The Abdus Salam -
International Centre for Theoretical Physics (4

THAO

2068-4

Advanced School in High Performance and GRID Computing -
Concepts and Applications

30 November - 11 December, 2009

Flloatiing Poiint Numbers

S. Cozzini

CNR-INFM Democritos
Trieste
Italy

Strada Costiera | I, 34151 Trieste, ltaly - Tel.+39 040 2240 || 1; Fax +39 040 224 163 - sci_info@ictp.it

Advanced School in
High Performance Joint DEMOCRITOS/SISSA
and GRID Computing. Laboratory for @ -Science
concepts and applications

ICTP HPC/GRID School 2009 — Trieste, Italy - November 30- December 11, 2009

Outline

Errors in scientific computing

How to represent numbers on a computers.

— |EEE standard floating point formats

— Floating point arithmetic
Floating Point Issues

— Summing FP numbers
— Comparing FP numbers

— Subtracting FP numbers

Role of the compilers in this game

Some final tips to avoid (known) problems

Scientific Computing

 Traditionally called numerical analysis

* Concerned with design and analysis of algorithms for solving
mathematical problems that arise in computational sciences

e Distinguish features:

— concerned with variables that are continuous rather than
discrete

— concerned with approximations and their effects

e Appro ximations are used not just by choice: they are
inevitable in most problems

Source of approximations

e Before computation begins:
— Modeling: neglecting certain physical features

— empirical measurements: can’t always measure input
data to the desired precision

— previous computations: input data may be produced
from error-prone numerical methods
* During computation:

— truncation: numerical method approximate a continuos
entity

— rounding: computers offer only finite precision in
representing real numbers

Example: Approximations

* Computing surface area of Earth using formula
A=4mr

e This involves several approximations:
— Modeling: Earth is considered as a sphere...
— Measurements: value of radius is based on empirical methods
— Truncation: value for m is truncated at a finite number..

— Rounding: values for input data and results of arithmetic
operations are rounded in computer.

Computational errors

e Truncation Error:

— errors arising from simplifying mathematics to solve
problems on computers:

* Rounding Error:
— Errors we discuss later..

« NOTE: computational error is sum of truncation error

and rounding error, but one of these usually dominates
(see later)

Rounding error

 Difference between result produced by a given
algorithm using exact arithmetic and result
produced by the same algorithm using rounded
arithmetic Numbers are stored using a finite number

of bits.

e Due to the inexact representation of real numbers
and arithmetic operations upon them

e To understand where and how they turn out we
need to know how computers deals with numbers..

Reality = real numbers

e Real number = unlimited accuracy

* How can we store a number on a computer?

— Binary coded decimal (BCD)
— Rational Numbers

— Fixed Point

— Floating point

Floating-point representation

= floating numbers are stored using a kind of scientific notation.

exponent

+ mantissa * 2

= We can represent floating-point numbers with three binary fields: a sign
bit s, an exponent field e, and a fraction field f.

S e f

* The IEEE 754 standard defines several different precisions.

— Single precision numbers include an 8-bit exponent field and a 23-bit
fraction, for a total of 32 bits.

sign exponent (8 bits) fraction (23 hits)
| I I

= 0.15625

ofojijrjpriofojofjojojojojojojojoiofofofojojojojofojofalo

L =]

31 30 2322 (bit indlex) 0
— Double precision numbers have an 11-bit exponent field and a 52-bit
fraction, for a total of 64 bits.

IEEE 754

e During 80’s Institute for electrical and electronics Engineers
produced a standard for the FP format.

e Now the “ IEEE754 -1985 Standard for binary Floating Point
Arithmetic *“ is adopted by almost all the vendors..

« |IEEE Standard specified all the details about FP system:
— storage format
— precise specification of the result of operations
— special values
— specified runtime behavior on illegal operations

« Lifeis easier now: portability of kernel computational code is
ensured...

10

Range of single-precision numbers (32 bit)

BIASED exponent
127

— The smallest f is 00000000000000000000000 (0).
— The largest possible e is 11111110 (254).

(1-28)*(1+1)*2"

— The smallest e is 00000001 (1).

— The largest possible f is 11111111111111111111111 (1 = 273).

= The largest possible “normal” numberis (2 - 2»)*2¥~ 3.4 x 10°°.
= the smallest positive non-zero numberis1*2™ =~ 1.8 x 107°°.

= |n comparison, the range of possible 32-bit integers in two’s
complement are only -2°" and (2*' - 1)

= How can we represent so many more values in the IEEE 754 format,
even though we use the same number of bits as regular integers?

11

FP Finiteness

There aren’t more IEEE numbers.
= With 32 bits, there are 2*-1, or about 4 billion, different bit patterns.
— These can represent 4 billion integers or 4 billion.reals.

— But there are an infinite number of reals, and the IEEE format can only represent some of the
ones from about -2"% to +2"°.

— Represent same number of values between 2" and 2™ as 2" and 2"+

D I R B | | |
2 4 8

-_
o

= Thus, floating-point arithmetic has “issues”

— Small roundoff errors can accumulate with multiplications or
exponentiations, resulting in big errors.

— Rounding errors can invalidate many basic arithmetic principles such as the
associative law, (x +y) +z=x + (y + 2).

= The IEEE 754 standard guarantees that all machines will produce the
same results—but those results may not be mathematically correct!

12

\4

density of FP numbers..

e Because the same number of bits are used to
represent all normalized numbers, the smaller the
exponent, the greater the density of representable
numbers.

* For example, there are approximately 8,388,607
single-precision numbers between 1.0 and 2.0, while
there are only about 8191 between 1023.0 and
1024.0.

* this means that for large numbers (both positive
and negative) there are very few FP numbers to play
with and many real numbers map to the same

floating-point number.
13

Floating Point Arithmetic

e Representable numbers:

— The way the numbers are stored

* Operations:

— The way the number are handled:

e arithmetic: +,-,%,/,... How is result rounded to fit in format?
e comparison (<, =, >)

 conversion between different formats - short to long FP
numbers, FP to integer, etc.

 exception handling - what to do for 0/o, 2*largest_number,
etc.

 binary/decimal conversion - for I/O, when radix is not 10.

* Language/library support is required for all these
aperations.

14

IEE 754 exception handling

o What happens when the “exact value” is not a real number,
or too small or too large to represent accurately?

* Five exceptions:

- Overflow - exact result > OV, too large to represent.

— Underflow - exact result nonzero and < UN, too small
to represent.

— Divide-by-zero — nonzero/0.
- Invalid - 0/0, sqrt(-1), ...
- Inexact - you made a rounding error (very common!).

e Possible responses

- Stop with error message (unfriendly, not default).
- Keep computing (default, but how?).

15

Rounding problem

* Many operations among floating points does not end
in a floating point.

* |EEE 754 defines the way to handle this:

— Take the exact value, and round it to the nearest floating
point number (correct rounding).

— Break ties by rounding to nearest floating point number
whose bottom bit is zero (rounding to nearest even).

— Other rounding options also available (up, down,
towards 0).

16

Even some rather simple numbers can have FP
rounding problem...

* 1/3is NOT exactly representable
e 0.01is NOT exactly representable

* Question to be answered during lab this afternoon

— how many inverse are not exactly representable in the
range [1,100]?

17

How to add FP numbers?

e Associative rule does not work!

x=-1.5x 1038
y=15x 1038
z=1.0

X+ (y +2z)=-1.5x 1038 + (1.5 x 1038 + 1.0)
=-1.5x 1038 + 1.5 x 1038
=0

(X +y)+z=(-15x1038 + 1.5 x 1038) + 1.0
=0+ 1.0
=1.0

18

How to avoid FP problems in summing numbers ?
* Using special tricks

— The first is sorting the numbers and adding them in
ascending order.

— the Kahan Summation Formula.

— Using integers instead of floats

e See exercise sum numbers in the lab this afternoon..

Please note that such kind of problem impact parallel
computing: Summing numbers in parallel could give you
different results !

19

Kahan summation formula

* Errors are reduced by keeping a separate running
compensation (a variable to accumulate small errors).

function kahanSum(input)
var sum = input[1l]

var ¢ = 0.0 //A running compensation for lost low-order
bits.
for i = 2 to input.length
y = input[i] - c //So far, so good: c is zero.
t = sum + vy //Alas, sum is big, y small,
// so low-order digits of y are lost.
c = (t - sum) -y //(t - sum) recovers the high-order part of y;
// subtracting y recovers -(low part of y)
sum = t //Algebraically, ¢ should always be zero.
// Beware eagerly optimising compilers!
next i //Next time around, the lost low part will be

// added to y in a fresh attempt.
return sum

20

Working with Integers (1)

Integers are sometimes called fixed-point numbers because they can
be viewed as floats with radix point after the least significant digit,
and zero fractional digits

- 1 1.000...
— 10 10.000...

— 100 100.000...

Instead of a float X with p digits decimal mantissa, we
can use an integer N:

- N=INT(X* (10**p)) (Float to integer transformation)
- X=N/(10**p) (Recovering the float from the integer)

21

Working with Integers (1)

* We can now sum correctly integer numbers
- X1+ X2=N1/(10**p) + N2/(10**p) = (N1+ N2) /[(10**p)
* Note:

— No roundoff error in both addition and substraction

— Precision of the operation is set in advanced: how many
decimal places do I need?

22

FP Subtraction : the cancellation problem(1)

Subtraction between two t-digit number having same sign
and similar magnitude yields result with fewer that t digits,
hence it is always representable.

Reason is that the leading digits of two numbers cancel (I.e
their difference is zero)

Example:

— 1.92403 X102 -1.92275 X102 = 0.00128 X102 --->
1.28000x10-1

This is correct, exact representable but has only 3 digits ..

23

Cancellation (2)

e Despite exactness of results, cancellation often
implies serious loss of information.

* Operand are often uncertain, due to rounding or
other previous errors, in which case relative
uncertainty in difference may be large.

* Subtraction itself is not at fault: it signals loss of
information that has already occurred.

24

Checking Floating-Point Equality

 Sometimes okay to compare for equality

— When calculations are known to be exact
— To synthesize a comparison

— Compare against 0.0 to avoid division by zero
* But floating-point results are usually inexact

— Comparing floating-point numbers for equality may have
undesirable results

do while (tot=1.0)
tot=tot+0.1
end do

25

Using float/real*4 for computations

 Storing low-precision data as float is fine, but

e Generally not recommended to use float for
computations
— Float has less than half the precision of double

— Using double intermediates greatly reduces the risk of
roundoff problems polluting the answer

— Round double value back to float to give a float result

e Extrainternal precision is ablative armor against
roundoff problems

26

be careful on float -> integer conversion

* FP numbers converted in integer number can lead
to overflow/underflow ...

27

Data conversion

 On 4 June 1996, the Ariane 5 launcher ended in a failure. Only about
40 seconds after initiation of the flight sequence, exploded.

e The failure of the Ariane 501 was caused by the complete loss of
guidance and attitude. This loss of information was due to
specification and design errors in the software of the inertial
reference system.

* Theinternal SRI* software exception was caused during execution
of a data conversion from 64-bit floating point to 16-bit signed
integer value.

* The floating point number which was converted had a value greater
than what could be represented by a 16-bit signed integer.
http://www.ima.umn.edu/~arnold/disasters/ariane.html

28

What about compilers?

|EEE754 standard defines how FP are to be
performed

compilers which translates our high level [anguage
(fortran/C) to assembler is responsible to generate
IEEE-compliant code

there are generally specific flags to force the
compiler to adhere to the standard

By default some compiler do not adhere to it: you
have to force them to adhere..

29

Compiler IEEE flags
e Gnu suite:

- -ffloat-store .. a few programs rely on the precise definition of IEEE

floating point. Use -ffloat-store for such programs, after modifying them to
store all pertinent intermediate computations into variables.

e PGI:

— -Kieee -Knoieee (default) perform floating-point operations in strict
conformance with the IEEE 754 standard. Some optimizations are disabled
with -Kieee, and a more accurate math library is used. The default -Knoieee
uses faster but very slightly less accurate methods.

e Intel:

— -IMpP Maintains floating-point precision (while disabling some optimizations).
The -mp option restricts optimization to maintain declared precision and to
ensure that floating-point arithmetic conforms more closely to the ANSI* and
IEEE standards. This is the same as specifying -fltconsistency or -mieee-fp

30

A few final warnings..

* Only about 7 decimal digits are representable in single-
precision IEEE format, and about 16 in double-precision IEEE
format.

— Use double/real*8 almost everywhere

« Remember: Every time numbers are transferred from external
decimal to internal binary or vice-versa, precision can be lost.

e Always use safe comparisons.
e be careful on Conversions between data types

* Don't expect identical results from two different floating-point
implementations.

31

A final citation..

Excerpt from The Art of Computer Programming by Donald E. Knuth:

"Floating-point computation is by nature inexact, and it is not
difficult to misuse it so that the computed answers consist almost
entirely of 'noise'.

One of the principal problems of numerical analysis is to determine
how accurate the results of certain numerical methods will be; a
'credibility gap' problem is involved here: we don't know how much
of the computer's answers to believe.

solve this problem by implicitly trusting in
the computer as an infallible authority; they tend to believe all
digits of a printed answer are significant.

have just the opposite approach, they
are constantly afraid their answers are almost meaningless."

32

Yet another citation..

It makes me nervous to fly on airplanes since |
know they are designed using floating-point
arithmetic.”

A. Householder

33

Further References on Floating Point Arithmetic

* Prof. Kahan’s “Lecture Notes on IEEE 754"
- www.cs.berkeley.edu/~wkahan/ieeestatus/ieee754.ps

e Prof. Kahan’s “The Baleful Effects of Computer
Benchmarks on Applied Math, Physics and Chemistry

- www.cs.berkeley/~wkahan/ieee754status/baleful.ps
 What Every Computer Scientist Should Know About
Floating-Point Arithmetic, by David Goldberg, published in
the March, 1991 issue of Computing Surveys. Copyright

1991
* The pitfall of verifying floating point computations by D.
Monniaux

— hal.archivesouvertes.fr/docs/oo/28/14/29/PDF/ﬂoating-point-article.pséclhc

