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Outline

Arithmetic operators

Sequential functions

Digital CMOS design
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Boolean algebra

Basic digital CMOS gates

Combinational and sequential circuits

Coding - Representation of numbers

Boolean algebra

Outline

Digital CMOS design



Pirouz Bazargan Sabet October 2009ICTP

Boolean Algebra

English mathematician 1815 - 1864

1854 :  Introduction to the Laws of Thought
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Boolean Algebra

Let   x ∈ B x is a Boolean variable

Let   B = {0 , 1} B is called the Boolean set
0, 1 are the Boolean constants
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Boolean Algebra

Unary function 0 : 0∀ x ∈ B, x

Not (x) is denoted    x

Unary function 1 : 1∀ x ∈ B, x

Unary function Identity : x∀ x ∈ B, x

Unary function Not : 1
0

0
1

Unary functions : B B
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Boolean Algebra

Binary functions : B2 B

function And :
∀ x, y ∈ B, And (x, y) = 1 if and only if   x = 1 and y = 1

function Or :
∀ x, y ∈ B, Or (x, y) = 0 if and only if   x = 0 and y = 0

is denoted    x.yAnd (x, y) is also called Min 

is denoted   x+yOr (x, y) is also called Max 



Pirouz Bazargan Sabet October 2009ICTP

Boolean Algebra

Other binary functions can be defined using 
And, Or and Not

function Nand : Nand (x, y) = Not (And (x, y))

function Nor : Nor (x, y) = Not (Or   (x, y))

function Xor : Xor (x, y) = x.y + x.y

Xor (x, y) is denoted   x ⊕ y
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Boolean Algebra

Noticeable properties

Not (Not (x)) = x x = x

x+1 = 1

x+x = x

x+0 = x

x+x = 1
x.0 = 0
x.x = 0

x.1 = x

x.x = x x ⊕ x = 0

x ⊕ 0 = x

x ⊕ x = 1
x ⊕ 1 = x
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Boolean Algebra

Noticeable properties

x.(y.z) = (x.y).zAssociative

x+(y+z) = (x+y)+z
x ⊕ (y⊕z) = (x⊕y) ⊕ z

x.y = y.xCommutative

x+y = y+x
x ⊕ y = y ⊕ x
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Boolean Algebra

Noticeable properties

x+y = x . y
x.y = x + yDe Morgan

x.y + x = y + xAbsorption

x . (y+z) = x.y + x.zDistributive

x + (y.z) = (x+y) . (x+z)
x . (y ⊕ z) = x.y ⊕ x.z
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Boolean Algebra

Let   x ∈ B x is a Boolean variable

Let   v ∈ Bn v is a Boolean vector

Let   B = {0 , 1} B is called the Boolean set
0, 1 are the Boolean constants
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Boolean Algebra

v ∈ Bn , v = (x1, …, xi, …, xn)
u ∈ Bn , u = (y1, …, yi, …, yn)

The number of Boolean variables that 
are different between v and u is called 

the Hamming distance (v, u)

Hd ( (0,0,0,1) , (1,0,1,0) ) = 3
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Boolean Algebra

To vectors are said adjacent when their 
Hamming distance = 1

Hd ( (0,0,0,1) , (1,0,0,1) ) = 1
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Boolean Algebra

Let   x ∈ B x is a Boolean variable

Let   f : Bn f is a Boolean functionB

B n is the set of Boolean Functions

card (B n ) = 2 (2n)

Let   v ∈ Bn v is a Boolean vector

Let   B = {0 , 1} B is called the Boolean set
0, 1 are the Boolean constants
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Boolean Algebra

A Boolean function  f may 
be defined by giving the 
value f (v) of each Boolean 
vector  v (Truth table) 

Card (Bn) is finite x y z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f
0
0
0
1
1
1
0
1
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Boolean Algebra

Unary functions : B n B n
function Not : (Not (f)) (v) = Not (f (v))

Binary functions : B n
2 B n

function And : (And (f, g)) (v) = And (f (v) , g (v))

function Or : (Or  (f, g)) (v) = Or   (f (v) , g (v))
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Boolean Algebra

The Boolean function  f ∈ Bn /
is denoted xi

∀ v ∈ Bn , v = (x1, …, xi, …, xn)

f (v) = xi 
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Boolean Algebra

A Boolean function  f 
may be defined by giving 
a Boolean expression 

x y z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f
0
0
0
1
1
1
0
1f = x.y + y.z

f = x.y.z + x.y.z + x.z

There is not a unique expression
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Boolean Algebra

Let   f ∈ Bn

f = Σ (αj . Π xi)
~

x y z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f
0
0
0
1
1
1
0
1

f = x.y.z + x.y.z + x.y.z + x.y.z

min-term
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f = Π (βj + Σ xi)
~

Boolean Algebra

Let   f ∈ Bn x y z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f
0
0
0
1
1
1
0
1

f = (x+y+z) . (x+y+z) .

(x+y+z) . (x+y+z)

max-term
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Boolean Algebra

Let   f ∈ Bn
f is said independent from 

the variable xi

f (x1, …, xi, …, xn) = f (x1, …, xi, …,xn)

∀ v ∈ Bn , v = (x1, …, xi, …, xn)
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Boolean Algebra

Let   f ∈ Bn

f =   xi . fi1  +   xi . fi0

Shannon decomposition

∃! fi0 , fi1  independent from the variable xi
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Boolean Algebra

Let   f ∈ Bn x y z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f
0
0
0
1
1
1
0
1

f =   xi . fi1  +   xi . fi0

f = x.(y+z) + x.(y.z)
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Boolean Algebra

Let f = xi . fi1  +  xi . fi0

if  f is independent from the variable xi   f = fi0 = fi1 

fi0 ⊕ fi1 = 0

if fi0 ⊕ fi1 = 0  then f is insensitive to xi

notion of derivative
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Boolean Algebra

Let f = xi . fi1 +  xi . fi0

= fi0 ⊕ fi1
ix

f
∂
∂



Pirouz Bazargan Sabet October 2009ICTP

Boolean Algebra

Let f = xi . fi1 +  xi . fi0

f may be sensitive to xi in two ways

= fi1 .fi0 +  fi1 .fi0
ix

f
∂
∂

fi1 .fi0 and  fi1 .fi0 cannot be 1 for the same vector 
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Boolean Algebra

= fi1 .fi0 +  fi1 .fi0
ix

f
∂
∂

if   fi1 .fi0 (v) = 1, f varies in a direct way with xi

if   fi1 .fi0 (v) = 1, f varies in an opposite way with xi

f = xi . fi1 +  xi . fi0

= fi1 .fi0
ix

f
∂

+∂
= fi1 .fi0

ix
f

∂

−∂

f is a positive function of xi

f is a negative function of xi
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Boolean Algebra

= fi1 .fi0
ix

f
∂

+∂
f

xi

1

10

= fi1 .fi0
ix

f
∂

−∂
f

xi

1

10


