The Abdus Salam 4
International Centre for Theoretical Physics (4

PO

2068-19

Advanced School in High Performance and GRID Computing -
Concepts and Applications

30 November - 11 December, 2009

Using Compilers and Profilers to Optimize your Code for Performance
(part 1)

S.T. Brown

Carnegie Mellon University
Pittsburgh
USA

Strada Costiera | I, 34151 Trieste, ltaly - Tel.+39 040 2240 || 1; Fax +39 040 224 163 - sci_info@ictp.it

Optimization and Profiling

Shawn T. Brown
Senior Scientific Specialist
Pittsburgh Supercomputing Center
stbrown@psc.edu

Philosophy...

Real processors have
registers, cache, parallelism, ... they are bloody complicated
Why is this your problem?

In theory, compilers understand all of this and can optimize your
code; in practice they don't.

Generally optimizing algorithms across all computational
architectures is an impossible task, hand optimization will always

be needed.
We need to learn how...

to measure performance of codes on modern architectures

to tune performance of the codes by hand (32/64 bit commodity
pProcessors)

Philosophy...

When you are charged with optimizing an application...

Don't optimize the whole code

Profile the code, find the bottlenecks
They may not always be where you thought they were

Break the problem down

Try to run the shortest possible test you can to get meaningful results

Isolate serial kernels
Keep a working version of the code!
Getting the wrong answer faster is not the goal.
Optimize on the architecture on which you intend to run
Optimizations for one architecture will not necessarily translate
The compiler is your friend!

If you find yourself coding in machine language, you are doing to much.

Performance

The peak performance of a chip

The number of theoretical floating point operations per second

e.g. 2.4 Ghz Operon can theoretically do 2 fops per cycle, for a peak
performance of 4.8 Gflops

Real performance

Algorithm dependent, the actually number of floating point
operations per second

Generally, most programs get about 10% or lower of peak performance
40% of peak, and you can go on holiday

Parallel performance

The scaling of an algorithm relative to its speed on 1 processor

more tomorrow!

Performance Evaluation process

Monitoring System

Observe both overall system performance and single-program
execution characteristics.

Look to see if the system is doing well and what percentage of the resources
your program is using.

Pro: easy Con: not very detailed

Profiling and Timing the code

Timing a whole programs (time command :/usr/bin/time)
Timing portions of the program (code modification)
Profiling

Useful Monitoring Commands (Linux)

Uptime returns information about system usage and user load
ps(1) lets you see a “ snapshot” of the process table

top process table dynamic display

free memory usage

vmstat memory usage monitor
Session Edit View Bookmarks Settings Help

top - 15:48:25 up 2 days, 21:45, 1 user, load average: 0.79, 0.47, 0.35

| Tasks: 176 total, 3 running, 173 sleeping, O stopped, 0O zombie

Cpuls): 3.8%us, 4. Zsy, O0.0%n1, 71.9%1d, 19.Z%wa, 0.4%hi, 0.6%s1, 0.0%st
Mem: 4044168k total, 4016852k used, 27316k free, 20116k buffers

| Swap: 11847896k total, 23844k used, 11824052k free, 2545000k cached

PID LSER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3225 sthrown 18 0 24060 12m 850D 20 0.3 0:07.23 cscf

| 32183 sthrown 5 -10 1221m 1.1g 1.1g9 S 27,9 18:26.35 vmware-vmx
207 root 10 -! 6] 0 05 2 0 0:01.98 kswapdO
5384 root 15 1 521m 30Sm 28m S
7953 sthrown 15 0 302m 47m 9872 S

32213 root 13 :

| 32518 sthrown 0 -2C

[TR |
=

5:19.67 Xorg
52:03.17 beagled
0:00.52 pdflush
0:19.75 vmware-rtc

[T e |
= ka0

Swapping... A top disaster

virtual or swap memory:

This memory, is actually space on the hard drive. The operatingsystem
reserves a space on the hard drive for “ swap space” .

time to access virtual memory VERY large:

this time is done by the system not by your program !

op - 08:57:02 up 6 days, 19:35, 7 users, load average: 2.77, 0.73, 0.25
86 total, 2 running, 84 sleeping, © stopped, © zombie
4.8% sy, 0.0% ni, 0.0% id, 94.2% wa, 0.6% hi,
506572k used, 920k free, 196k buffers
941984k used, 1106264k free, 4740k cached

PID USER PR NI VIRT RES SHR S %CPU S%MEM TIME+ COMMAND
11656 cozzini 18 @ 2172m 408m 260 4.3 82.4 0:03.75 a.out

33 root 15 @ 0 0 0 0.7 0.0 0:00.54 kswapd@
3195 root 15 0 20696 1432 1140 0.3 ©.3 0:06.81 clock-applet

Monitoring your own code (time)

NAME
time - time a simple command or give resource usage

SYNOPSIS
time [options] command [arguments...]

DESCRIPTION
The time command runs the specified program command with
the given arguments. When command finishes, time writes a
message to standard output giving timing statistics about
this program .

_______________ >time ./a.out
[program output]
real Oml.361s

gizroggoégggs user time: Cputime dedicated to your program
' sys time: time used by your program to
execute system calls
real time: total time aka walltime

Timing A Portion of the Code

Most programming languages provide a means to access
the systems own timing functions

C function: clock Fortran Subroutine:
cpu_time
clock t c0, c1;
cO = clock(); call cpu_time(t0)
section to code.. section to code..
c1= clock(); call cpu_time(t1)

cputime = (c1 - c0)/(CLOCKS_PER_SEC); cputime = (t1 - t0)

It is good practice....

Session Edit WView Bookmarks Settings Help

MEMORY ALL

Good application writers

will take full advantage of
these to give users insight §
iInto code performance.

SUBROUTINE 5 c ELAPSED TIME
_INVFFT

CPU TIME : 12 HOURS 34 MINUTES 11.
ELAPSED TIME : 14 Hi 0 MINUTES 4

AM CPMD ENDED AT : Tue Jul 12 04:5

|| 5 Shell

Profiling

Profiling is an approach to performance analysis in which
the amount of time spent in sections of code is measured
(using either a sampling technique or on entry/exit of a
code block) and presented as a histogram.

Allows a developer to target key time consuming portions
of codes.

Profiling can be done at varied levels of granularity

Subroutine, code block, loop and source code line

GCC profiling and gprof

Simple gcc compiler flags can be used to get profiling
information.

Great place to start
GNU:

-p Generate extra code to write profile information suitable for
analysis program prof

-pg Generate extra code to write profile information suitable for
analysis by program gprof.

Procedure
gcc -pg prog.c -0 prog

prog
gprof prog.c gmon.out

Fle Edit Options Buffers Tools © Cscope Help

Cox 29T 989
J &iocy __ B> File Edit Options Buffers Tools € Cscope Help
$include <math.h:
tinclude <time.h -
double myvsum(double *#mat, int 1, int len); O @ X @ @ % CB& P‘;ﬁ @) @ @ @
double myvprod(double *#mat, int i, int len);
; . [§ double myvsum{double ##mat, int 1, int len){
mtdgﬁﬂe(ffldiic_’“,j; I::Ilr::-ublle sum;
double *3 11 A
double P%ﬁﬂh end; sum = mat[1][0];
double flops; for(j=1;j<len; j++){
nlj ik VR g b ; ;
int 1= 1000; sum += mat[1][7];
int ntimes = 100; }
b = (double #*)malloc(N*sizect (doublaex)); return sum;
for (i=0;1<N;i++) !
bli] = (double *imalloc(Nrsizect (doukble));
for Eii:blbiiwkﬂrﬁlloc(N*SlzeoﬂdOUble*)) double myvprod(double **mat, int i, int len){
eli] = (double *)malloc(N#sizeof(double)); double prod;
d = (double #*)malloc(N*sizeof (doublex)); it 7,
LY R mattcotss st st T i se
i] = (double *Imalloc(Nisizeof (double)); o o ;
= (double*Imalloc(N*sizeof (double)); fOr(] 1’]{:1en’]-kf){.
prod *= mat[1][]];
for (1=0;1i<H;i++){ }
for(J=0;J=iN Tk return prod;
bl1][]] = (double) (i+]); !
c[1][]] = (doublej(i-j};
d[1][3] = (doubley(it:
: I
begin = clock(); J
for(i=0;i<ntimes; i++){
Tor(j=0;j<N;J++]1{
a[j] = myvsumib,], N} + myvprod(c,],N) + myvsumid,j,N);
end = clock();
printf{"\nLoop time = %20.101f seconds'n", (end-begin)/(CLOCES PER SEC));
return 0;
- }
--i-- prog.c e T T -}
X --:%% prog.c (C Abbrev)--LEY9--77%-----

I

imegatron: ~/programming= gcc -pg prog.c -o prog
megatron:~/programeing= . /prog

Loop time =

1. 3400000000 seconds

megatron: ~/programming= gprof -b prog gmon.out

| Flat profile:

Each sample counts as 0.01 seconds.

self
seconds
0,86
0,24
0,02

% cumulative
time seconds
7521 0,86
21.55 1:11

1.80 1.13

self
us/call
4,32
2.41

calls
200000
100300

Call graph

lgranularity: each sample hit covers 2 byte(s) for 0.8%% of 1.13 seconds

lindex % time self

(1] log.o .02

. BE

Index by function name

[1] main
megatron: ~/programming> |

children

A1
.00

called
200000,/200000
100000,/100000

200000,/200000
200000

100000,/100000
loooao

[3] myvprod

total
usscall
4,32
2.41

name
mywvsum
myvprod
main

name
<spontaneous=
main [1]
myvsum [2]
myvprod [3]

main [1]
myvsum [2]

main [1]
myvprod [3]

(2] myvsum

Hardware Performance Counters

Most modern processors have one or more registers
dedicated to count low level hardware information

e.g. floating point operations, L1 cache misses, etc.

This information is really useful to understand at a very
fine grain of detail what a program is doing on the
architecture.

PAPI (Performance API)

The API provides function handles for setting and accessing these
counters.

http://icl.cs.utk.edu/papi/

Tuning and Analysis Utilities

TAU is a portable profiling
and tracing toolkit for
performance analysis of
parallel programs.

WWW.CS.uoregon.edu/resea
rCh/taU/home.php File Options Windows Help

Metric: Time
Walue: Exclusive
nits: microseconds

926887 | | double rrssesurmidauble **, int, int) C
454236 s double mesvprodidouble ¥, int, int) C
104407 B int mainfvoid) C

Pipelining

OOOOOOOO Stalling the pipeline slows codes down
—L LR e Out of cache reads and writes
HE- - E e . . Conditional statements
o QI ()) [(][] [[

GZITH[| I [

-] (] [

o] N[

. = — Sns 6ns Tns 8ns 9ns 10ns 11ns
Cooem = 1-1 I Stored HE EEEE NN
- Tl HE N .

e . E E EEE N
Plpellnlng aIIOV_/s fora_smooth v CEN N e
progression of instructions and data to "Decode || | | [l (e
flow through the processor eocute [JHI[| (.

N () | (e

Any optimization that facilitate S B M B B M
pipelining will speed the serial | I . M ¥
performance of your code. 1| M N N N N
| Il Il . =|

I

As chips support more SSE like 1
character, filling the pipeline is more
difficult.

— . e o e S e e e e e e el

Memory locality

Effective use of the memory heirarchy can
facilitate good pipelining

Spatial locality:

programs access data which is near to each other:

iemporatiocality; operations on tables/arrays

Recently referenced items (instr or data) are likely to

S cache line size is determined by spatial locality
be referenced again in the near future

-iterative loops, subroutines, local variables Sequentlal Ioca"ty'

-working set concept processor executes instructions in program order:

branches/in-sequence ratio is typically 1 to 5

processor
control
Second Main Secondary Tertiary
clg::,ﬁla memory s(tlgir:'g(;)e storage
datapath » (SRAM) (DRAM) (Disk/Tape)
registers| || 2" "'P
cache
Speed 1ns 10ns 100ns 10ms 10sec
Size B KB MB GB B

Caching

CPU cache is generally set
up as a series of lines that
can pull in a specified

amount of data a given Main Cache
time. Memory Memory
Index Data Index Tag Data

Accessing Cache infinitely

: 0 xyz 0 2 abc
faster than main memory T :>< 0 a2
Get as much data in at a 2 abc
time 3 rgf

Use that data to its fullest!

Optimization Methodology

So | profiled my code... found bottle necks...
Optimize one loop/routine at a time

Start with the most time consuming routines (that is why
we profile)

Then the second and the third most...

Parallelize your program..

Then work on parallel performance (communication, load
balancing, etc..)

Optimization Techniques

There are basically two different categories:

Improve memory performance (taking advantage of locality)

Better memory access patterns
Optimal usage of cache lines
Re-use of cached data

Improve CPU performance
Reduce flop count

Better instruction scheduling
Use optimal instruction set

Optimization Techniques for

Memo

Stride

contiquous blocks of memory

Accessing memory in stride greatly enhances the
performance

Fortran stores “column-wise”

C stores “row-wise” —_— | |

Array indexing

Ther are several ways to index arrays:

Do j=1,M Do j=1,M
Do i=1,N Do i=1,N
LR(1, J) cLB(i+({J-1)*N)
END DO END DO
END DO Direct END DO Explicit
Do i=1,N Do i=1.N
k=k+1 DIM'_ dex (i)
LR (K) ..ARlindex(1,] - -
END DO
END DO .
: END DO Indirect
END DO Loop camed

Example (stride

File Edit Options Buffers Tools © Cscope Help

'Offﬁxz}ﬁ%%ﬁﬁ@@@?

A 1
begin = clocki);
for{i=0;i<M;i++){
for{i=0;3<N; 3++) {
giElEsd” = BEEIEE & el
1
end = clock();
printf]
SSECY)
begin = clocki);
for{i=0;i<M;i++) {}
for (J=0; J<N; j++]14
dfil[3] = kEil[3]l ¥ ¢[ill3]s
1
end = clock();
PR
SEC));
EeEnrh. 0) ;
| Session Edit View Bookmarks
F , x
g . |megatron: ~/programmeing:>
I_ET i-= stride.c 4s PJ: megatron: ~/programming>

Loop out-stride time =

Loop in-stride time =
[megatron: ~/programming= ||

| @4 shell No. 2

=

|| (= Shell

Settings

¢ -03 stride.c
ride

7.31000

0.51000

. tend-begin) f{CLOCES PER @

. lend-begin} /{CLOCES PER S8

Help

-0 stride

0 seconds

) seconds

Data Dependencies

In order to perform hand optimization, you really need to
get a handle on the data dependencies of your loops.

Operations that do not share data dependencies can be
performed in tandum.

Loop-carried dependencies

index(l,i) " ipdex(l,i+k) Loop-carried
do i=1,n dependencies
a {(imdex (1,i}) = bi(i)
a (index (2,1i}) = ciil]
end do index (2, 1) . " index (2, i+k) Hon-loop-carried

dependencises

Automatically determining data dependencies is tough for the compiler.
great opportunity for hand optimization

Loop Interchange

Basic idea: change the order of data independent nested
loops.
Advantages:

Better memory access patterns (leading to improved cache and
memory usage)

Elimination of data dependencies (to increase opportunity for CPU
optimization and parallelization

Disadvantage:

Make make a short loop innermost

Loop Interchange — Example 1

Original Interchanged loops
DO i=1,HM Do 9=1,M
Do j=1,M DO i=1,H
C{i,jl=RA{i,])+B(i,]) C{i,jl=RA(i,3)1+B{i,J)
END DO END DO
END O END DO

i i i i

—11__|::|::|::l:r
E
E
E
E
3
3

- Access order
ﬁ
storage order

Loop Interchange in C/C++

In C, the situation is exactly the opposite

interchange For (j=0; j<M; j++) index reversal

for (1=0; 1=N; 1++)

ChiD1 = A[I0T +BRI0TL

for (=0, 1<N; 1++) for (=0, =M, j++)
for (J=0; j<N; j++) for (1=0; 1<N; 1++)
Cli0] = A0] +B]D]; ChINT = ALl +BO]0;

@ The performance benefit is the same in this case

@ [In many practical situations, loop interchange is much easier to achieve
than index reversal

Loop Interchange — Example 2

Do i=1, 300
Do 3=1, 300
DO k=1, 300
A (i,7,k) = A (i,3,kK)+ B (1,3,k)* C (i,7,k)
END DO
END DO
END DO
Loop order %335 (P4 2 4Ghz) %330 (P3 1.4Ghz)
ik B.77 9.08
i K | 761 6.82
ii ok 2 2 BE
i ko 0.57 1.32
ki 0.9 1.85

ko] 0.44 125

Compiler Loop Interchange

GNU compilers: No support

PGl compilers:

-Mvect Enable vectorization, including loop
iInterchange

Intel compilers:

-0O3 Enable aggressive optimization,
including loop transformations

CAUTION: Make sure that your program still works after this!

Loop Unrolling

Computation cheap... branching expensive

Loops, conditionals, etc. Cause branching instructions to be
performed.

Looking at a loop...

for(1=0;i<N;i++){
/ do work....
}

Every time this statement is
hit, a branching instruction is called.

So optimizing a loop would involve increasing
the work per loop iteration. More work, less branches

Loop unrolling

Manually unrolled loop
Normal loop

do 1=1 do i=1,N,4
. L_JIN . . a({i)=b(i)+x*c (i)
endg_.::fj_}_b(”-l_x*(:{l} a(i+l)=b (i+1)+x*c(i+1)

a(i+2)=b(i+2)+x*c(i1+2)
a(i+3)=b{(i+3)+x*c(1+3)
enddo

Good news — compilers can do this in the most helpful
cases (not itanium, more later)

Bad news — compilers sometimes do this where it is not
helpful and or valid.

This is not helpful when the work inside the loop is not
mostly number crunching.

Loop Unrolling - Compiler

GNU compilers:

-funrollloops Enable loop unrolling
-funrollallloops Unroll all loops; not recommended

PGI compilers:

-Munroll Enable loop unrolling

-Munroll=c:N Unroll loops with trip counts
of at least N

-Munroll=n:M Unroll loops up to M times

Intel compilers:

-unroll Enable loop unrolling
-unrollM Unroll loops up to M times

CAUTION: Make sure that your program still works after this!

Loop Unrolling Directives

program dirunroll
integer,parameter :: N=1000000
real,dimension(N):: a,b,c
real:: begin,end
real,dimension(2) :: rtime
common/saver/a,b, c

call random_number (b) Directives provide a very

calt random number(c) portable way for the

begin=dtime (rtime) compiler to perform

'DIRS UNROLL 4]]
do i=1,N automatic loop unrolling.
a(i)=b(i)+x*c (i)

end do. | Compiler can choose to
end=dtime (rtime) . .

print *,' my loop time (s) is ', (end) |gn0re It.
flop=(2.0*N) / (end) *1.0e6

print *,' loop runs at ',flop,'

MEFLOP'

print *,a(l),b(1),c (1)

end

Blocking for cache (tiling)

Blocking for cache is

An optimization that applies for datasets that do not fit entirely into
cache

A way to increase spatial locality of reference i.e. exploit full cache
lines

A way to increase temporal locality of reference i.e. improves data
reuse

Example, the transposing of a matrix

do i=1l,n
do j=1,n
a(i,3j)=b(3j,1)
end do
end do

Block algorithm for transposing a

matrix

block data size = bsize do ib = 1, nb
1o0ff = (1b-1l) * bsaz
— - de 9b = 1, mb
mb n/bSIZe Jeff = (jb-1) * bsiz
— : de] = 1, bsiz
nb = n/bsize TR i
- buf(i,j) = x(i+icff, j+jeff)
Thes_,e sizes can Iqe | | anddo
manipulated to coincide with enddo _
actual cache sizes on individual P
architectures. bswp = buf (i, 3)
buf (j,i) = bswp
) anddo
enddeo

do i=1,bsiz
de j=1,b=siz
v(j+jeff, 1+iecff) = buf(j,1)
enddo
enddo
enddo
enddo

gxecution time

0.50
0.45
0.40
0.3
0.30
0.2
0.20

Matrix Trasposition
Matrix size: 2048x2048

e str alghitiorward

H Implemeantation

Block

% /dmmam.aumngn

0 20 40 60 al 100

block size

120

Loop Fusion and Fission

Fusion: Merge multiple loops into one

—

END Lo

Loop Fusion Example

Lo i=1,W
B({i)=2*RA(1)
END Lo

0o k=1,
C({k)=B(k)+D(k)
END CO

DO ii=1,N
E(ii)=2*A{ii)
Clii)=B({ii)+D{ii)

END DO

Potential for Fusion: dependent operations in separate

loops
Advantage:
@ Re-usage of array B()
Disadvantages:

|n total 4 arrays now contend for cache space

More registers needed

Loop Fission Example

0O ii=1,N
Do ii=1,NM B(ii)=2*A(11)
B(i)=2*A(1) END DO
ENDDE{-;} =D{i-1)+C (1) T
D(ii)=D(ii-1)+C (i)
END DO
Potential for Fission: independent operations in a single
loop
Advantage:
@ First loop can be scheduled more efficiently and be parallelised as well
Disadvantages:

@ |ess opportunity for out-of-order superscalar execution
@ Additional loop created (a minor disadvantage)

Prefetching

= Modern CPU's can perform anticipated memory lookups ahead
of their use for computation.

= Hides memory latency and overlaps computation

= Minimizes memory lookup times

= This is a very architecture specific item

= Very helpful for regular, in-stride memory patterns

GNU:

-fprefetch-1oop-arrays
If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.

PGI:
-Mprefetch[=option:n] -Mnoprefetch
Add (don’t add) prefetch instructions for those processors that support

them (Pentium 4,0pteron); -Mprefetch is default on Opteron;
-Mnoprefetch is default on other processors.

Intel:
-03

Enable -O2 optimizations and in addition, enable more aggressive
optimizations such as loop and memory access transformation, and
prefetching.

Optimizing Floating Point

verformance

Operation replacement

Replacing individual time consuming operations with faster ones
Floating point division

Notoriously slow, implemented with a series of instructions

So does that mean we cannot do any division if we want performance?
|[EEE standard dictates that the division must be carried out

We can relax this and replace the division with multiplication by a reciprocal
Compiler level optimization, rarely helps doing this by hand.

Much more efficient in machine language than straight division, because it
can be done with approximates

IEEE relaxation

GNU:
-funsafe-math-optimizations

Allow optimizations for fleoating-point arithmetic that (a) assume
that arguments and results are valid and (b) may violate IEEE or ANSI
standards.

PGI:
--Kieee -Knoieee (default)

FPerform floating-point operations in strict conformance with the
IEEE 754 standard. Some optimizations are disabled with -Kieee, and a
more accurate math library is used. The default -Knoieee uses faster
but very slightly less accurate methods.

INTEL:
-—-no-prec-div (132 and 13Zem)

Enables optimizations that give slightly less precise results
than full IEEE division. With some optimizations, such as -xN and -xE,
the compiler may change fleating-point division computations 1into
multiplication by the reciprocal of the denominator.

Keep in mind! This does reduce the precision of the math!

Elimination of Reduntant Work

Consider the following piece of code

do j = 1,N
do 1 = 1,N
AC(J) = A(J) + C(1,3)/B(3)
enddo
enddo

It is clear that the division by B(j) is redundant and can be
pulled out of the loop

do j = 1,N
sum = 0.0DO
do i = 1,N
sum = sum + C(1,3)
enddo
A(3) = A(G) + sum/B(3)
enddo

Elimination of Reduntant Work

do k = 1,N
do j = 1,N
do 1 = 1,N
ACk) = B(k) + C(3) + D(1)
enddo
enddo
enddo
Array lookups cost time ue kBk==1i3N(k)
By introducing constants and do JBk?: '1’—N Bk + C(3)
precomputing values, we do 3 ~ 1N]
eliminate a bunch of unnecessary A(T() ’= BKCj + D(4)
fops enddo
This is the type of thing compilers enddec?ddo

can do quite easily.

Function (Procedure) Inlining

Calling functions and subroutines requires overhead by the
CPU to perform

The instructions need to be looked up in memory, the arguments
translated, etc..

Inlining is the process by which the compiler can replace a
function call in the object with the source code

It would be like creating your application in one big function-less
format.

Advantage

Increase optimization opportunities

Particularly advantegeous (necessary) when a function is called a
lot, and does very little work (e.g. max and min functions).

Function (Procedure) Inlining

Compiler Options

GNU compilers:
-fno-inline
-finline-functions

PGl compilers:
-Mextract=option[,option,..]

-Minline=option[,option,..]

Intel compilers:
_lp

-ipo

Disable inlining
Enable inlining of functions

Extract functions selected by option for
use in inlining; option may be

name :functionor size:NwhereNis a
number of statements

Perform inlining using option; option
may be 1lib:filename .ext,

name :function, size:N, or levels:P

Enable single-file interprocedural
optimization, including enhanced inlining
Enable interprocedural optimization
across files

Superscalar Processors

Processors which have multiple functional units are called
superscalar (instruction level parallelism)

Examples:

Athlons, Opterons, Pentium 4's

All can do multiple floating point and integer procedures in one
clock cycle

Special instructions
SSE (Streaming SIMD Extensions)

Allow users to take advantage of this power by packing mutliple operations
into one register.

SSE2 for double-precision

Right now, 2 way is very common (Opteron, P4), but 4-way to 16-way on the
horizon.

Much much more difficult to get peak performance.

Instruction Set Extension

Compiler Options

GMNLU -
—mmmx,/no-mmx These switches enable or disable the use of
built-in functions that allow direct access to
-msse the MMx, 55k, S55EZ2, SSEZ and ZDnow
-mNo-sse extensions of the instruction set
-msse’? / -mno-ssel’
-msse3 /S -mno-sse3
-m3dnow / -mno-3dnow
FGI:
--fastsse
Chooses generally optimal flags for a processor that supports
SSE instructions (Pentium 2/4, AthlonxXP/MP, Opteron) and SSEZ
(Pentium 4, Opteron). Use pgf90 -fastsse -help to see the
equivalent switches.
INTEL:

—arch SSE Optimizes for Intel Pentium 4 processors with Streaming
SIMD Extensions (5SE).

—arch SSEZ Optimizes for Intel Pentium 4 processors with Streaming
SIMD Extensions 2 (SSEZ). .

How do you know what the

niler 1s doing?

Compiler Reports and Listings

By default, compilers don't say much unless you screwed up.

One can generate optimization reports and listing files to yeild
output that shows what optimizations are performed

GNU compilers

PGl compilers

-Minfo=option|[,option, ...

-Mneginfo=option|[,option]

-Mlist

Intel compilers
—opt report

—opt _report file filename

Mone

Frints information to stderr on
option; option can be one or more
of time, loop, inline, sym, or all

Prints information to stderr on why
optimizations of type option were
not performed; option can be concur
or loop

Generates a listing file

Generates an optimization report on
stderr

Generates an optimization report to
filename

Case Study: GAMESS

Mission from the DoD — Optimize GAMESS DFT code on
an SGI Altix

First step: profile the code

hietric: Time
w3 lue: Exxlusive

Unibs . microsec onds

TAQTEET |] 0cT-3
217 ET [7 T-1
1739467 | O WAT D
GA7A00F | DFTTRFO
S9A0822 | Tal) spplic alion
SE3I006 M OCT-2
TE&X1eE [__] DFTTRF
BE220532 | DFTFOCH
IGOETOE [OFTAD
2402274 [] DFTGAD
gzaa02] OCT
150665 | GLGEUD
14523 GROFT
47127 | MPI_Init)
21350 | MPI_Rer)
GINSE | SYMFCT
AI4E3 | MPI_Sendd
1T18E.T GRODOFT
455 BE | INPINF
43756 | ATWREC
238 69 | INPESS
ITTAR | srMunNg
137.78 RADPT
58504 | WPI_Gaiherd
8. TG | MPI_Camm_dup
47781 | MPI_Caomm_iread

Case Study: GAMESS

+ Before

Source code from the OCT subroutine from the GAMESS program. This portion
gf CDd'_EkIS represented in the loop level profiling in the previous slide by the OCT-
moniker.

DO K=1MNITK
F4=F4"(1.5D+00-0.5D+00"F4"F4)

END DO

F2=0.50+00*F4

- After

Optimized source code from the OCT subroutine from the GAMESS program.
FA41 = F4%(1.5D0-0.5D0*"F4"F4)
F42 = F41%(1.5D0-0.5D0"F41*F41)
FA3 = F42%(1.5D0-0.5D0"F42*F42)
FA4 = F43%(1.5D0-0 5D0"F43*F43)
F2=0.5D0"F44

- New code is 5x faster through this section of the program

Further inspection of the Itanium archtecture showed 2
things:

The compilers were really bad at loop optimization
The overhead for conditionals is enormous

Multi-core CPU's

The key issue is memory bandwidth, and good caching
performance will be key.

This problem is worsened as more cores are added.
Caching and memory performance vary greatly

Some share L2 cache between all cores, some have their own
Varying number of pipelines to memory

Increasing SIMD operations

SSE2 and beyond
4-way here, 8 and 16-way down the pike

Makes it increasingly more difficult to get peak performance of a chip
Stalling the pipeline gives a relatively bigger hit.

Take Home Messages...

Performance programming on single processors requires

Understanding memory
levels, costs, sizes
Understand SSE and how to get it to work

In the future this will one of the most important aspects of processor
performance.

Understand your program

No subsitute for speding quality time with your code.

Do not spend a lot of time doing what | compiler will do
automatically.

Start with compiler optimizations!
Code optimization is hard work!

We haven't even talked about parallel applications yet!

