

2068-11

Advanced School in High Performance and GRID Computing -Concepts and Applications

30 November - 11 December, 2009

Modern Architectures for HPC Computation

S. Cozzini CNR-INFM Democritos Trieste Italy

smr2068

Modern architectures for HPC computation Stefano Cozzini

Democrito and SISSA/eLAB - Trieste

Outline

- Standard architectures of modern systems
- Multicore architecture
- Interesting hardware within the cpus
- Memory hierarchy
- Final consideration

standard architecture

- Characteristics:
 - more than one CPU!

64 bit address space

standard modern architecture

- All data communication from one CPU to another must travel over the same bus used to communicate with the Northbridge.
- All communication with RAM must pass through the Northbridge.
- Communication between a CPIPCI-E
 and a device attached to the
 Southbridge is routed through
 the Northbridge.

more expensive architecture

 Northbridge can be connected to a number of external memory controllers (in the following example, four of them).

INCREASE IN BANDWIDTH TOWARD MEMORY

Another kind of architecture...

Integrated memory controllers (AMD style)

NUMA ARCHITECTURE!

AMD/Intel XEON comparison

AMD/Intel XEON:

Memory access on Opteron and Xeon SMP nodes

stream benchmark (triad operation: c=a+bx)

New Intel Xeon family: Nehalem

- First NUMA architecture by INTEL
- QPI among CPUs to play the role of hypertransport in AMD
- Recently released (april 2009)

which kind of CPUS?

• MULTICORE!!

Multiple, externally visible processors on a single die where the processors have independent control-flow, separate internal state and no critical resource sharing

What are multi-core processors?

- Integrated circuit (IC) chips containing more than one identical physical processor (core) in the same IC package. OS perceives each core as a discrete processor.
- Each core has its own complete set of resources, and may share the on-die cache layers

Cores may have on-die communication path to front-

side bus (FSB)

- What is a multi processor?
 - a collection of multicore cpus!

Motivation for multicores

- Exploits increased feature-size and density
- Increases functional units per chip (spatial efficiency)
- Limits energy consumption per operations
- Constrains growth in processor complexity

What within a core?

- Control Unit: processes instructions ALU: math and logic operations
- At each cycle the CPU fetches both data and a description of what operations need to be performed and stores them in registers.

What else in the cores?

- On modern CPU/Cores there are many other stuff:
 - Pipelined functional units
 - Superscalar execution
 - Floating point instruction set extensions
- For the processors in most modern parallel machines, the circuitry on the chip which performs a given type of operation on operands in registers is known as a functional unit.

Pipelined Functional Units

- Most integer and floating point functional units are pipelined
- they can have multiple independent executions of the same instruction placed in a queue.
- The idea is that after an initial startup latency, the functional unit should be able to generate one result every clock period (CP).
- Each stage of a pipelined operation can be working simultaneously on different sets of operands.

What is Pipelining?

Dave Patterson's Laundry example: 4 people doing laundry

wash (30 min) + dry (40 min) + fold (20 min)

- In this example:
 - Sequential execution takes 4 * 90min = 6 hours
 - Pipelined execution takes 30+4*40+20 = 3.3 hours
- Pipelining helps throughput, but not latency
- Pipeline rate limited by slowest pipeline stage
- Potential speedup = Number pipe stages
- Time to "fill" pipeline and time to "drain" it reduces speedup

modern processors are superscalar!

- Processors which have multiple functional units which can operate concurrently are said to be superscalar.
- Examples:
 - AMD Opteron
 - 3 Floating point/MMX/SSE units
 - 3 Integer units
 - 3 Load/store units
 - Intel Xeon
 - 2 Floating point units
 - 2 Integer units
 - 2 Load/store units

Floating Point Instruction Set Extensions

- additional floating point instructions beyond the usual floating point add and multiply instructions:
 - Square root instruction --usually not pipelined!
 - AMD Opteron / Intel Xeon
 - SIMD (a.k.a. vector) floating point instructions
 - AMD Opteron/ Intel Xeon
- Combined floating point multiply/add (MADD) instruction
 - AMD Opteron ("Barcelona" and after, using SIMD)
 - Intel Xeon ("Woodcrest" and after, using SIMD)

Instruction Set Extensions

- Intel
 - MMX (Matrix Math eXtensions)
 - SSE (Streaming SIMD Extensions) /
 - SSE2 (Streaming SIMD Extensions 2)
 - SSE3 and now SSE4.2 (see next slide)
- AMD
 - 3DNow!
 - AMD 3DNow!+ (or 3DNow! Professional, or 3DNow! Athlon)
 ...
- To check what you have on your machine:
 - cat /proc/cpuinfo
- to enable them: use appropriate compiler flag..

SSE4.2

- SSE4.2 Instruction Set Architecture (ISA) Leadership in 2008

Memory wall problem

 The problem is not new referring to the growing gap between how fast a CPU can operate on data and how fast it can get the data it needs.

Latency in a Single System

THE WALL

CACHE and MEMORY

 CACHE: A store of things that will be required in future, and can be retrieved rapidly. A cache may, or may not, be hidden.

Hierarchy of memory...

- In modern computer system same data is stored in several storage devices during processing
- The storage devices can be described & ranked by their speed and "distance" from the CPU
- There is thus a hierarchy of memory objects
- Programming for a machine with memory hierarchy requires optimization for that memory structure.

Memory hierarchy

Components:

- Registers: On-chip circuitry used to hold operands and results of functional unit calculations.
- L1 (Primary) Data Cache: Small (on-chip) cache used to hold data about to operated on by processor.
- L2 (Secondary) Cache: Larger (on-or off-chip) cache used to hold data and instructions retrieved from local memory. Some systems also have L3 and even L4 caches.
- Local Memory: Memory on the same node as the processor.
- Remote Memory: Memory on another node but accessible to all processors in the network.
- **Disks**: Storage space where to save read large amount of data
- Tapes/SAN: space where to store data rarely needed.

Important concepts about cache

CACHE LINES

 Caches are split into segments called cache lines, which are typically 4 or 8 words long. When a piece of data is fetched from either a higher level cache or local memory, an entire cache line is loaded.

CACHE SIZE:

the overall dimension of the cache

• CACHE HIT:

 It happens when the cpu is asking for a data and this data is found in the cache

CACHE MISS:

 It happens when the cpu is asking for a data and this data is NOT found in the cache

Cache layout

- Direct mapped:
- consecutive locations in memory are mapped to consecutive cache lines in the cache
- N-way set associative (a location in memory can map to any of N different cache lines).
- Direct mapped caches are easier to implement, but set associative caches are generally considered to be superior because they have less potential for cache thrashing.

direct mapped vs 2-way associative caches

Hierarchical Memory and Latency

- The key to hierarchical memory is that going down each level of the hierarchy introduces approximately an order of magnitude more latency than the previous level.
- Actual latencies for an Nehalem (2.93GHz):
 - L1 data cache: 4 CPs
 - L2 cache: 10 CPs
 - L3 cache: 40 Cps
 - Local memory: ~ 200Cps

(number from http://www.behardware.com/articles/733-4/report-intel-nehalem-architecture.html)

let's do some analogy...

how fast/large are the caches?

Single core vs dual core and memory hierarchy:

Figure 1: Single core AMD64 block diagram

Figure 2: Dual core AMD64 block diagram

Barcelona (shangai) quad core architecture

L3 CACHE IS SHARED AMONG CORES!

Intel platforms

• Nehalem

Xeon 54xx

Nehalem layout

Challenges for multicore

- Relies on effective exploitation of multiple-thread parallelism
 - Need for parallel computing model and parallel programming model
- Aggravates memory wall problem
 - Memory bandwidth
 - Way to get data out of memory banks
 - Way to get data into multi-core processor array
 - Memory latency
 - Cache sharing

single Core VS Multiple core (from J.Dongarra talk)

a picture from Intel..

"Parallelism for Everyone"

Parallelism changes the game

 A large percentage of people who provide applications are going to have to care about parallelism in order to match the capabilities of their competitors.

Conclusions

- Modern architectures have a high degree of parallelism some time hidden to the user
- In order to optimize on them you should be aware of this.
- Wall in memory should be taken into account if you are looking for performance
 - SMP is not always valid: NUMA
 - not only RAM is shared but also L2/L3 Caches