and negative supplies (with N-FET)
- High drive mode can sink/source 25mA
- Limitations
 - Requires external pullup resistor
 - Open drain style output. Does not output a voltage level

Analog Quad: Gate Driver


- Gate Driver has two Modes:
 - High current drive 25mA @ 1V
 - Low current drive choose between 1, 3, 10 and 30uA

Fusion Analog MUX

- Input to the Fusion ADC is a 32:1 Analog MUX
- 30 Input Channels are User Definable
 - Connected to Analog Quad AV. AC and AT inputs
- Two Channels are Hardwired Internally
 - Channel 0 is wired to the FPGA's 1.5 V supply
 - Fusion device can monitor its own power supply
 - Channel 31 connects to an internal temperature diode
 - Monitor temperature of the Fusion device
- Analog Block Input CHNUMBER [4:0]
 Selects Channel for Conversion

Fusion ADC

- 8/10/12 bit Selectable Resolution
- 32 Input Channels
- Up to 600K samples/sec
- TUE (Total Unadjusted Error)
 - +/- 2 LSB in 8 bit mode
 - +/- 4 LSB in 10 bit mode
 - +/- 6 LSB in 12 bit mode
- Clock
 - ADC interface clock max frequency 100MHz
 - Selectable clock divider (divide by 4 to 1024) to generate ADC internal clock
 - ADC internal clock frequency range 1 10MHz
- Sample and Hold
 - Selectable sample time 2 257 * ADC internal clock period
- Self Calibration
 - Automatic full calibration on powerup
 - Optional incremental calibration after each conversion
- Status Signals:
 - Conversion in progress
 - Sampling in progress
 - Calibration in progress
 - Data valid
- Power Requirements
 - 3.3V for Analog, 1.5V for Digital, and reference voltage (2.56V to 3.3V)

Analog Block Summary

- Up to 10 Analog Quads per Device
 - Pre-scaler input range:
 - -10.5 V to 0V or 0V to 12V for AV and AC inputs
 - 0 to 16V for AT input
 - Voltage Monitor
 - Current Monitor
 - Temperature Monitor
 - Gate Driver For controlling Power MOSFETs
- 32 Input Channel ADC with Selectable Resolution (8/10/12 bit)
- Selectable Internal/External Voltage Reference
- 1.5V Voltage Regulator
- Real Time Counter (RTC)

Fusion: I/O Overview

- Fusion I/Os Are Organized in Banks Supporting Multiple Standards
 - 1.5 V, 1.8 V, 2.5 V and 3.3 V
- Common I/O Features
 - Programmable Slew Rate
 - Programmable Drive Strength
 - Weak Pull-up / Pull-down
- I/Os Power Up in Known State
 - No special power up sequencing is required

Fusion: I/O Functions

Regular I/Os

- Input, Output, Tristate and Bidirectional Buffers
- Registered I/Os
 - Built-in Input, Output and Output-Enable Registers
 - Each Register Equivalent to 1-tile Core Flip-flop
- DDR I/Os
- Built-in Input and Output DDR Registers

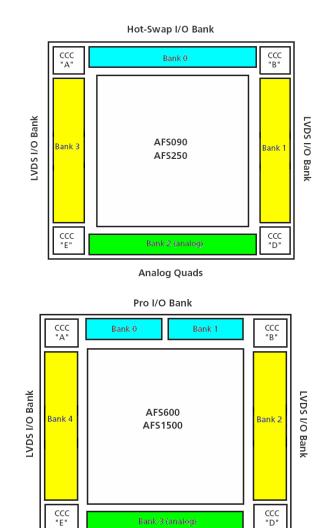
Fusion I/O Bank Types

- Hot Swap Bank
 - Support for Single-ended I/O Standards
 - LVTTL, LVCMOS
 - Hot Swappable
 - 3 Drive Strengths, Weak Pull-up / Pull-down Circuits
 - DDR Transmit / Receive
- LVDS Bank
 - Support for Single-ended and Differential I/O Standards
 - Single-ended
 - LVTTL, LVCMOS
 - PCI, PCI-X
 - Differential
 - High-Speed 700Mb/s LVDS with External Resistors
 - LVPECL I/O
 - 2 Programmable Slew Rates, 6 Drive Strengths, Weak Pull-up / Pull-down Circuits
 - DDR Transmit / Receive
 - No Hot-swap Capability

Fusion I/O Bank Types (cont.)

Pro I/O Bank

- LVDS Bank I/O Standards Support PLUS ...
- ... Voltage-Referenced I/O Standards
 - HSTL1
 - SSTL2/3
 - GTL+
- 2 Programmable Slew Rates, 6 Drive Strengths, Weak Pull-up / Pulldown Circuits
- DDR Transmit / Receive
- Hot-Swappable
- Analog I/O Bank
 - Analog Quad I/O Structure
 - Can be used for low speed digital input signals


Fusion I/O: I/O Bank Type Summary

I/O Bank	Single-Ended I/O Standard	Differential I/O Standard	Voltage-Referenced	Hot-Swap
Hot-Swap	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V/1.8 V/ 1.5 V, LVCMOS2.5/5.0 V	_	_	Yes
LVDS	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V/1.8 V/ 1.5 V, LVCMOS2.5/5.0 V, 3.3 V PCI/3.3 V PCI-X	LVPECL and LVDS	_	_
Pro I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V/1.8 V/ 1.5 V, LVCMOS2.5/5.0 V, 3.3 V PCI/3.3 V PCI-X		GTL+ 2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, HSTL Class 1 and 2, SSTL2 Class 1 and 2, SSTL3 Class 1 and 2	Yes

Fusion: I/O Banks per Device

- AFS090 / AFS250
 - Four I/O Banks:
 - 1 Hot-swap Bank North side of chip
 - 2 LVDS Banks East, West sides
 - 1 Analog Bank South side
- AFS600 / AFS1500
 - Five I/O Banks:
 - 2 Pro I/O Banks North side of chip
 - 2 LVDS Banks East, West sides
 - 1 Analog Bank South side

Bank 3 (analog)

Analog Quads

LVDS / Pro I/O Banks: Output Drive and Slew Rate

LVDS Bank

	OUT_DRIVE (mA)							
I/O Standards	2	4	6	8	12	16	Slew	
LVTTL/LVCMOS 3.3 V	✓	~	~	1	~	~	High	Low
LVCMOS 2.5 V	✓	~	~	~	~	-	High	Low
LVCMOS 1.8 V	\checkmark	~	~	1	_	_	High	Low
LVCMOS 1.5 V	\checkmark	1	_	_	_	_	High	Low

Pro I/O Bank

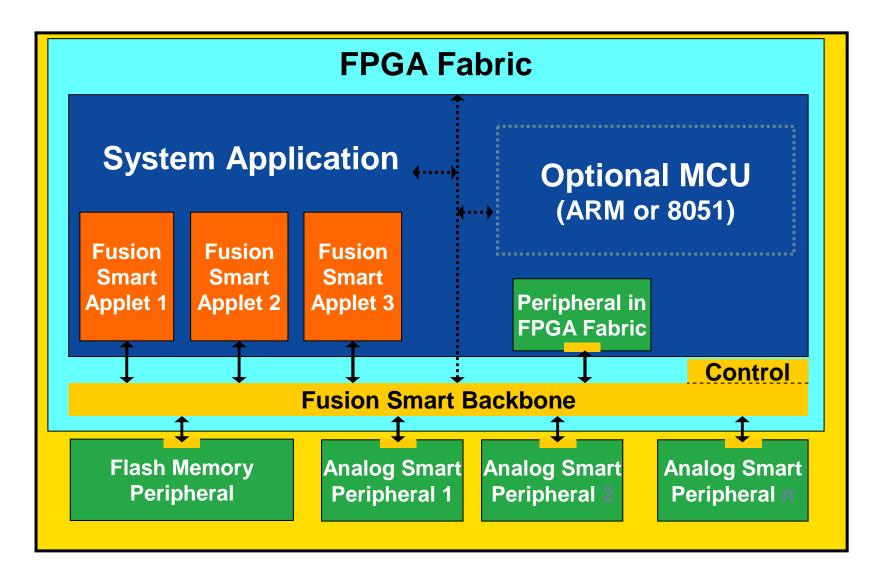
	OUT_DRIVE (mA)								
I/O Standards	2	4	6	8	12	16	24	Slew	
LVTTL/LVCMOS 3.3 V	1	~	~	~	~	~	~	High	Low
LVCMOS 2.5 V	1	~	1	1	~	~	~	High	Low
LVCMOS 2.5 V/5.0 V	1	~	1	1	~	~	1	High	Low
LVCMOS 1.8 V	1	~	1	1	~	1	_	High	Low
LVCMOS 1.5 V	1	1	1	1	1	_	_	High	Low

Fusion: I/O Banks and User I/O Counts

\mathbf{i}	Part #	AFS090	AFS250	AFS600	AFS1500
	I/O Types	Analog / LVDS / Std+	Analog / LVDS / Std+	Analog / LVDS / Pro	Analog / LVDS / Pro
0/	I/O Banks (+ JTAG)	4	4	5	5
1	Max Digital I/O	73	114	172	278
	Analog I/O	20	24	40	40
	QN108	36/14			
al /	QN180	48/20	62/24		
D: digital , analog	PQ208		93/24	95/40	
): d ana	FG256	73/20	114/24	119/40	119/40
I/О: а	FG484			172/40	228/40
	FG676				278/40

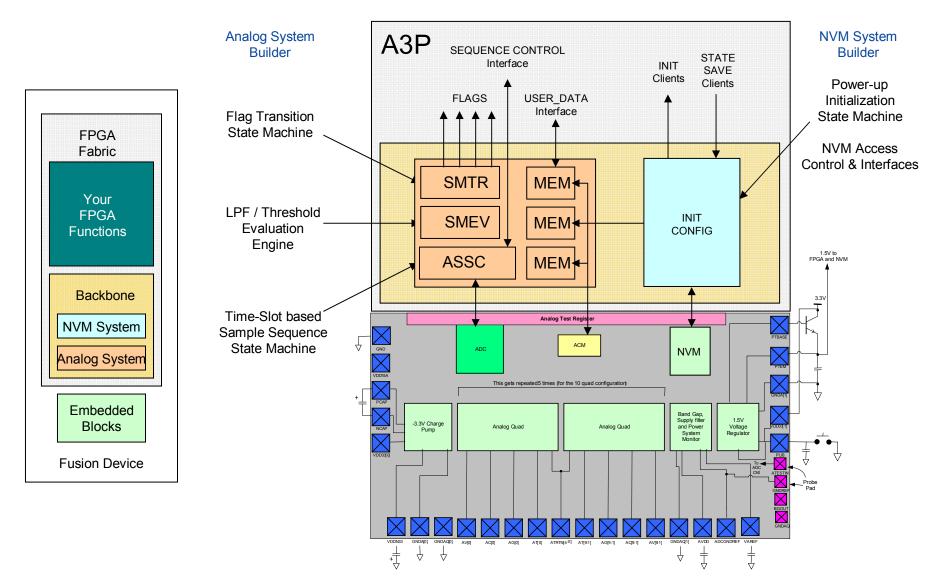
Agenda

- Fusion Overview
- Fusion Architecture
- Fusion Design Flow
- Development Support



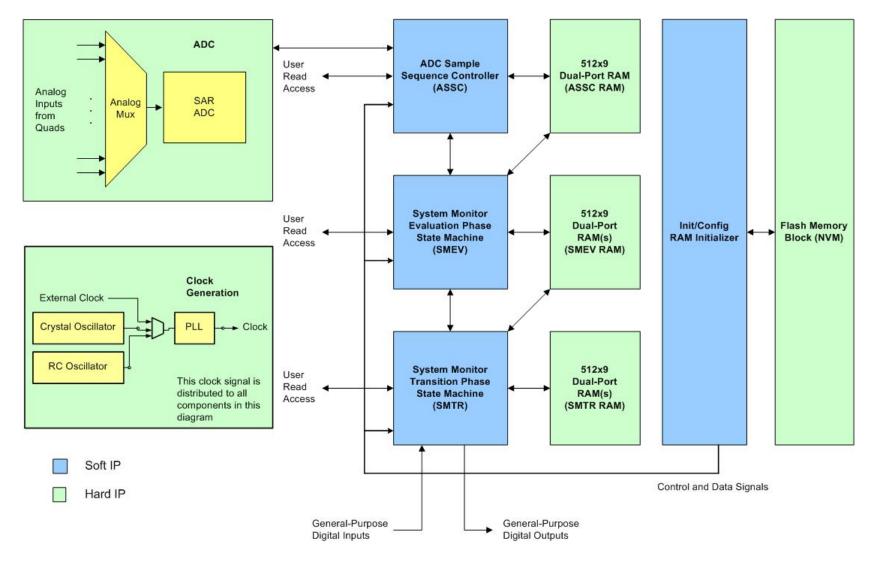
Fusion Design Flow

- Fusion Smart Backbone
- Libero Flow
- SmartGen
- Simulation
- Programming and Security



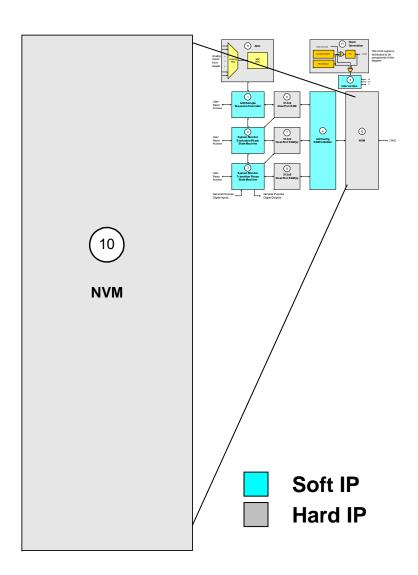
Actel Fusion Silicon: Physical View

The Fusion Backbone

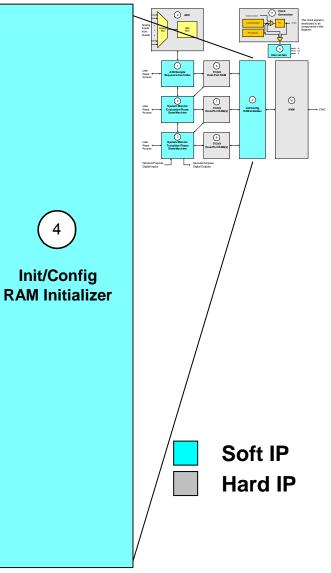


System Overview

- Soft IP Role in System
 - "Glue" That Binds System Components Together
 - Main Control for Analog System
 - Sampling
 - Digital low-pass filtering
 - Threshold comparisons
 - State filtering
 - GPI/GPO
 - Makes microcontroller dependency unnecessary (self-sustained)
- Soft IP Configuration
 - All configuration within the Analog I/F Soft IP is controlled via setting toplevel Generics/Parameters and propagating these values through hierarchy
 - Allow user read access to RAMs, RAM address space size, enable DLPF, control Current/Temperature monitoring functions, Declare number of GPI/GPO signals, etc.

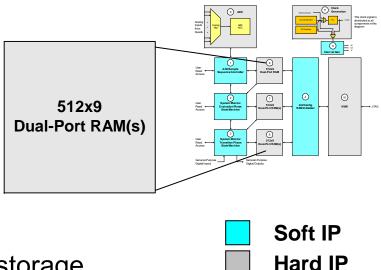

System Overview Hard/Soft IP Blocks

System Overview


- Non-Volatile Memory (NVM)
 - System configuration storage
 - Including Analog system configuration parameters
 - User-define storage
 - On-chip/off-chip microcontroller(s)
 - User data storage
 - etc.

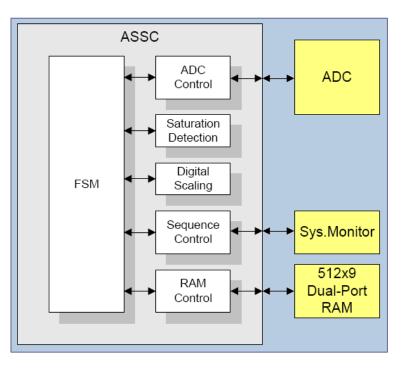
System Overview Init/Confia Block

- Init/Config Soft IP Block
 - Reads configuration information from NVM
 - Initializes (writes) all "clients"
 - Analog Quads, analog I/F soft IP, user IP
 - When init/config is done, the analog I/F soft IP commences operation



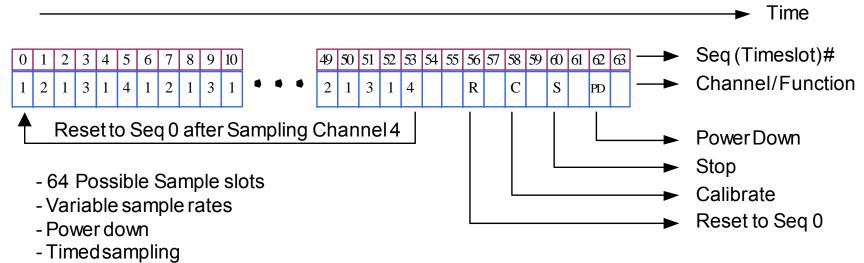
System Overview Dual-Port RAM Blocks

512x9 Dual-port RAM Blocks


- Heart of Analog I/F system
 - Initialized by Init/Config
- ASSC block Configuration
 - Parameter storage
- ADC sample storage for each analog channel
- Digitally low-pass filtered ADC sample storage
- Application sequence storage for SMEV and SMTR blocks
- Threshold comparison results for SMEV block

System Overview ASSC Soft IP Block

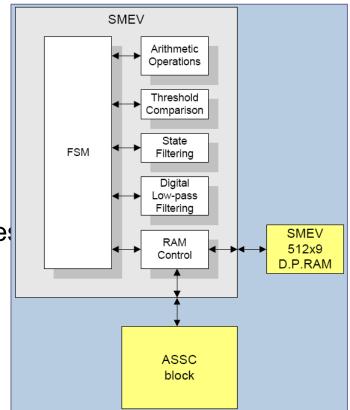
- ADC Sample
 Sequence Controller (ASSC)
 - Controls ADC
 - Calibration
 - Power-down
 - Sampling
 - 8/10/12-bit Resolution
 - Detects Saturation of Channels
 - Digital post-scaling of ADC Samples
 - Controls Current Monitor and Temperature Monitor Strobes
 - RAM Stores Sequence Information for ASSC


Sampling Sequence Specification

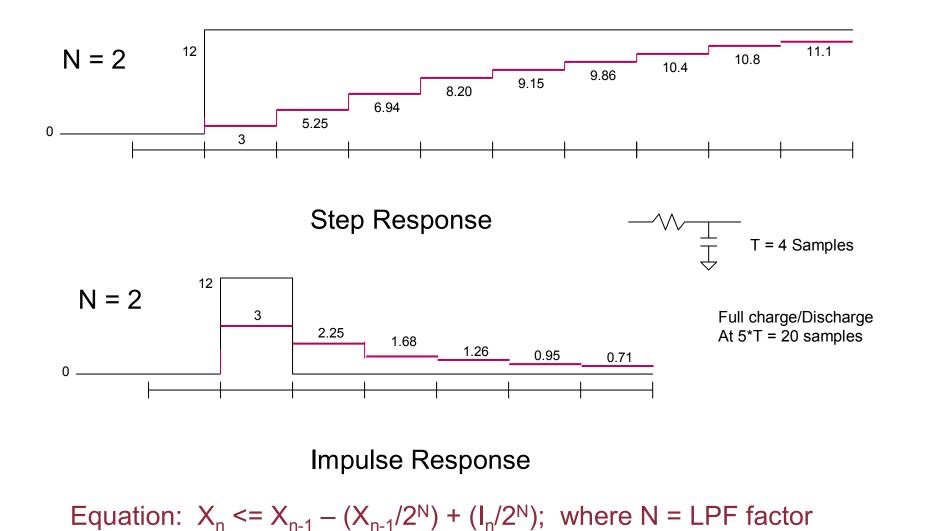
- Why do we need to Sequence the Samples???
 - 32 analog signals; 1 ADC
- TDM Sequencing
- 64 Time Slots
- More time slots for a Channel; more ADC Mindshare; Higher Throughput
- Each channel Added to Analog System Gets Added to Sequencer Automatically
- Sequence can be Optionally Modified for More/Less Samples
- Out of Sequence Jumps for Special Sampling During Runtime
 - One time jump; return to regular operating sequence
 - No automatic sequence, manual jump requests only
- Main Operating Sequence
 - Automatically computed based on target rate
 - Manual specification for customized applications

Main Feature Description ASSC Time Slots

Programmable Sequencer

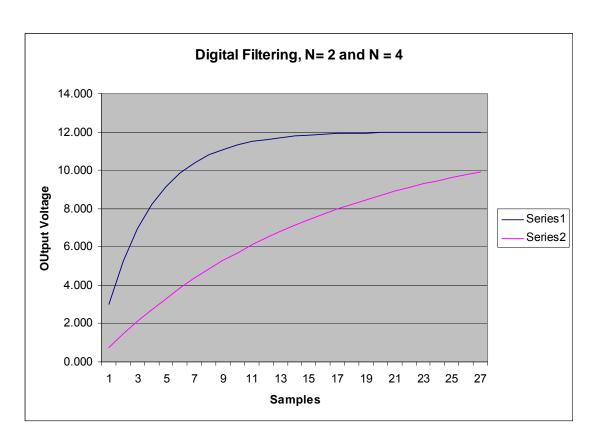


- Automatic or external triggering
- External controlled 'jump to Seq #'

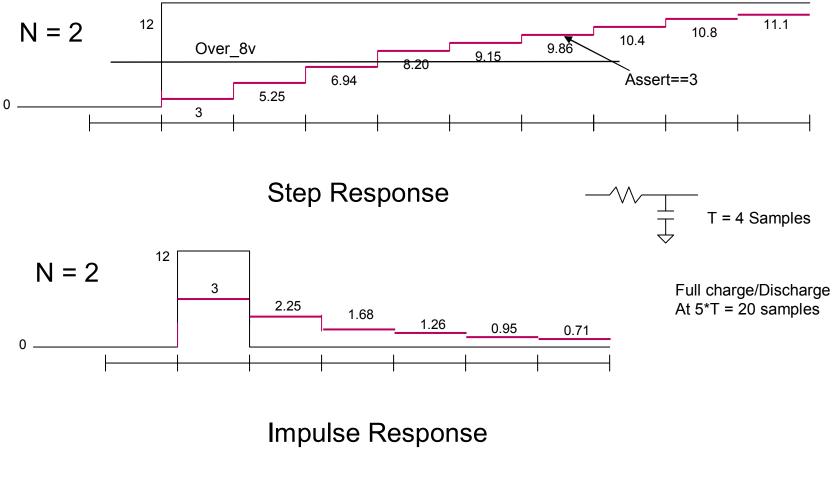

System Overview SMEV Soft IP Block

- System Monitor Evaluation Phase State Machine
 - Compares ADC Samples with user-defined Thresholds
 - Simple 12-bit, Unsigned Arithmetic Operations
 - A[11:0], B[11:0]
 - Digital Low-Pass Filtering of ADC Samples
 - Average ADC sampled data
 - Requires only current ADC sample and previous averaged data
 - State Filtering (Digital Correlation)
 - Look for 0->1 or 1->0 Transitions
 - RAM Stores Application Sequences for SMEV
 - Sequences controlled by Op-codes

Digital Low Pass Filtering

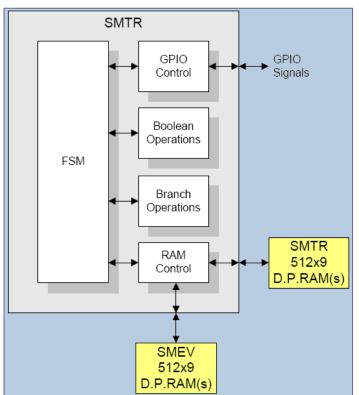


Equation:
$$X_n \le X_{n-1} - (X_{n-1}/2^N) + (I_n/2^N)$$
; where N = LPF factor


Digital Filtering - Step Response

N =	2	4
ln =	12	12
Initial Value =	0	0
Хо	3.000	0.750
X1	5.250	1.453
X2	6.938	2.112
X3	8.203	2.730
X4	9.152	3.310
X5	9.864	3.853
X6	10.398	4.362
X7	10.799	4.839
X8	11.099	5.287
X9	11.324	5.706
X10	11.493	6.100
X11	11.620	6.469
X12	11.715	6.814
X13	11.786	7.138
X14	11.840	7.442
X15	11.880	7.727

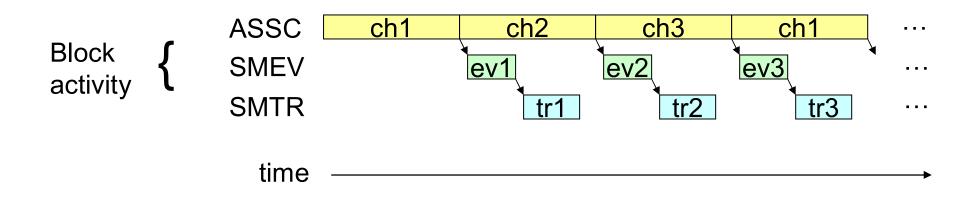
State Filtering



Equation: $X_n \le X_{n-1} - (X_{n-1}/2^N) + (I_n/2^N)$; where N = LPF factor

System Overview SMTR Soft IP Block

- System Monitor Transition
 Phase State Machine
 - User-defined Digital Inputs and Digital Outputs (flags)
 - Boolean Operations on Digital Inputs
 and Internal Temporary Registers
 - Branching Operations (if-then-else conditional jumps, looping)
 - "Microcontroller-like"
 - Reads and Processes SMEV Comparisons
 - RAM Stores Application Sequences for SMTR
 - Sequences Controlled by Op-codes


Data Processing Order

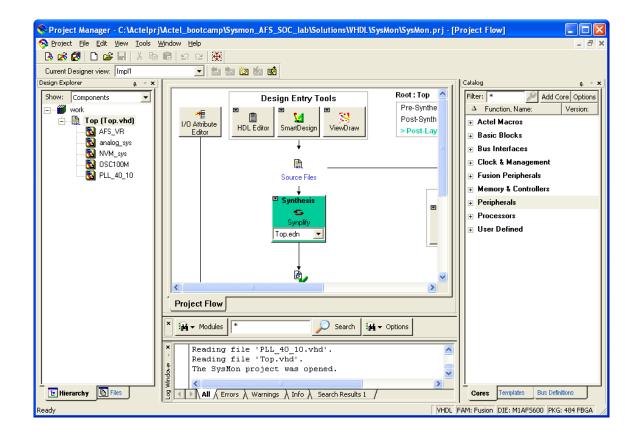
- Acquire Analog Signal
- Convert to Digital Data
- Average the Resulting Data to Smooth the Samples
- Compare the Result With the Threshold to Detect Overflow or Underflow
- Wait for Multiple Compare Results to Remove Glitches
- Raise the Over/Under Flow Flag

Main Feature Description Analog I/F Operation Flow

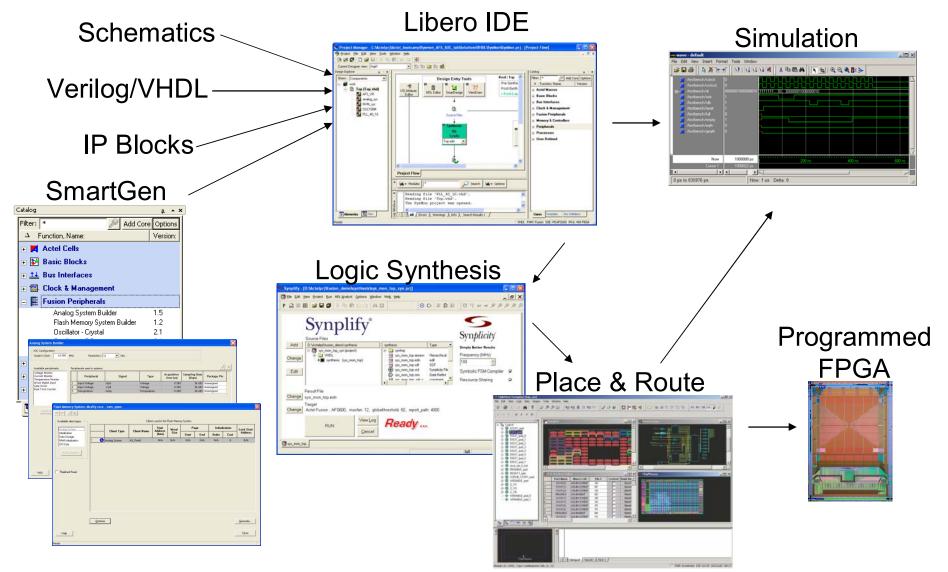
- ASSC -> SMEV -> SMTR
 - Pipelined, TDM operation: ADC samples first, Evaluation of samples second, Transition decisions based on Evaluation third, repeat ...

Soft IP Summary

- Soft IP Main Control for Analog System
- Configurable via Setting Generics/Parameters at toplevel
- Pipelined Operation
- Complex Sequencing, Branching, and Looping Operations Possible With Limited Hardware Resources
- Completely Self-sustained System (no Micro Required)

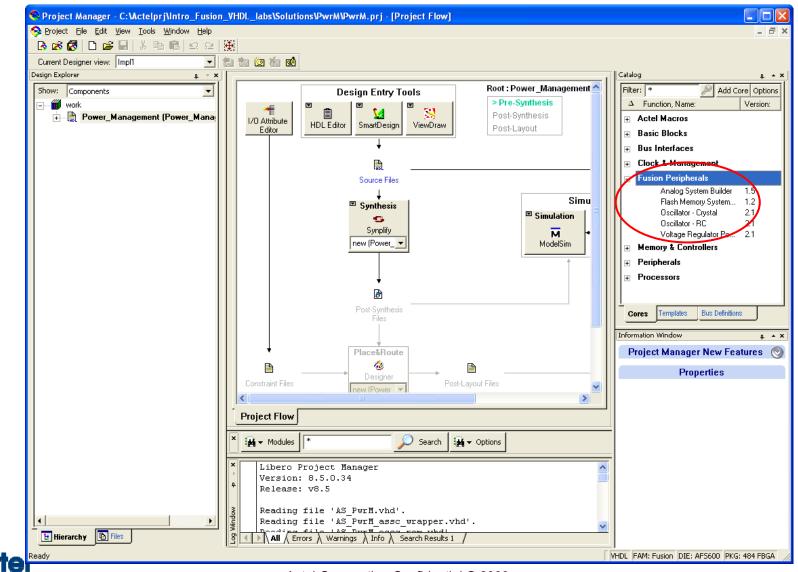

Fusion Design Flow

- Fusion Smart Backbone
- Libero Flow
- SmartGen
- Simulation
- Programming and Security


Libero IDE

- Integrated Development Environment
 - Schematic Editor
 - HDL entry tools
 - SmartGen Wizard
 - Actel IP Cores
 - Logic Synthesis
 - Logic Simulator
 - I/O Editor
 - Place & Route tools
 - Timing Analysis
 - Device Programming

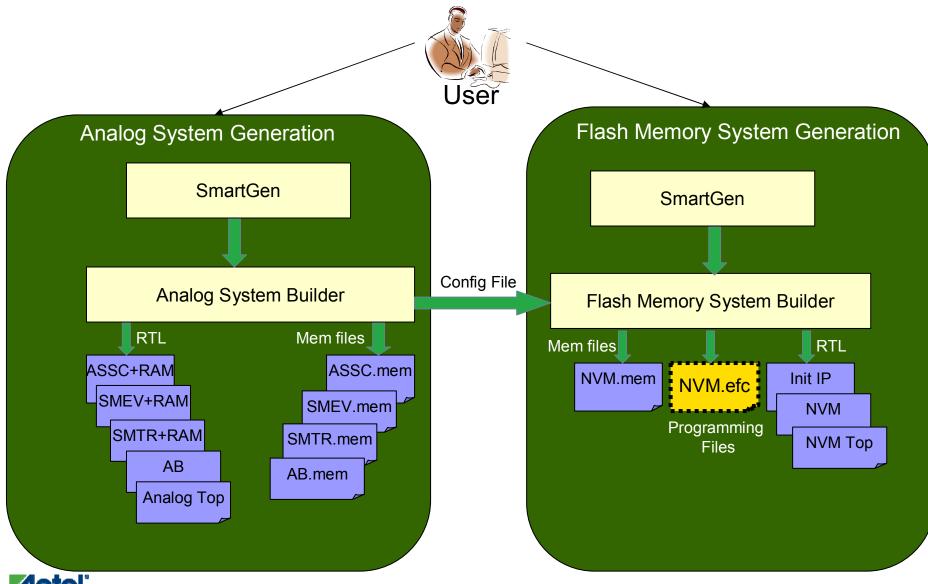
Familiar FPGA Design Flow


Fusion Design Flow

- Fusion Smart Backbone
- Libero Flow
- SmartGen
 - Flash Memory System Builder
 - Analog System Builder
 - Other SmartGen Cores
- Simulation
- Programming and Security

Libero with SmartGen

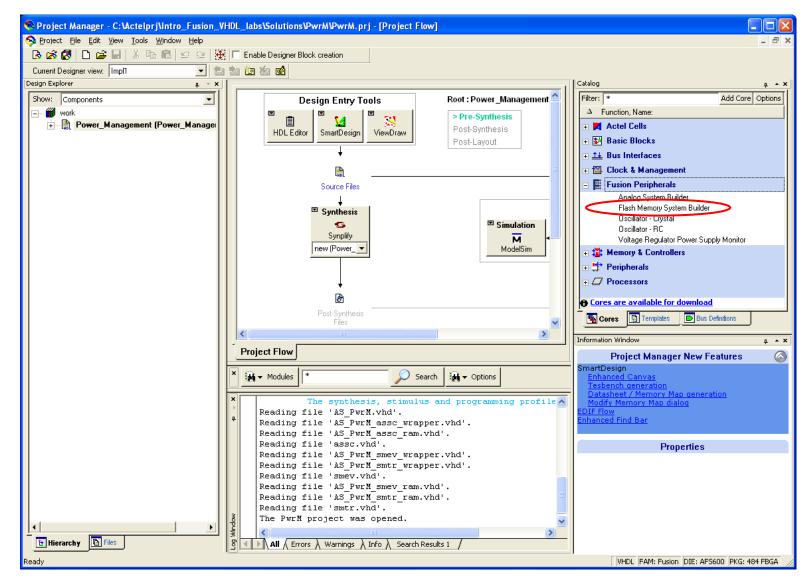
POWER



SmartGen Cores for Fusion

- New System Builders
 - Analog System Builder
 - Flash Memory System Builder
- New Silicon Cores
 - Divided and Delayed Clock
 - Crystal Oscillator
 - VRPSM
 - NGMUX
 - RC Oscillator
 - Dynamic CCC
- Enhanced Cores from ProASIC3/E
 - Static PLL
 - Delayed Clock
 - RAM
 - Initialization from Flash Memory

Analog & NVM System Generation



Fusion Design Flow

- Fusion Smart Backbone
- Libero Flow
- SmartGen
 - Flash Memory System Builder
 - Analog System Builder
 - Other SmartGen Cores
- Simulation
- Programming and Security

SmartGen Flash Memory System Builder

Flash Memory System Builder

Modify Flash Memory Sys	stem - [nvn	n_sysm*]									X
9 e 🛛 🗙											
Available client types			Clien	ts used in the l	Flash Memo	ry System					
Analog System Initialization Data Storage		Client Name	Start Address	Word	Page		Initialization		Lock Start	Ī	
		Client Type	Client Name	(hex)	Size	Start	End	Order	Cost	Address	
RAM Initialization CFI Data				,				,		,	1
Add to System											
Pipelined Read											
	Octionion	_								Concelo	1
	<u>O</u> ptimize								_	<u>G</u> enerate	
Help										Close	1
Ready											

Flash Memory System Builder Supported Clients

Analog System

- Initialize AB and Analog System soft IP RAM data
- Uses configuration file generated by Analog System Builder
- Data Storage Clients
 - Use NVM as a hard-drive. Partition and access the NVM memory.
- Initialization Clients
 - User clients that required initialization and start-up
- RAM Initialization Client
 - Special type initialization client
 - Generated by SmartGen
 - Uses configuration file generated by SmartGen
- CFI Data Client
 - Used to store the query data for CoreCFI
 - The data is stored in a reserved page location. This client does not take up any of the 2048 pages in the Flash Memory
 - CoreCFI Provides an Industry-Standard External Interface to Actel Fusion™ Flash Memory

Flash Memory Builder Features

- Supports the Following Memory File Formats
 - Intel-Hex
 - Motorola-S
 - Actel-Hex
 - Actel-Binary
- Generates Map Files for Programming the NVM
- Clients are Page Aligned
- Clients are Initialized Sequentially
- Start Addresses for Partitions
 - Automatically managed
 - Manually specified and locked for applications requiring fixed addresses
- Automatic Conflict Resolution for Overlapping Client Partitions

Initialization Client

- Specify Clients to be Initialized at Start-up
- Supported Word Sizes
 - 8 bit & 9 bit
- On-demand Save-back to NVM
- Multiple Memory file Formats Supported

Add Initialization C	lient	×
Client <u>n</u> ame:	I	
Start <u>a</u> ddress:	0 (hexadecimal only)	
Size of word:	8 v bits	
Number of words:	1	
Memory content <u>file</u> :		
Format of memory <u>c</u> or	Browse	
🔲 Enable <u>o</u> n-deman	d save to Flash Memory	
JTAG Protection		
Prevent read	☐ Prevent <u>w</u> rite	
<u></u>		
Port Names		
<u>C</u> lient select name:		
Sa <u>v</u> e request name		
Help	OK	

Data Storage Client

- Create a Partition in the Flash Memory System and Specify the Memory Content for That Partition
- Supported Word Sizes
 - 1 byte, 2 byte, 4 byte
- Start Address
- Ability to Lock Start Address (System Builder Level)

Add Data Storage C	lient	×
Client <u>n</u> ame:	<u> </u>	
Start <u>a</u> ddress:	0 (hexadecimal only)	
Size of word:	8 💌 bits	
N <u>u</u> mber of words:	1	
Memory content <u>file</u> :		_
Format of memory <u>c</u> or	Browse	
JTAG Protection Prevent read	Prevent <u>w</u> rite	
Help	OK Cancel	

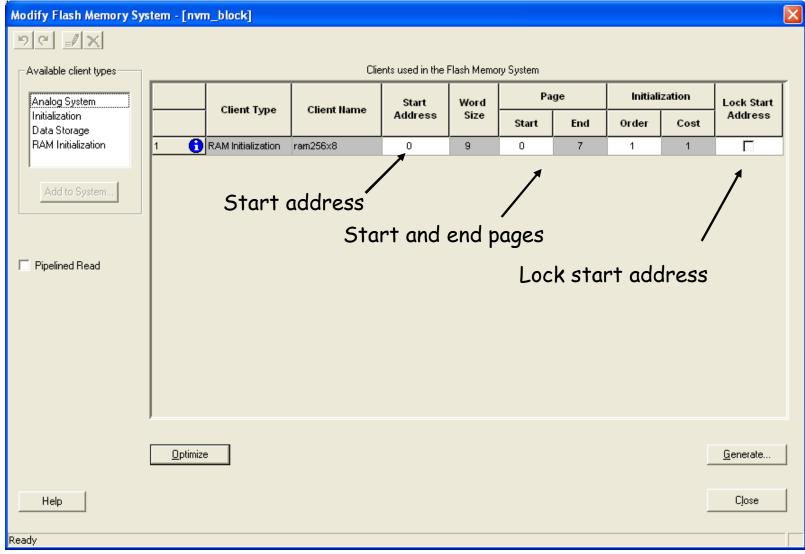
RAM Initialization Client

- The RAM Initialization Client is a Special Type of Initialization Client That Allows RAM to be Initialized at Power-up
 - Memory Editor in SmartGen used to specify RAM content
- Difference from Initialization Client:
 - Cascading Of Multiple RAM Blocks Is Handled Automatically
- Initialization on a 9-bit Data Bus for Optimized Write Cycles
- Logic Automatically Created for Multiplexing Initialization and run time Interfaces

Select Client Name from pulldown menu

Add RAM Initializ	ation Client			\ge
Start <u>a</u> ddress:	0 🗧	(in decimal)		
RAM <u>c</u> ore:	ram256x8_pipe	е	•	
JTAG Protectio	n		1	
Prevent re-	a <u>d</u> Pr	event <u>w</u> rite		
Help		ок	Cancel	

Set JTAG Protection


Analog System Client

- Load the Configuration File Generated by the Analog System Builder Into the Flash Memory System Builder
- The Analog System Components can be Initialized by the Flash Memory System at Start Up

Add Analog System Cl	ient	X	
Analog System <u>c</u> ore:	AS_PwrM	•	 Select Client Name from pull- down menu
Help	OK	Cancel	

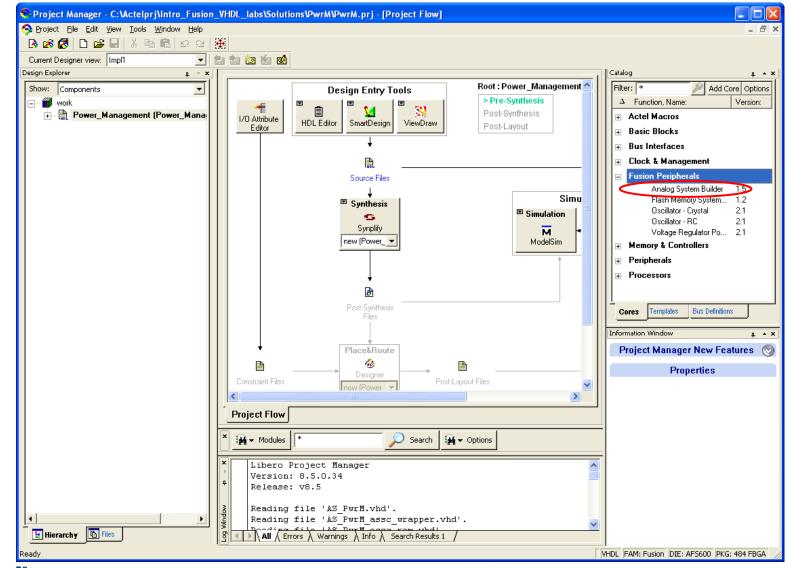
Flash Memory System Builder with RAM Initialization Client

Flash Memory System Restrictions

- Minimum Usage per Client: 1 Page
- Maximum Data Storage Clients: 64
- Maximum Initialization Clients: 64
- Analog System takes 6 Initialization Clients
 - 4 Initialization Clients if Calibration IP is not used
- Each RAM takes as many Initialization Clients as Number of RAM Blocks in the RAM

Fusion Design Flow

- Fusion Smart Backbone
- Libero Flow
- SmartGen
 - Flash Memory System Builder
 - Analog System Builder
 - Other SmartGen Cores
- Simulation
- Programming and Security



Analog System Builder

- Creates Complete Analog System Including
 - AB Hard-Macro
 - Analog System Soft-IPs (RTL)
 - Analog System data storage RAMs
 - Memory files for simulation
 - Configuration file for import into NVM System

Analog System Builder in Libero

Analog System Builder Supported Peripherals

- Voltage Monitor
- Current Monitor
- Differential Voltage Monitor
- Temperature Monitor
- Direct Digital Input
- Output Gate Driver
- Internal Temperature Monitor
- Internal Voltage Monitor
- RTC (Real Time Counter)

ADC Configuration				_		
System Cloc <u>k</u> :	MHz A <u>D</u> C Clock:	Re <u>s</u> olutio	n: <u>10</u>	▪ bits		Advanced Options
Available p <u>e</u> ripherals:	Peripherals used in system:					_0
Voltage Monitor Current Monitor Temperature Monitor	Peripheral	Signal	Туре	Acquisition time (us)	Sampling Rate (ksps)	Package Pin
Differential Voltage Monitor Direct Digital Input Gate Driver		//_			,	
Real Time Counter Internal Temperature Monito Internal Voltage Monitor						
Add to System						
	Modify Sampling Seguence					<u>G</u> enerate,

Analog System Builder GUI

Modify Analog	System Builde	r - [analog_sys]					
ADC Configurat	ion	`		/			₹
System Cloc <u>k</u> :	40.000 MH	Hz ADC Clock:	10.000 MHz Re <u>s</u> o	lution: 12	- bits		Advanced Options.
For recommen	ided clock scheme j	please click here.			_	_	
Available p <u>e</u> riph	perals: P	Peripherals used in system:					=/
Voltage Monito					•i-i-i	CK D-t-	
Current Monito		Peripheral	Signal	Туре	Acquisition time (us)	Sampling Rate (ksps)	Package Pin
Differential Vol		1 Input Voltage	V2P5	Voltage	10.000		Unassigned
Direct Digital In		2 Input Voltage	V1P8	Voltage	1.000		Unassigned
Gate Driver Real Time Cour		3 Temperature	Temp	Temperature	10.000		Unassigned
Internal Tempe		4 Gate Driver	V2P5bad	Gate Driver			Unassigned
Internal Voltag		5 Gate Driver	V1P8bad	Gate Driver			Unassigned
Ť		6 Gate Driver	over_temp	Gate Driver			Unassigned
<u>A</u> dd to i	y 300 mm		channel	ig rate foi	Ľ		
							pins for channels
Select pe	ninhanal	c Define A	DC sampling			5	
Delect pe	in prierais	-					
		sequence					
							<u>G</u> enerate
		Modify Sampling Seguence					

POWER MATTERS

Voltage Monitor Settings

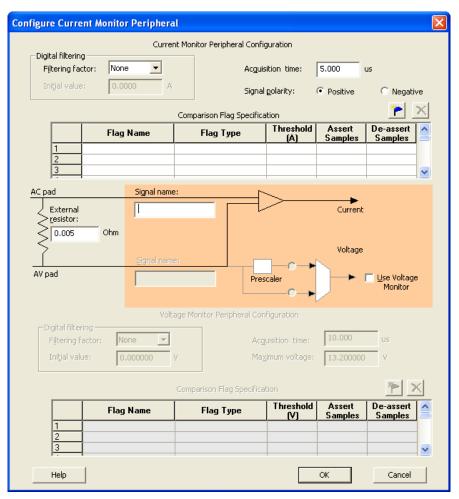
- Signal Name
 - Name of analog pad in toplevel design
- Acquisition Time
 - Sample & Hold Duration
- Digital Filtering
 - Digital Averaging Factor
 - Initial Value
- Maximum Voltage
 - Used to set the pre-scaling factor
 - User range 0V to +12 or -12V to 0V
 - ADC range -3V to + 3V

igure Vo	Itage Mo AV pad	nitor Periphe Signal name:	eral	[Prescaler	•)-		
Digital f Filterir Inițial	ng factor:	None	▼ V	on Flag Spe	Acguisition ti M <u>a</u> ximum volt	····· [10.000	us V
	Fla	g Name		опт над эре ј Туре	Threshold (V)	Assert Samples	De-ass Sampl	
1 2 3 4								
Help					[ОК		Iancel

Voltage Monitor Flag Settings

- Voltage Comparison Flag Specification
 - Flag Name
 - Specify Flag Assertion when Under or Over Threshold
 - Threshold level (V)
 - Number of consecutive times the signal is above or below threshold for flag to assert and de-assert
 - Eliminate cases where a single glitch causes the flag to assert
 - Make sure the signal is really above or below range for flag assert
 - Make sure the condition that caused the flag assertion is really gone before deasserting the flag

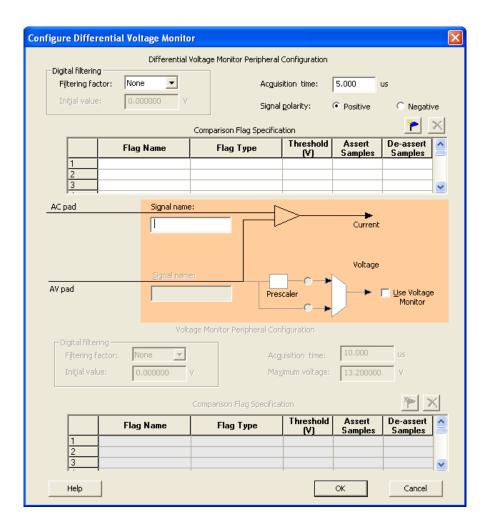
<u>Av</u>	pad <u>Signal name:</u> AV33VLOAD		Prescaler		
Digital filter	ng				
Filtering fa	ctor: 2	•	Acguisition time	10.000	us
Ini <u>t</u> ial valu	e: 0.000000	v	M <u>a</u> ximum voltag	e: 6.000000	۷
		Comparison Flag S	pecification	*	×
	Flag Name	Flag Type		Assert De-asser Samples Samples	
				4	7
	ER3P3	OVER	3.3	4	
2 OV	ER3P3 ER3P75	OVER	3.75	4	7
2 OV 3 UN	ER3P3 ER3P75 DER2P5	OVER UNDER	3.75	4	7 10
	ER3P3 ER3P75	OVER	3.75	4	7


Current Monitor

- Requires a Voltage-current Channel Pair Placed On Adjacent Package Pins
- Measures Differential Voltage Across External Resistor
 - The differential voltage is multiplied by 10x before it is applied to the ADC
 - Choose an external resistor that ensures that the difference in voltages is less than the value of Vref
- Optionally Monitors Voltage on the Voltage Channel in the Pair
 - Options identical to voltage monitoring service
- Voltage Differential Must be Less Than or Equal to VREF

Current Monitor Settings

- Digital Filtering
 - Digital Averaging Factor
 - Initial Value
- Acquisition Time
 - Sample & Hold duration
- Signal Name
 - Name of analog pad in top-level design
- External Resistor
 - Value of the resistor connected across the Current-Voltage pair
- Current Comparison Flag Specification
 - Flag Name
 - Specify Flag Assertion when Under or Over Threshold
 - Threshold level (A)
 - Number of consecutive times the signal is above or below threshold for flag to assert and de-assert
- Voltage Monitor Settings Same as Voltage Monitor


Differential Voltage Monitor

- Measures The Differential Voltage Between A Pair Of Voltage And Current Input Channels
 - Uses same components as Current Monitor
 - Requires two channels (AV and AC)
 - they must be on adjacent package pins
- Optionally Monitors Voltage on the Voltage Channel in the Pair
- Voltage Differential Must be Less Than or Equal to V_{REF}

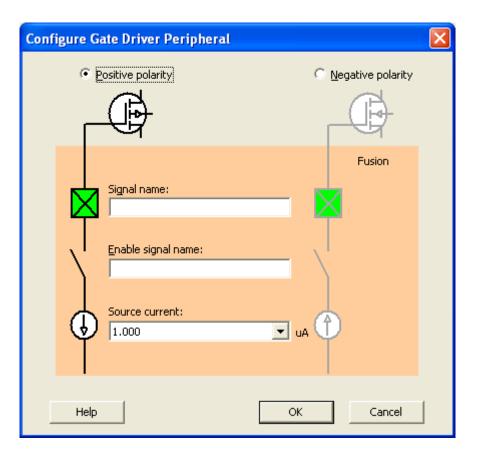
Differential Voltage Monitor Settings

- Digital Filtering
 - Digital Averaging Factor
 - Initial Value
- Acquisition Time
 - Sample & Hold duration
- Signal Name
 - Name of analog pad in top-level design
- Differential Voltage Comparison Flag Specification
 - Flag Name
 - Specify Flag Assertion when Under or Over Threshold
 - Threshold level (V)
 - Number of consecutive times the signal is above or below threshold for flag to assert and de-assert
- Voltage Monitor Flags same as Voltage Monitor

Temperature Monitor

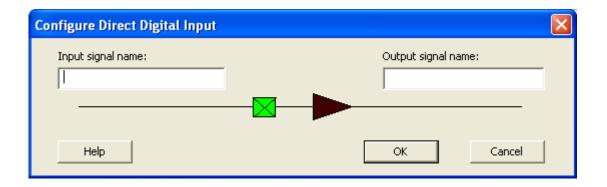
- Measures Differential Voltage Across External Diode
- Configuration Settings
 - Identical to the voltage monitoring service, except maximum supply voltage.
- Voltage Differential Must be Less Than or Equal to V_{REF}

Temperature Monitor Settings


- Digital Filtering Factor
 - Digital Averaging Factor
- Acquisition Time
 - Sample & Hold duration
- Signal Name
 - Name of analog pad in top-level design
- Temperature Comparison Flag Specification
 - Flag Name
 - Specify Flag Assertion when Under or Over Threshold
 - Threshold level (°C)
 - Number of consecutive times the signal is above or below threshold for flag to assert and de-assert

Configure Tempera	ature Monitor Pe	ripheral				
Signal name: Digital filtering Filtering fact Initial value;	or: None 💌	2 c	Acguisition time:	5.000	us	
		Comparison Flag Speci	fication		<u> </u>]
	Flag Name	Flag Type	Threshold (C)	Assert Samples	De-assert Samples	^
12						
3 4						
5						
7						~
Help				ОК	Cancel	

Output Gate Driver


- Analog Output from the FPGA
- Controlled via the Gate Driver Enable
 - Active High
 - Generated with FPGA gates
- Turn External PMOS or NMOS Transistor ON or OFF (Gate Driver Polarity)
- Can be Driven by Flag Logic from Analog System to Build a Self-controlled Design

Direct Digital Input

- Enables Use of Unused Analog Inputs as Slow Digital Inputs
- Useful if Running Out of I/Os in a Design
- Does Not Need to be Sequenced Via Sample Sequencer
- Does Not Impact Throughput of the Analog System

Internal Temperature Monitor

- Used to Monitor the Chip Temperature
- 32nd Channel in the Analog Mux
- Similar to External Temperature Monitor
- Flags Can be Used to Detect Overheating of the Device
- One Per Device

	ernal Temperature Mo				_				
Signal nan	j –	RATURE	Acguisition time:	10.000	us				
-	Digital filtering Filtering factor:								
Ini <u>t</u> ial	Initial value: 0.000 C								
		Comparison Flag Speci	fication		<u>*</u> 🔀				
	Flag Name	Flag Type	Threshold (C)	Assert Samples	De-assert 🔺 Samples				
1 2									
3 4									
5									
<u>, </u>		<u> </u>							
Help			L	ОК	Cancel				

Internal Voltage Monitor

- Used to Monitor 1.5V Supply to FPGA Fabric and NVM
- Channel 0 on the Analog Mux
- Similar to Voltage Monitoring
- Flags Can be Used to Detect and Handle Brownout Conditions
- One Per Device

Configure Inte	ernal Vol	tage Monito	r Periphe	ral				X
	AV pad	Signal name:	OLTAGE	1	Prescaler		-	
Digital fi Filterin Inițial v	ig factor:	None	V Comparis	on Flag Spec	Acguisition ti Maximum vol		0.200 1.700	us V
	Flag	j Name	Flag	д Туре	Threshold (V)	Assert Samples	De-assert Samples	
2 3 4								
Help						ОК	Can	cel

RTC Configuration in SmartGen

- Crystal Oscillator Mode Control
 - RTC CLK must be driven by XTLOSC
 - RTC controls XTLOSC Mode
 - Low Gain (32 kHz to 200 kHz)
 - Medium Gain (200 kHz to 2 MHz)
 - High Gain (2 MHz to 20 MHz)
- Match with Register Value
 - Triggers MATCH when counter equals 40-bit match value
- Initial value
 - Can specify non-zero value
- Reset Counter to Zero
 - Works as a timer application when chosen
 - Works as an elapsed time record if not chosen
- Export MATCH Signal
 - Asserts RTCPSMMATCH to activate Voltage Regulator Power Supply Monitor (VRPSM)

RTC Configuration in SmartGen

- Two Views in SmartGen
 - Enter desired time or match value

Configure Real Time Counter	Configure Real Time Counter
C Register view	C Time alarm view
Crystal oscillator source:	Crystal oscillator source:
External crystal or ceramic resonator	External crystal or ceramic resonator
C RC network	C RC network
RTC clock specification:	RTC clock specification:
Clock divider RTCCLK RTC counter frequency	Clock divider RTCCLK RTC counter frequency
32.000 kHz	/ 128 Frequency = 250 Hz
92.000 Period = 4 ms	32.000 kHz Period = 4 ms
Maximum time = 50903 days 7 hours	
Required time:	Initial value: 0 (HEX)
0 days : 0 hours : 0 min : 0 s : 0 ms : 0 us	Match with register value: 0 (HEX)
Actual time = 0 days 0 hours 0 min 0 s 0 ms 0 us	
Reset counter to zero when match occurs	Reset counter to zero when match occurs
Export MATCH signal for Voltage Regulator Power Supply Monitor	Export MATCH signal for Voltage Regulator Power Supply Monitor
Help OK Cancel	Help OK Cancel

RTC Design Considerations

- Uses Analog System Configuration Bus for Setting the Various Values
- Can be Used with VRPSM & XTLOSC to Create a Self Wake-up Application
- Analog Block System Clock F_{MAX} = 100 MHz *but*
 - RTC Initialization clock F_{MAX} = 10 MHz

Analog System Builder with Peripherals

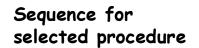
Analog System Builder After Adding Peripherals

Modify Analog System Builde	er - [AS_PwrM]						×
ADC Configuration							
System Clock: 20.000 M	IHz A <u>D</u> C Clock:	5.000 MHz 🕤 🛛 Reg	olution: 10			Advanced Options	
For recommended clock scheme	e please click <u>here.</u>						
						- 41	20
	Peripherals used in system:						
Voltage Monitor Current Monitor Temperature Monitor	Peripheral	Signal	Туре	Acquisition time (us)	Sampling Rate (ksps)	Package Pin	
Differential Voltage Monitor	1 Input Current	AC33V	Current	5.000		Unassigned	
Direct Digital Input Gate Driver	2 -	AV33V	Voltage	10.000	29.412		
Real Time Counter	3 Input Voltage	AV33VLOAD	Voltage	10.000	29.412	Unassigned	
Internal Temperature Monito Internal Voltage Monitor	4 Gate Driver	AV33V_ON	Gate Driver			Unassigned	
Add to System							
Help	Modify Sampling Seguen	ce				<u>G</u> enerate C <u>l</u> ose	

Sample Sequencer

- ADC has 32 Input Channels
 - 30 external inputs + Internal Temperature + Internal Voltage
 - Each channel must be sampled individually
 - TDM Sequencing Used (64 Time Slots)
- SmartGen Sample Sequence "Procedures"
 - "Procedure" is a named group of samplings
 - (Power Up; Calibrate; Run; Standby; Power Down, etc.)
 - "Procedure" can be as small as one and as many as 64 samplings
 - Support for Multiple Independent "Procedures" and Repeat "Procedures"
 - Jump to New Procedure Caused by Terminating Operation in a Sequence or an External Trigger
 - Supports use models where different channels are sampled at different times during system operation
 - Example: power-up sequence and normal operation sequence

Sample Sequence Specification


- Main Procedure System Default
 - Always starts at slot 0 and always executed upon reset
 - Cannot be deleted or unlocked
- Additional Procedures
 - Define additional procedures based on system requirements
 - Procedures Must be Triggered by External User Logic Through the External ASSC Control ports
 - Two modes:
 - Jump and continue
 - Assert ASSC_SEQJUMP for 1 clock to execute slot at ASSC_SEQIN
 - Single Step
 - Set ASSC_XMODE = 1, to enable single step through sequencer
 - Assert ASSC_XTRIG for 1 clock to execute slot at ASSC_SEQIN

SmartGen Sample Sequencer GUI

Add or Delete a Procedure

		<u> </u>		
Name	Lock Start Slo	t Used Slot		
Main		0 0	Total slots	uced
		0		
		0	0	/ 64
Allow manual modification of o	perating sequence			
etails of procedure:	Main			
Available signals:	Sampling rate			
AVCC	-> Si	ignal F	Required Rate (ksps)	Actual Rate (ksps)
			[KSDS]	[KSPS]
	->>			
	<-			
	<<-			
	,			
Calcula	ate Sequence	<u>T</u> ota	I sampling rate:	0.000 k
Operating sequence				
Operation	Signal	Jump De:	stination	J
NOP				
NOP				
NOP				
NOP				
NOP				

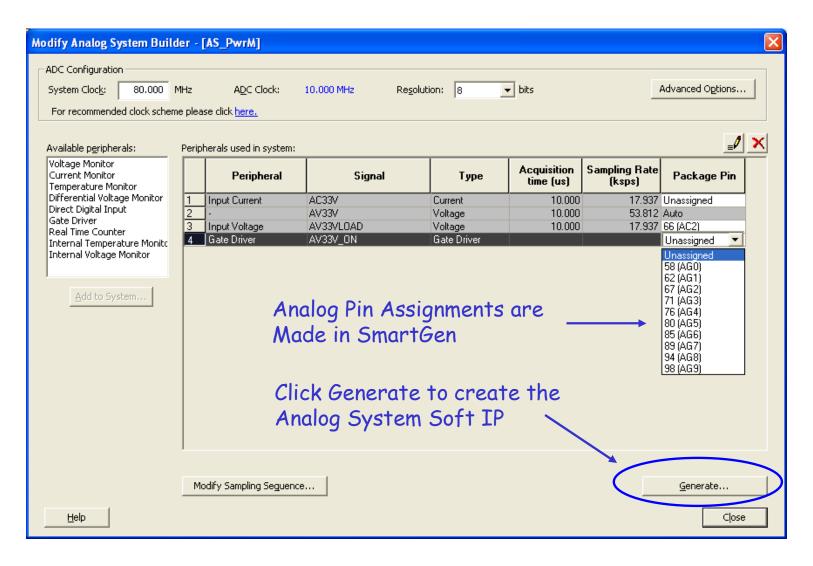
Sampling Sequence Operations

- Available Operations:
 - SAMPLE Sample a channel that is configured in the system and proceed to the next slot
 - SAMPLE_JUMP Sample a channel that is configured in the system and jump to the start of the specified procedure
 - CALIBRATE Perform a full calibration of the Fusion ADC and proceed to the next slot
 - Takes 3840 ADC Clock cycles
 - CALIBRATE_JUMP Perform a full calibration of the Fusion ADC and jump to the start of the specified procedure
 - JUMP Jump to the start of the specified procedure
 - POWERDOWN Perform a powerdown operation on the ADC;
 - After a powerdown is initiated, a calibration operation is required to resume sampling
 - STOP Stop the sequencer
 - An external trigger is required to re-start the sequencer
 - NOP No operation is performed and proceed to the next slot
 - NOP's in the middle of a sequence use up a time slot; NOP's after the end of the last functional slot do not use up a time slot

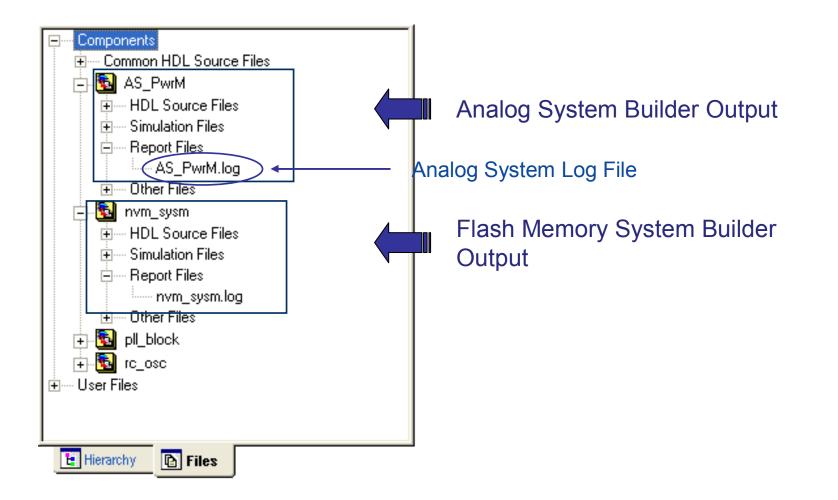
SmartGen Sample Sequencer with Procedures

Modify Sampling Sequence Ъ × Procedures Lock Start Slot Used Slot Name Main ∇ 0 12 V. Total slots used: BackUp 13 7 FailSafe $\overline{\mathbf{v}}$ 20 6 63 / 64 TempFocus 7 26 10 2 CurrentFocus 36 5 10 E. VoltageFeetue 41 Allow manual modification of operating sequence Details of procedure: FailSafe Available signals: Sampling rate AV_1 AV_2 AV_3 AV_4 AV_6 AV_7 Required Rate Actual Rate ^ Signal (ksps) (ksps) Sample rate for AV_5 AC_14 12.469 0.000 ->> 0.000 12.469 each channel in INTERNAL_VOLTAGE 0.000 12.469 INTERNAL_TEMPERATU 0.000 12.469 selected procedure AV_8 AV_14 0.000 12.469 AV_9 AV_10 <<-AT_26 0.000 12.469 74.813 ksps Total sampling rate: Calculate Sequence *冒 X Operating sequence ^ Operation Signal Jump Destination SAMPLE AV 5 AC 14 SAMPLE **Jump** Destination SAMPLE INTERNAL_VOLTAGE SAMPLE INTERNAL TEMPERATU SAMPLE AT_26 SAMPLE JUMP AV_14 BackUp ~ NOP NOP ¥ Help OK. Cancel

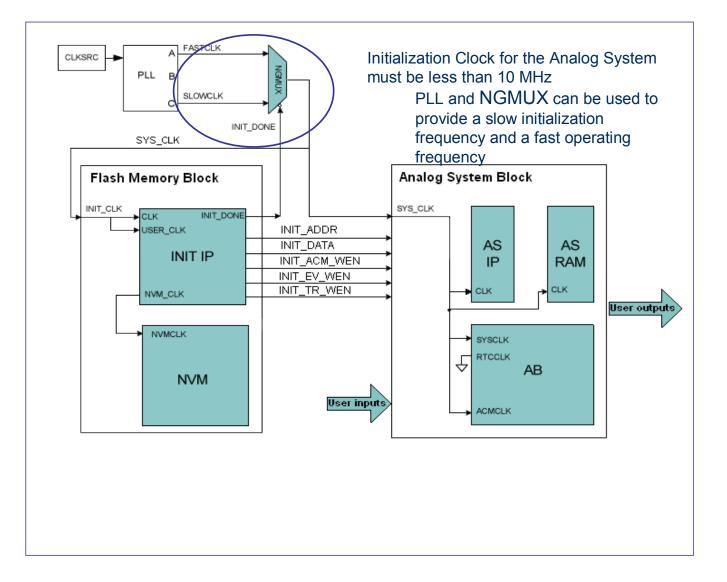
Add or Delete a Procedure


Defined procedures

Sequence for selected procedure


Analog System Builder

Pin Assignments and Generate



Fusion Backbone SmartGen Output Files

Fusion Analog Block IP Basic Configuration

Fusion Design Flow

- Fusion Smart Backbone
- Libero Flow
- SmartGen
 - Analog System Builder
 - Flash Memory System Builder
 - Other SmartGen Cores
- Simulation
- Programming and Security

Crystal Oscillator

- New for Fusion
- Mode control from FPGA or RTC
- Mode selection for Gain
 - Low Gain (32 200KHz)
 - Medium Gain (200KHz 2MHz)
 - High Gain (2MHz 20MHz)

atalog				
Filter: *	🖉 🖉 Add Co	ore Options		
Δ Function, Name:		Version:		
 Actel Macros 				
Basic Blocks				
 Bus Interfaces 			Oscillator : Create Core	2
🛨 Clock & Managemer	nt		lator mode:	
Fusion Peripherals			0	•
Analog System B		1.5	,) Gain 2kHz - 200kHz Jium Gain 200kHz - 2MHz	
Flash Memory S		1.2	n Gain 2MHz - 20MHz Network	
Oscillator - Crysta	al	2.1	C Clock conditioning circuit	
Oscillator - RC Voltago Regulat	or Dower Cu	2.1 2.1		Generate
Voltage Regulat		2.1		
 Memory & Controller 	\$		Help	Close
 Peripherals 				
Processors				
_				
Cores Templates Bus	Definitions			

Catalana

VRPSM, NGMUX and RCOSC

- Very few configuration options
- NGMUX and RCOSC available under Clock Conditioning Cores
- VRPSM in Voltage Regulator Category

	RC Oscillator : Create Core	Voltage Regulator Power Supply Monitor : Create Core
No-Glitch MUX : Create Core The No-Glitch MUX does not require any user configuration. To generate this core, please press the Generate button. Generate Help Close	Oscillator output drives:	Voltage Regulator output at power up: On Export Power Supply Monitor MATCH signal for Real Time Counter Generate Help Close

Static PLL

- Similar to ProASIC3 PLL
 - Dividers, Delays, Phase-shift & MUX selections
- New Input Clock Sources
 - Crystal Oscillator
 - RC Oscillator
- GLA Output Divider Available in PLL Bypass Mode
 - Divider values 1 32
- RC Oscillator Clock Source Considerations
 - Input Clock frequency is 100MHz
 - Extra Divide-by-half feature available
 - Dividers with values 0.5, 1.5, 2.5 31.5
- SmartGen does not Include the XTL/RCOSC Library Macro as part of PLL Generation
 - User must manually connect XTLOSC or RCOSC to CLKA

Divided and Delayed Clock

- New for Fusion
- Divide a Clock and Optionally Delay by a Given Amount
- Clock Source Options Same as Static PLL
- Same divider Options as static PLL Including the RC Oscillator Divideby-half
- Divider RESET for Predictable Edge Synchronization Between Input and Output Clock

Fusion Design Flow

- Fusion Smart Backbone
- Libero Flow
- SmartGen
- Simulation
 - Analog Block Simulation
 - Flash Memory Block Simulation
- Programming and Security

Supported Simulators

- The Analog Block Simulation Flow Works With All Digital Simulators That Actel Supports
 - ModelSim VHDL
 - Cadence NC-VHDL
 - ModelSim Verilog
 - Cadence NC-Sim
 - Cadence NC-Verilog
- The Digital Simulation Flow Correctly Handles All 37 Analog Inputs
 - VAREF, GNDREF, AV0-AV9, AC0-AC9, AT0-AT9, ATRETURN01, ATRETURN23, ATRETURN45, ATRETURN67, ATRETURN89
- Analog Block Simulation Requires Using Actel-supplied VHDL Procedures or Verilog Modules

Input Stimulus for Analog System

- Create Analog System Netlist Using SmartGen
 - Each analog pin will be configured as either an analog or a digital input
- Use analog_io Package Contained in <drive>:\Actel\Libero_v8.5\Designer\lib\vtl\95\fusion.vhd library fusion; use fusion.analog_io.all;
- For Input AVO Configured as an Analog Input drive_analog_input(0.3, AVO);
 - This converts the real number 0.3 into a serial-bit-stream which drives AV0
- For Input AV1 Configured as a Digital Input

AV1 <= `1';

VHDL Simulation Analog IO Procedures

Use the Procedures Contained in Package analog_io

<pre>procedure drive_analog_input(analog_val</pre>	:	in	real;
signal serial	:	out	<pre>std_logic);</pre>
<pre>procedure drive_current_inputs(volt_real</pre>	:	in	real;
resistor	:	in	real;
current	:	in	real;
signal av	:	out	<pre>std_logic;</pre>
signal ac	:	out	<pre>std_logic);</pre>
procedure drive_differential_inputs(volt_ delta signal av signal ac	:	in out	real;
procedure drive_temperature_quad(temp_cel signal s			<pre>in real; out std_logic);</pre>

Driving Analog Input VHDL Simulation

- Pass a Constant into Procedure
 - drive_analog_input(0.3, AV0);
 - This converts the real number 0.3 into a serial-bit-stream which drives AV0
- Pass a Real Variable into Procedure

variable AV0real : real; AV0real := 0.3; drive_analog_input(AV0real, AV0);

VHDL Simulation

Driving Analog Input Using Signal (Not Recommended)

- VHDL Signal Assignments do not Occur Instantly
 - Example of poorly written code with unexpected behavior

```
signal AV0real : real;
AV0real <= 0.4;
wait on AV0real;
AV0real <= 0.3;
drive_analog_input( AV0real,AV0 ); -- AV0 will be assigned 0.4 not 0.3
```

- Make Sure that the Signal Value has been Updated when Passing a Signal into drive_analog_input
 - A wait statement can be used for this

```
signal AV0real: real;
serialize_AV0:process
begin
 wait on AV0real;
 drive_analog_input ( AV0real, AV0 );
end process serialize_AV0
```


VHDL Simulation Restrictions

- You Cannot Call drive_analog_input From a Process With a Sensitivity List
 - drive_analog_input contains wait statements
 - NC-VHDL does not allow a subprogram with wait statements to be called from a process with a sensitivity list

Input Stimulus for Analog System Verilog Simulation

- Create Analog System Netlist Using SmartGen
 - Each analog pin will be configured as either an analog or a digital input
- Use the Verilog Modules drive_analog_io and read_analog_io contained in:

```
<drive>:\Actel\Libero_v8.5\Designer\lib\vlog\fusion.v
```

• For Input AV0 Configured as an Analog Input:

drive_analog_io drive_AV0(0.3, AV0);

- This converts the real number 0.3 into a serial-bit-stream which drives AV0
- For Input AV1 Configured as a Digital Input:

```
assign AV1 = 1'b1;
```


Verilog Simulation Analog IO Modules

Use the Modules Provided by Actel

module drive_analog_input (parallel_in, serial_out);

module drive_differential_inputs (volt_vect, delta_vect, av, ac);

module drive_temperature_quad (temp_celsius, serial_out);

Verilog Simulation Restrictions

- You Cannot Instantiate drive_analog_io in a Procedural Block
 - Must instantiate macro outside the procedural block

WaveFormer Lite

- Supports Creation of Analog Stimulus for Fusion
 - Pre-defined analog waveforms are available such as Sinusoidal, Step, Increment, Random, and RC discharge
 - VHDL Testbench includes VHDL procedures in analog_io package drive_current_monitor(volt_real, resistor, current, signal_serial); drive_current_inputs(volt_real, resistor, current, signal_av, signal_ac); drive_differential_inputs(volt_real, delta, signal_av, signal_ac); drive_temperature_quad(temp_celsius, signal_serial);
 - Verilog Testbench includes modules for analog inputs provided by Actel

module drive_analog_input (parallel_in, serial_out); module drive_current_inputs (volt_vect, resistor_vect, current_vect, av, ac); module drive_differential_inputs (volt_vect, delta_vect, av, ac); module drive_varef_out (parallel_in, en_out, serial_out); module drive_current_monitor (volt_vect, resistor_vect, current_vect, serial_out); module drive_temperature_quad (temp_celsius, serial_out);

Fusion Analog Signals Specify Signal Type

WaveFormer Lite - [Diagram - Top_tben	
Add Signal Add Bus Delay Setup Sample Add Clock Add Spacer Hold Text Marker	Signal Properties
754.3us 754.3us Dus 20 SYS_CLK SYS_RESET Image: SYS_RESET	Name: Volt1 Analog Props Grid Lines © Drive Simulate With Compare Equation Entry Verlog VHL Type: Boolean Egn • ex. (SIG1 and SIG2) delay 5 Set: Not Used • Clear:
Select Temperature, Yoltage or Current rom list	Signal Type: Secte Voltage Radix: real 4_state
State Button: if activated, next segment will I	pe drawn weak low Simulation Inactive INS Ln: 0 Col: 0

Fusion Analog Signals Using Built-In Waveforms

🔮 WaveFormer Lite - [Diagram - Top_tben	Signal Properties ?		X
🔐 Eile Import/Export Edit Bus ParameterLibs	Signal Properties		s ×
] 🛎 🖬 🗿 🖣 🍯] �	Name: Volt1 CActive Low		
Add Signal Add Bus Delay Setup Sample H	Simulate Once Analog Props Grid Lines		
Add Clock Add Spacer Hold Text Marker -	Drive C Simulate C Watch C Compare	R Class Methods	
754.3us 754.3us Dus 20	Equation Entry Verilog VHDL	1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms 2.2ms 2.4ms	3
SYS_CLK			-
SYS_RESET	Type: Boolean Eqn 💌 ex. (SIG1 and SIG2) delay 5		-0
INIT_POWER_UP			
VAREF	Clock: Unclocked Edge/Level: pos		
RESULT_AV5V[11:0]			
RESULT_TEMP[11:0]	Set: Not Used 💌 Clear: Not Used 💌	Click to select list of signal functio	nc
Volt1	Clock Enable: Not Used 👻 Advanced Register	Click to select list of signal functio	115
Volt2			
Volt3	Wfm Eqn 8ns=Z (5=1 5=0)*5 9=H 9=L 5=V 5=X		
Volt4			
Volt5	Label Eqn Ramp(2.5,2.5,900000)		
Volt6	Export Signal Direction: output	,(Concatenate)	
Volt7		Inc(start, increment, count) Dec(start, decrement, count)	
Volt8	Analog Display Size Ratio: 1	IncString("string", start, increment, count)	
Volt9	Signal Type: actel_voltage	Range(start, finish, count)	
Volt10	Radix; real 🗸 Bus MSB: LSB: 0	RandInt(count, Range_to_zero)	
Volt11		Hex(list) Bin(list)	
Volt12	Falling Edge Sensitive 🔲 Rising Edge Sensitive	Rep((list, count)	
Volt13	OK Cancel Apply Prev Next	Skip(count)	
Volt14		File("filename.txt") Signal("signalname")	
Volt15		Map{operations} list	
Volt16		PRBS7(length, seed)	
Volt17		PRBS15(length, seed)	
Volt18		Sin(amplitudeV, period, duration) SinStart(amplitudeV, period, duration)	
		SinEnd(amplitudeV, period, duration)	~
< >	III	CapCharge(amplitudeV, RC, duration)	8
State Button: if activated, next segment will b	pe drawn weak low	CapDischarge(amplitudeV, RC, duration)	
		Ramp(StartV, EndV, Duration)	

Fusion Analog Signals

💁 WaveFormer Lite - [Dia	gram - Top_tbench.btim*]
🕂 Eile Import/Export Edit !	Bus ParameterLibs Report View Options Window Help
] 🛎 🖬 🎒 🏚 🍯] 🤅	₹ ₹ ₹ ₹
Add Signal Add Bus Del Add Clock Add Spacer Ho	Image: Sample High LOW TRI VAL INVal WHI VAL INVal INVal
525.9us 525.9us	Dus 200us 400us 600us 800us 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms 2.2ms 2.4ms
SYS_CLK	
SYS_RESET	
INIT_POWER_UP	
VAREF	
RESULT_AV5V[11:0]	
RESULT_TEMP[11:0]	
Volt1	0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
Volt2	0 10 10 10 10 10 10 10 10 10 10 10 10 10
Volt3	0/
Volt4	0 10 10 10 10 10 10 10 10 10 10 10 10 10
Volt5	0 10 10 10 10 10 10 10 10 10 10 10 10 10
Volt6	
Volt7	
Volt8	
Volt9	
Volt10	
Volt11	0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /
Volt12	
Volt13	
Volt14	
Volt15	
Volt16	
Volt17	
Volt18	
<u><</u>	
State Button: if activated, r	next segment will be drawn valid INS Ln: 0 Col: 0

WaveFormer Lite VHDL Testbench

```
architecture STIMULATOR of stimulus is
  -- Control Signal Declarations
  signal AV5V_driver : real;
  signal Temp_driver : real;
 . . .
begin
 . . .
  -- Actel Analog Drivers Block
  drive_analog_input(AV5V_driver, AV5V);
  drive_temperature_quad(Temp_driver, Temp);
 - - -
 -- Sequence: Unclocked
  Unclocked : process
 begin
    AV5V driver <= 0.0;
    Temp_driver <= 5.0;</pre>
    wait for 12 ns;
    INIT POWER UP <= '1';</pre>
    wait for 28 ns;
    SYS_RESET <= '1';</pre>
    wait for 379907 ns;
    AV5V_driver <= 0.1;
    wait for 20132 ns;
  - -
```


WaveFormer Lite

Veriloa Testbench

```
module stimulus(SYS_CLK, SYS_RESET, INIT_POWER_UP, VAREF, Supply_good,
                Over_temp, ATRETURN01, AV5V, Temp);
  output SYS_CLK;
  output SYS_RESET;
  . . .
  req SYS RESET driver;
  reg INIT_POWER_UP_driver;
  reg VAREF_driver;
  req ATRETURN01 driver;
  real AV5V driver;
  real Temp driver;
  drive_analog_input analog_AV5V_driver($realtobits(AV5V_driver), AV5V);
  drive_temperature_quad temperature_Temp_driver($realtobits(Temp_driver), Temp);
task Unclocked;
    begin
    #12;
    INIT_POWER_UP_driver <= 1'b1;</pre>
    #26;
    SYS_RESET_driver <= 1'b1;</pre>
    #380193;
    AV5V driver <= 0.1;
    #19;
    Temp driver <= 5.75;
    #19725;
    Temp driver <= 15.0;
    #25;
```


Viewing Values of Serialized Signals in Simulator

- Waveform Viewer Shows the Values of the Serialized Signals as 'Z'
 - The serialization procedure in the simulation models occurs in zero simulation time, using delta delays
 - The remainder of the time the serialized signal is 'Z'
 - ModelSim displays both the time and the delta during simulation

M wave - default															
<u>File Edit V</u> iew Insert F <u>o</u> rmat	<u>T</u> ools <u>W</u> indow														
D 🚅 🖬 🚳 🛔 🦄 🛍	<u> </u>	E 🖏 🛛 🕯)	1	IF	100 p	s 🛊 🗉		 	(h) (h	<u>n</u>				Ċ
		3, 📴 3+	1												
🔶 /testbench/uut/rstn	1														
	1		_				u manakata jaga p								
/testbench/uut/sysclk	0														
Analog Inputs															
/testbench/uut/v2p5	2 2.5		Vor		14.5	-		-	Vor						
/testbench/v2p5_real	2.5	<u>U</u>	(0.5	<u></u>	<u>(1.5</u>		<u>)</u> 2.5	<u>)</u> 3	<u>(2.5</u>						
/testbench/uut/v1p8 /testbench/v1p8_real	2	0		0.5	Vi		1.5	12		2.5	12				
/testbench/uut/temp	7	0	1	0.0		/	1.3	_\<	1	12.0	_\<		Y I	1	
/testbench/temp_real	65	20)(25	130	135	<u>ί</u> 40	145	150	X55)(60	<u>)</u> (65	170	175	180	Y
Contraction to the Local			<u></u>						,00	<u></u>		<u></u>		100	-^-
Now	500000000	ps	1 1 1 1	2500	us i	1 1	SI D	1 1	'3r	ns i	1 1		1 1	3500 u	us.
T E	(1				[2
2075398264 ps to 356363463	38 ps	Now: 5 ms	s Delta: 4												

Restrictions on AV/AC/AT Voltages for Current and Temperature Monitors

- Analog Voltage Reference
 - Selected by VAREFSEL
 - 0 = voltage supplied from internal reference = 2.56V
 - 1 = external voltage applied = VAREF
- Current Monitor
 - Maximum value is voltage reference
 - 10 times the difference in the absolute voltages applied on the AV and AC quads
 - If exceeded then the current monitor output will saturate at the reference voltage.
 - If internal reference used:
 - Saturates at 2.56V when difference between AV and AC is 0.256V or greater
- Temperature Monitor
 - Maximum value is voltage reference
 - 12.5 times the absolute voltage applied on the AT quad
 - If exceeded then the temperature monitor output will saturate at the reference voltage.
 - If internal reference used:
 - Saturates at 2.56V when AT is 0.2048V or greater

ADC

Clock Period and Conversion Time

- ADC_CLK
 - ADC internal clock
 - Minimum period is 100ns (10MHZ)
 - Maximum period is 2,000ns (0.5 MHZ)
 - Generated from user-controlled signals:
 - SYSCLK
 - TVC[7:0] (programming divider)
- Conversion Time
 - Dependent on user design requirements:
 - ADC_CLK period
 - STC[7:0] (sample time control)
 - ADC mode (8, 10, or 12-bit conversion)
 - Minimum conversion time is 1.2 us
 - 10MHZ ADC_CLK, 8-bit conversion, and sampling time of 2 ADC_CLK periods
 - Maximum conversion time is 542 us
 - 0.5MHZ ADC_CLK, 12-bit conversion, and sampling time of 257 ADC_CLK periods
 - RESULT will not change until conversion is finished.
 - When the conversion is finished, DATAVALID is asserted and RESULT is driven

Fusion Design Flow

- Fusion Smart Backbone
- Libero Flow
- SmartGen
- Simulation
 - Analog Block Simulation
 - Flash Memory Block Simulation
- Programming and Security

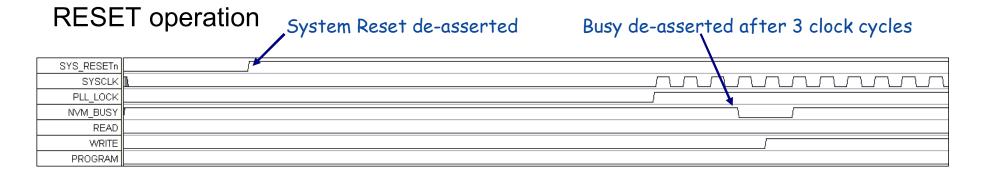
Addressing

- The NVM Array is Word-Addressable
 - DATAWIDTH signal used to select the size of the word
 - 1, 2, or 4 bytes
- Address bits are MSB Justified
 - Different from RAMs
 - For 1 byte access:
 - ADDR[17:0] are significant
 - For 2 byte access:
 - ADDR[17:1] are significant
 - ADDR[0] is ignored
 - For 4 byte access:
 - ADDR[17:2] are significant
 - ADDR[1:0] are ignored

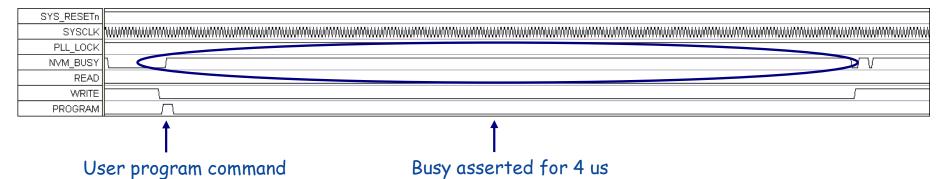
Data

Data bits are LSB Justified

- Same as RAMs
- For 1-byte access:
 - DO[7:0] are significant
 - DO[31:8] are 0
- For 2-byte access:
 - DO[15:0] are significant
 - DO[31:16] are 0
- For 4-byte access:
 - DO[31:0] are significant
- WEN Updates User Data into Page Buffer only
 - To store data into the NVM array, WEN should be followed by a PROGRAM of the same page

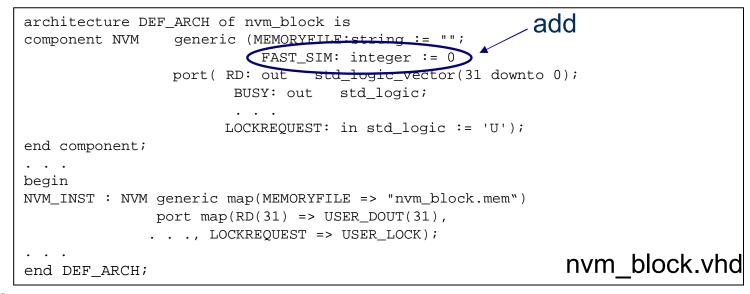

Cycle Accuracy

- Copy Page is Cycle-approximate
 - Affects any user operations which involve copy page operations
 - Cycle time is non-deterministic in silicon
 - Takes 63-67 clock cycles
 - Simulation models always execute copy page in 65 clock cycles
- Update Page Cycle Accuracy Controlled by Generic (VHDL) / Parameter (Verilog) FAST_SIM
 - Affects RESET, PROGRAM and ERASE operations


Cyclo	Duration of E	Busy
Cycle	FAST_SIM = 1(default)	FAST_SIM = 0
Reset	3 SYSCLK cycles	25 us
Program	4 us	8.4 ms
Erase	- 43	0.4 113

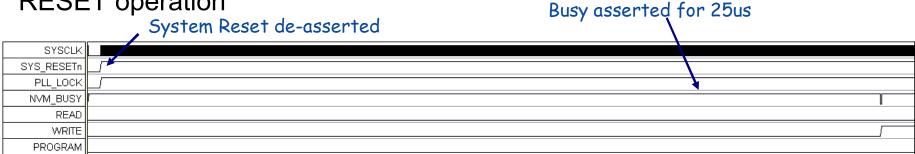
Busy Operation FAST SIM = 1 (default)

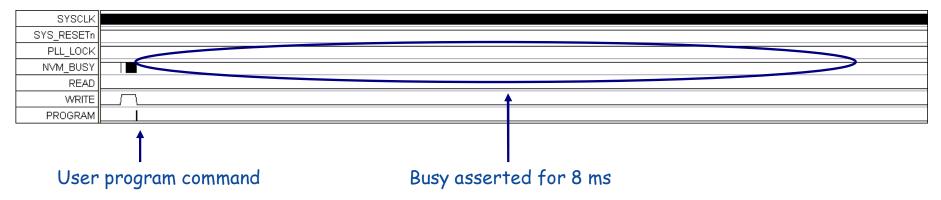
PROGRAM operation



Using FAST_SIM Generic / Parameter

Modify NVM file from SmartGen


<pre>module nvm_block(</pre>	
);	_ add
<pre>NVM #(.MEMORYFILE("nvm_block.mem"), .FAST_SIM(0)) NVM_INST (.RD({ USER_DOUT[31], USER_DOUT[30], USER_DOUT[2 USER_DOUT[27], USER_DOUT[26], USER_DOUT[25], USER_DOUT[27]</pre>	
 USER_DATA[3], USER_DATA[2], USER_DATA[1], USER_DATA[0]}),	
 VCC VCC_power_inst1 (.Y(VCC_power_net1)); endmodule	nvm_block.v



Busy Operation FAST SIM = 0

RESET operation

PROGRAM operation

Lab 2

- Complete Lab 2 in the Lab Guide
 - Open a project in Libero
 - Configure a Voltage Monitor, Current Monitor and Gate Driver
 - Simulate the Design

Fusion Design Flow

- Fusion Smart Backbone
- Libero Flow
- SmartGen
- Simulation
- Programming and Security

Programming & Security

- Device Programming Scenarios
 - First-time Programming
 - Specify Security Information
 - Re-programming
 - Specify Previously-used Security Information
 - Changing Security Settings
- Environments
 - Trusted Programming Environment
 - Users May Have Access to Pass Key and AES Key
 - Un-trusted Programming Environments
 - Never Expose Pass Key or AES Key
 - Never Program Security Settings

FlashPoint Start-up Screen

./Te	ilename: op.stp				Browse		
ilicon fe	eature(s) to be programmed:						
	Security settings						
	FPGA Array						
	FlashROM						
	FlashROM configuration file:						
					Browse		
	Embedded Flash Memory						
	Instance Name	Instance Location	Program	Embedded Flash Me Configuration F		_	
	NV_inst/NVM_INST	1	Г	D:\Actelprj\Fusion_labs\data smartgen\nvm_block\nvm_b			
_	ramming previously secured d ignature (max length is 8 HEX						

FlashPoint Security Settings

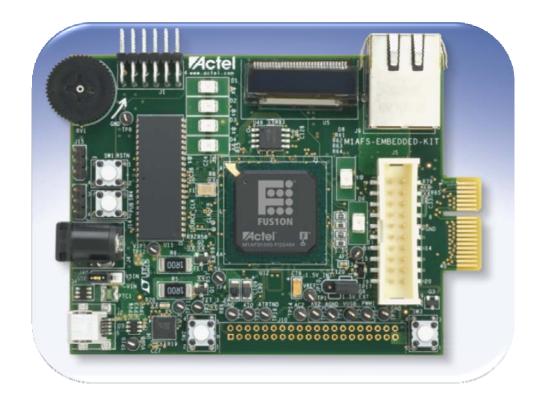
Security Settings - Step 2 of 2		X
Select security level: - - High Medium - - None	Protect with Pass Key - Lock the FPGA Array for both writing and verifying Use the Pass Key to write or verify. - Lock the FlashROM for both reading and writing via the JTAG interface Use the Pass Key to read or write. Default Level	
Pass Key (max length is 32 HEX ch AES Key (max length is 32 HEX cha	Generate random key	
	Gienerate random key	
	< <u>B</u> ack <u>N</u> ext> Finish Cancel Help	

FlashPoint *FlashROM*

mages 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 7 1 <	pages 15 14 13 12 11 10 3 8 7 6 5 4 3 2 1 0 7 1 <		FlashRC)M re	gion	s:														Serial Number	
Pages Name Serial Number 7 1 1 1 1 6 1 1 1 1 1 5 1 1 1 1 1 1 4 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 0 1	Pages Name Serial Number 7 1 1 1 6 1 1 1 5 1 1 1 4 1 1 1 3 1 1 1 1 1 1 1 0 1 1 1 ashROM programming file type © One programming file per device			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Properties:	
6 0 0 5 0 0 0 4 0 0 0 3 0 0 0 1 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 1 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 1 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 7 0 <	6 0	в	pages					-	-							-				2010012110010	Serial Number
6 Image: Content in the second se	6 Image: Content in the second se		7																		
5 Content Auto Inc 4 Content Auto Inc 3 Start value 1000 2 Max value (HEX) 10000 1 Max value (HEX) 10000 0 Max value (HEX) 10000 • Single programming file type Content evice	5 Content Auto Inc 4 Content Auto Inc 3 Content Inc 2 Inc Inc 1 Inc Inc 0 Inc Inc shROM programming file type Contern to the programming file type © One programming file per device		6		Ì			1	00000							1	240 M		10000		
5 1000 4 1000 3 1000 2 1000 1 1000 0 1000 Max value (HEX) 10000 Max value (HEX) 10000 Negative 10000 6 Single programming file type © One programming file per device	3 1000 2 1000 1 1000 0 1000 6 Single programming file type © One programming file per device		-		_	-				_	-			-				_	-		
4 Image: Constraint of the second	4 Image: Constraint of the per device 3 Image: Constraint of the per device 1 Image: Constraint of the per device • Single programming file type • One programming file per device		5																		
3 3 Step value (HEX) 1 2 1 Max value (HEX) 10000 1 1 1 0 1 1 80M programming file type C • Single programming file for all devices One programming file per device	3 3 5tep value (HEX) 1 2 1 1 1 1 1 0 1 1 80M programming file type C • Single programming file for all devices C		4		-						and some of the local diversion of the local			-	-	-		<u> </u>	-		1000
3 Max value (HEX) 10000 2 Max value (HEX) 10000 1 Max value (HEX) 10000 0 Max value (HEX) 10000 ROM programming file type C • Single programming file for all devices • One programming file per device	3 Max value (HEX) 10000 2 Max value (HEX) 10000 1 Max value (HEX) 10000 0 Max value (HEX) 10000 ROM programming file type C One programming file per device		4		-	-	_		0.0	_			_	-		-	-	_			1
2 1 0 ROM programming file type Single programming file for all devices One programming file per device	2 1 1 1 0 1 ROM programming file type Single programming file for all devices One programming file per device		3																		
0 0 ROM programming file type Image: Constraint of the programming file per device Image: Single programming file for all devices Image: Constraint of the per device	0 0 <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.7</td> <td></td>		2						0.7												
ROM programming file type Image: Constraint of the programming file per device Single programming file for all devices Image: Constraint of the per device	ROM programming file type Single programming file for all devices One programming file per device		1																		
ROM programming file type	ROM programming file type		0	F				-		-											
	er of devices to program: 1000 Target Programmer							all d	evice						-	One	prog		nevere.		

Fusion Starter Kit

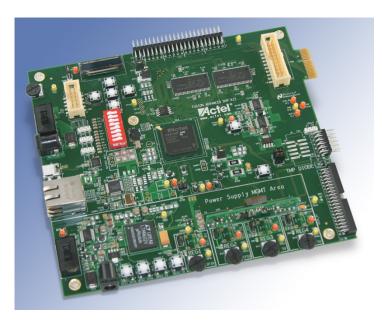
- Designed to Showcase Fusion
 - FPGA single volt operation
 - Crystal 32 kHz for RTC
 - Tri-color LED to exhibit PWM
 - MOSFET on board to power control
 - Potentiometer for analog voltages
 - LCD to display values
 - Temperature diode on board
 - Fusion can monitor own current draw!
- Starter Kit Features
 - All I/O brought out to headers
 - JTAG headers for programming & chain
 - Daughter card pins compatible w/PA3
 - Prototyping area
- Contents
 - Libero IDE Gold
 - Fusion evaluation board
 - FlashPro3
 - Tutorial and documentation
 - Logic Navigator debugger
- Available Now


Fusion Embedded Development Kit

- Develop designs using
 - Fusion Mixed-Signal FPGA
 - M1AFS1500-FGG484
 - Cortex-M1 embedded processor
 - 8051s embedded processor
 - Ethernet applications
- The development kit includes
 - Low Cost Programming Stick
 - Libero IDE
 - Free Libero IDE Gold license
 - SoftConsole for Compile/Debug
 - On Chip Program and Debug
 - User's guide and tutorial
 - Example designs
 - PCB schematics and layout files
- Ordering code
 - M1AFS-EMBEDDED-KIT @ \$199

Fusion Embedded Development Board Features

- RoHS compliant
- 10/100 Ethernet interface
- USB-to-UART interface
- I2C interface
- Built-in temperature monitor
- Voltage potentiometer
- RealView debug header
- OLED 96x16 pixel display
- 4,000,000 SRAM



Fusion Advanced Development Kit

- Microprocessor and System Management Applications Development Platform
- Supports the Following Functions:
 - Power-up detection
 - Thermal management
 - Power sequencing
 - Sleep modes
 - System diagnostics
 - Remote communications
 - Clock generation and management
- Kit Contents:
 - FlashPro3programming stick
 - 2 Mini USB cables
 - Fusion Advanced Development Board with ARM Cortex-M1–enabled M1AFS1500-FGG484
 - Libero IDE DVD, including SoftConsole for processor-based designs

Barto's Law

Every circuit is considered GUILTY until proven innocent

