

2065-5

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis

26 October - 20 November, 2009

Digital CMOS Design (contd.)

Pirouz Bazargan-Sabet

LP6-Department ASIM

University of Pierre and Marie Curie VI
4, place Jussieu, 75252 Paris Cedex 06

France

Outline

- Digital CMOS design
 - − Boolean algebra
 - ─ Basic digital CMOS gates
 - ─ Combinational and sequential circuits
 - Coding Representation of numbers

How values can be coded?

In a digital circuit each signal can take 2 values (0, 1) (Boolean world)

A vector of n bits can represent up to 2ⁿ values

How values can be coded?

What is the meaning of 0100 0110?

The character 'F'

The character ' Φ '

The number 46

The number 70

The number 123

Any symbol in a set where the Card = 256

How values can be coded?

by itself a code has no signification

ICTP

How values can be coded?

arithmetic: dealing with numbers

How can I represent a number?

Natural numbers Relative numbers

Rational numbers

Real numbers

How can I represent a Natural number?

I need at least n bits for a Natural ranging from 0 to 2ⁿ-1

Standards

ICTP

How can I represent a Natural number?

Natural Binary Code:

The bits represent the successive powers of 2

$$0100 \ 0110 = 2^{1} + 2^{2} + 2^{6} = 70$$

$$2^{7} \qquad 2^{0}$$

How can I represent a Natural number?

Binary Coded Decimal:

The bits represent the successive powers of 2
The quartets represent the successive powers of 10

How can I represent a Natural number?

Binary Coded Decimal - Unpacked:

The bits represent the successive powers of 2
The bytes represent the successive powers of 10
In each byte the 4 Msb are 0

$$0100 \ 0110 = Illegal$$

How can I represent a Relative number?

Sign + Value

The bits represent the successive powers of 2

The Msb represents the sign (1 means negative)

2's complemented

The bits represent the successive powers of 2

ICTP

The Msb represents -2ⁿ

How can I represent a Relative number?

Sign+Value:

Pirouz Bazargan Sabet

ICTP

June 2008

How can I represent a Relative number ?

2's complemented:

$$-2^{7} 2^{6} 2^{0}$$

1100 0110
$$= 2^1 + 2^2 + 2^6 - 2^7 = -58$$

How can I represent a Relative number ?

2's complemented:

$$0100\ 0110\ = 2^1 + 2^2 + 2^6 = 70$$

How can I represent a Real number?

Range Precision

How can I represent a Real number?

2's complement Fixed Point:

The bits represents the successive powers of 2

How can I represent a Real number?

Wide range High precision

Floating Point : Logarithmic representation

ICTP

How can I represent a Real number?

$$\mathbf{R} = (-1)^{\mathbf{S}} \times \mathbf{M} \times 2^{\mathbf{E}}$$

Normalized scientific representation

S: Sign (1 if negative)

 $M: Mantissa \quad (\in [1, 2[)$

E: Exponent (Relative number)

$$\mathbf{R} = (-1)^{\mathbf{S}} \times \mathbf{M} \times 2^{\mathbf{E}}$$

Single Precision

32 bits

Double Precision

64 bits

S: Sign (1 if negative) 1 bit 1 bit

M: Mantissa (\in [1, 2[) 23 bits 52 bits

E: Exponent 8 bits 11 bits

$$\mathbf{R} = (-1)^{\mathbf{S}} \times \mathbf{M} \times 2^{\mathbf{E}}$$

Single precision:

Number between -127 and 127

The code 0000 0000 means -127

Natural Binary Code by Excess of 127

Fixed point positive real number

The 1 is not represented!!

$$\mathbf{R} = (-1)^{\mathbf{S}} \times \mathbf{M} \times 2^{\mathbf{E}}$$

Single precision: Special cases

The code 1111 1111 (128) means $\pm \infty$ or an error

.111 ... 111 means ±∞ other values mean error (NaN)

$$\mathbf{R} = (-1)^{\mathbf{S}} \times \mathbf{M} \times 2^{\mathbf{E}}$$

Single precision: Special cases

The code 0000 0000 (-127) indicates denormalized Mantissa

0.00 ... 000 means 0

