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Outline

Standard architectures of modern systems
* Multicore architecture

* Interesting hardware within the cpus

e Memory hierarchy

 Final consideration




standard architecture

e Characteristics:

— more than one CPU!

— 64 bit address space
CPU, CPU,
t AFSB
RAM

UsB




standard modern architecture

e All data communication from one
CPU to another must travel over
the same bus used to CPU1 CPU2
communicate with the
Northbridge.

* All communication with RAM RAM
must pass through the
Northbridge.

SATA
USB

e Communication between a CPIP(C]-E
and a device attached to the
Southbridge is routed through
the Northbridge.




more expensive architecture

* Northbridge can be connected to a number of external
memory controllers (in the following example, four of
them).

CPU; CPU,

RAM
RAM

RAM
RAM

SATA

PCI-E USB

INCREASE IN BANDWIDTH TOWARD MEMORY




Another kind of architecture..

* Integrated memory controllers (AMD style)

RAM=- CPU;, - CPU; «+RAM

; ;

RAM<> CPU; <» CPU; <»RAM

NUMA ARCHITECTURE !

SATA
USB




AMD/Intel XEON comparison

AMD Opteron™ Processor Server

Intel Xeon MP Processor Server
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AMD/Intel XEON :

Mamory acoes: on Opberon and Xéeon SMP nodes
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New Intel Xeon family: Nehalem

*}A ¢— * First NUMA architecture

[cpu — J by INTEL
K e QPlamong CPUs to play

Unit Processor Lin

t IC.IF‘I
the role of hyper-
IOH :
h..,wm,m]*—* transport in AMD
N eain DM' b * Recently released (april

ﬂiﬂ

(optionall

S

2009)




which kind of CPUS?

* MULTICORE !

Multiple, externally visible
processors on a single die where
the processors have ¢
independent control-flow, =
separate internal state and no '
critical resource sharing
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What are multi-core processors?

Integrated circuit (1C) chips containing more than one
identical physical processor (core) in the same IC
package. OS perceives each core as a discrete
processor.

Each core has its own complete set of resources, and
may share the on-die cache layers

Cores may have on-die communication path to front-
side bus (FSB)

What is a multi processor?

— a collection of multicore cpus !
11




Motivation for multicores

e Exploits increased feature-size and density

* Increases functional units per chip (spatial efficiency)
* Limits energy consumption per operations

* Constrains growth in processor complexity

12




What within a core?

e Control Unit: processes

logic operations Unit And Logic

Unit
e At each cycle the CPU Gy

Execute

fetches both dataand a

description of what

: 1 Fetch 4 Store
operations need to be
performed and stores them Memory

In registers.
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What else in the cores?

 On modern CPU/Cores there are many other stuff:
— Pipelined functional units
— Superscalar execution
- Floating point instruction set extensions

* For the processors in most modern parallel machines,
the circuitry on the chip which performs a given type of
operation on operands in registers is known as a

functional unit.
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Pipelined Functional Units

* Most integer and floating point functional units are
pipelined

e they can have multiple independent executions of the
same instruction placed in a queue.

* Theideais that after aninitial startup latency, the
functional unit should be able to generate one result
every clock period (CP).

* Each stage of a pipelined operation can be working
simultaneously on different sets of operands.
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What is Pipelining?

Dave Patterson’s Laundry example: 4 people doing laundry
wash (30 min) + dry (40 min) + fold (20 min)
6 PM 7 8 9
|

v

* In this example:

| :
Time * Sequential execution takes 4 *
| |_ |_ |_ |_| gomin = 6 hours
30 40 40 40 40 20 * Pipelined execution takes
=] 5 o 30+ 4*40+20 = 3.3 hours
* Pipelining helps throughput, but
@ o 7 not latency
R = Y * Pipeline rate limited by slowest
ipeline stage
o & P
| 7 * Potential speedup = N umber
) — = ° pipe stages
ég - * Time to “fill” pipeline and time
| B 7 to “drain” it reduces speedup
T = e
© = Al
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modern processors are superscalar!

* Processors which have multiple functional units which
can operate concurrently are said to be superscalar.

 Examples:

— AMD Opteron
* 3 Floating point/MMX/SSE units
* 3 Integer units
3 Load/store units
— Intel Xeon
* 2 Floating point units
* 2 Integer units

e 2 Load/store units

17




Floating Point Instruction Set Extensions

 additional floating point instructions beyond the usual
floating point add and multiply instructions:

— Square root instruction --usually not pipelined!
« AMD Opteron | Intel Xeon
- SIMD (a.k.a. vector) floating point instructions

 AMD Opteron/ Intel Xeon
* Combined floating point multiply/add (MADD) instruction

- AMD Opteron ("Barcelona'" and after, using SIMD)
- Intel Xeon ("Woodcrest" and after, using SIMD)
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Instruction Set Extensions

* Intel
- MMX (Matrix Math eXtensions)

— SSE (Streaming SIMD Extensions) /
— SSE2 (Streaming SIMD Extensions 2)
— SSE3 and now SSE4.2 (see next slide)

 AMD
— 3DNow!

— AMD 3DNow!+ (or 3DNow! Professional, or 3DNow! Athlon)

e To check what you have on your machine:
— cat [proc/cpuinfo

. to enable them: use appropriate compiler flag.. 19




SSE4.2

= SSE4.2 Instruction Set Architecture (ISA) Leadership in 2008

Accelerated
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Memory wall problem

* The problemis not new referring to the growing gap
between how fast a CPU can operate on data and how fast it

can get the data it needs.

[Latency 1n a Single System
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CACHE and MEMORY

* CACHE:A store of things that will be required in future,

and can be retrieved rapidly. A cache may, or may not,
be hidden.

[wikidictionary]

Main Memory

Bus

L1i Cache

;
Cﬂﬂhf.‘ g . CPU C[ﬂ'ﬂ L.1d Cache +— CPU Core
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Hierarchy of memory..

* |[n modern computer system same data is stored in
several storage devices during processing

* The storage devices can be described & ranked by their
speed and “distance” from the CPU

e There is thus a hierarchy of memory objects

* Programming for a machine with memory hierarchy
requires optimization for that memory structure.
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Memory hierarchy

CPU Instructions
Addresses
CPU Register Cache VIRTUAL
Speed
DT SO

element

processor side :

system side



Components:

Registers: On-chip circuitry used to hold operands and results of
functional unit calculations.

L1 (Primary) Data Cache: Small (on-chip) cache used to hold data about
to operated on by processor.

L2 (Secondary) Cache: Larger (on-or off-chip) cache used to hold data
and instructions retrieved from local memory. Some systems also have
L3 and even L4 caches.

Local Memory: Memory on the same node as the processor.

Remote Memory: Memory on another node but accessible to all
processors in the network.

Disks: Storage space where to save read large amount of data

Tapes/SAN: space where to store data rarely needed.

25




Important concepts about cache
CACHE LINES

— Caches are split into segments called cache lines, which are
typically 4 or 8 words long. When a piece of data is
fetched from either a higher level cache or local memory,
an entire cache line is loaded.

CACHE SIZE:
— the overall dimension of the cache

CACHE HIT:

— It happens when the cpu is asking for a data and this data is
found in the cache

CACHE MISS:

— It happens when the cpu is asking for a data and this data
is NOT found in the cache 2




Cache layout

e Direct mapped:

e consecutive locations in memory are mapped to
consecutive cache lines in the cache

* N-way set associative (a location in memory can map
to any of N different cache lines).

* Direct mapped caches are easier to implement, but set
associative caches are generally considered to be
superior because they have less potential for cache
thrashing.

27




direct mapped vs 2-way associative caches

Direct Mapped
Cache Fill
M ain
Memo Cache
Memory
Index 0

Index 3

Each beation in main memory can be
cached by justone cache beation.

2-Way Associative

Cache Fill
Main
Memory Cache
Memory
Index 0, Way 0
Index 0, Way 1

P index 1, Way 1

Each bcation in main memony can be

cached by ane of twe cache beations,
28




Hierarchical Memory and Latency

* The key to hierarchical memory is that going down each level of the
hierarchy introduces approximately an order of magnitude more latency
than the previous level.

» Actual latencies for an Nehalem (2.93GHz):

— L1 data cache: 4 CPs

— L2 cache: 10 CPs

— L3 cache: 40 Cps

— Local memory: ~200Cps

(number from http://www.behardware.com/articles/733-4/report-
intel-nehalem-architecture.html)
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let's do some analogy...

Computer spead

Human spead

Andromeda
1059 CD-ROM q -‘% 2,000 years
1076 HD -
‘ 2 years
100 MMemo
i - 15h
10 Cache _ 10
1 Register
= i
clock ticks __(1_P'1_[1] minutes |

SN AN CeNA Y & CrrRREREAN HET L
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how fast/large are the caches?

1000
o0
200
100

al)
20)
10
5
2
1

Cycles/Operation

21(1

/,._._..._—r*

/

213 21[‘.’- 21."—3 222 225 22!5

Working Set Size (Bytes)
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Single core vs dual core and memory
hierarchy:

B LZ cache || 1MB L2 cache
System Request Queue il il
' ( Crossbar
Crossbar —
rated ntegrate
g DDR Memory
R Controller
Controller
L._-” ‘ :%| HyperTransport
7
6.4 GE/s
B.4 GB/s DDR-400

DDR-400

Figure 1: Single core AMDSS block diagram Figure 2: Dual core AMDE4 block diagram

IS SHARED AMONG CORES'!
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Barcelona (shangai) quad core architecture

Hypar Traaes port™ techoobopy
links prosvide up to 24 GRS peak
banchwicith per processor.

12. 8GR &
DDR2-B00

L3 CACHE IS SHARED AMONG CORES'!
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Intel platforms

e Nehalem

e Xeon 54xXx

34




Nehalem layout

System(5968MB)

Node #1{3030MB)

Node#0(3016MB)
Socketz0
L3{8192KB)
L2({256KB) L2(256KB) L2(256KB) L2(256KB)
L1{32KB) L1{32KB) L1{32KB) L1(32KB)
Core#0 Corefl Core#?2 Core#3
P£0 P#] P#2 P£3

Socket£l
L3(8192KB)
L2(256KE) L2(256KB) L2(256KB) L2(256KR)
L1(32KB) L1(32KB) L1(32KB) L1({32KB)
Coreg0 Corefl Coref2 Core#3
PE4 P#5 P#a P#7




Challenges for multicore

* Relies on effective exploitation of multiple-thread
parallelism

— Need for parallel computing model and parallel
programming model

* Aggravates memory wall problem

— Memory bandwidth

— Way to get data out of memory banks
— Way to get data into multi-core processor array
- Memory latency

— Cache sharing
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single Core VS Multiple core (from J.Dongarra
talk)

— [ | —
Cnange Is Coming
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E -il.;il"F
£ 3 o
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; ®Es Software
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a picture from Intel..

—

Performance

z—’ Time

“Parallelism for Everyone”

Parallelism changes the game

* A large percentage of people who provide applications are going to
have to care about parallelism in order to match the capabilities of
their competitors.




Conclusions

* Modern architectures have a high degree of parallelism
some time hidden to the user

* In order to optimize on them you should be aware of
this.

* Wallin memory should be taken into account if you are
looking for performance

— SMP is not always valid: NUMA
- not only RAM is shared but also L2/L3 Caches
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