

2065-4

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis

26 October - 20 November, 2009

Digital CMOS Design (contd.)

Pirouz Bazargan-Sabet

LP6-Department ASIM

University of Pierre and Marie Curie VI
4, place Jussieu, 75252 Paris Cedex 06

France

Outline

- Digital CMOS design
 - ─ Boolean algebra
 - ─ Basic digital CMOS gates
 - Combinational and sequential circuits
 - Coding Representation of numbers

How can I design a digital circuit?

A set of gates (cell library)

combinational gates memory elements

How can I design a digital circuit?

Method to design combinational circuits
 Karnaugh table (local optimization)
 no method for global optimization

How can I design a digital circuit?

Specify the circuit

Combinational circuit: Boolean functions

Sequential circuit?

Sequential Circuit

How can I design a sequential circuit?

I need a method to go from a black box to a white box

How can I design a sequential circuit?

The starting point (what I know)

What the circuit is supposed to do

Capture this knowledge into a representation that can be transposed into Boolean functions

The aim

How it will do it

number of required memory elements

Representation of a sequential circuit?

State graph

$$G = (X, Y, S, T,$$

O) X : input variables

Y : output variables

5 : states

T: transitions

O : output set conditions

$$\mathbf{G} = (X, Y, S, T,$$

O)

T : set of transitions

$$t \in T$$
, $t = (s, s', f)$

 $s \in S$: source state

 $s' \in S$: target state

 $f \in \mathbf{B}_n$: transition condition

$$\mathbf{G} = (X, Y, S, T,$$

O)

O: output set conditions

$$o \in O$$
, $o = (y, s, c)$

 $y \in Y$: output variable

 $s \in S$: state

 $c \in \mathbf{B}_n$: output set condition

• Let consider a graph $\mathbf{G} = (X, Y, S, T, O)$

Graphic representation of **G**

Representation of a sequential circuit?

State graph

Transpose into a graphic representation the expected behavior of a sequential system

$$G = (X, Y, SS, TT, O)$$

Two signals a, b each transmitting a series of bits (1 bit at a cycle)

Design a system that sets a flag d if the value transmitted by a is different than b

Example

Representation of a sequential circuit?

State graph

$$G = (X, Y, SS, TT, O)$$

define the number of memory elements required to represent S : M

Example

2 states \longrightarrow 1 memory element

Representation of a sequential circuit?

State graph

$$G = (X, Y, S, T,$$

define the number of memory elements required to represent S : M

represent each state s by a vector of M

Example

2 states \longrightarrow 1 memory element

Representation of a sequential circuit?

State graph

$$G = (X, Y, S, T,$$

define the transition function: mk

 m_k = sum of the Boolean function of the transitions that have as target a state where m_k =1

Example

 $m_1 = \overline{m_1}$.start.(a \oplus b) + m_1 .start

Representation of a sequential circuit?

State graph

$$G = (X, Y, S, T,$$

define the output function : y_j

 $y_i = \text{sum of the output conditions concerning } y_i$

Example

$$d = \overline{m_1}.start.(a \oplus b) + m_1.start$$

Representation of a sequential circuit?

State graph

$$G = (X, Y, S, T,$$

implement the Boolean functions: m_k , y_j

Example

$$m_1 = \overline{m_1}$$
.start.(a \oplus b) + m_1 .start

$$d = \overline{m_1}.start.(a \oplus b) + m_1.start$$

$$m_1 = \text{start.}(a \oplus b) + \text{start.}m_1$$

How can I design a sequential circuit (summary)?

$$\mathbf{G} = (X, Y, S, T, S,$$

- O) graphic representation the behavior
 - define the number of memory elements required to represent S: M
 - represent each state by a vector of M
 - define the *transition function*
 - define the *output function*

