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Overview

* Fine grained (loop) parallelism
* For shared memory SMP machines

e Directive based parallelization:
Code should compile unaltered in serial mode

e Fortran 77/95 and C/C++ interface
* Incrementally parallelize a serial program
* Independent from and orthogonal to MPI

e http://www.openmp.org
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Architecture
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Execution Model

Fork-Join model on thread based machines

master
thread

{ parallel region } { parallel region }
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Directives Example: Fortran

PROGRAM HELLO
INTEGER VAR1, VARZ, VAR3

Serial code

SOMP PARALLEL PRIVATE (VAR1,VARZ2) SHARED (VAR3)

Section executed in parallel by multiple threads

SOMP END PARALLEL

Resume serial code
END
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Directives Example: C

#include <omp.h>
int main(int argc, char **argv) {
int varl, wvar2, var3;
Serial code
fpragma omp parallel private(varl,var2) shared(var3)
{
Section executed in parallel by multiple threads

}
Resume serial code

return 0;

}
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Parallel Region

PROGRAM HELLO
INTEGER NTHREADS, TID, OMP_GET_NUM THREADS,
+ OMP_GET_THREAD NUM
1SOMP PARALLEL PRIVATE (TID)

TID = OMP_GET THREAD NUM/()

PRINT *, 'Hello World from thread = ', TID

IF (TID .EQ. 0) THEN

NTHREADS = OMP_GET_ NUM _ THREADS ()

PRINT *, 'Number of threads = ', NTHREADS

END IF
1SOMP END PARALLEL
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Loop Parallelization

PROGRAM VEC_ADD_DO

INTEGER

I

REAL*8 A (1000), B(1000), C(1000)

DO I =1
A(I) =
B(I) =
ENDDO
1$OMP PARALLEL
DO I =1
C(I)

ENDDO

1SOMP END PARALLEL

END

OpenM
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1000
I * 1.0d40
A(I)*2.0d0

DO SHARED (A,B,C) PRIVATE (I)
1000

A(I) + B(I) /

“I”

value of

Remove data dependency
between threads. Each
thread will have its own
copy of “I".

QOutside of the parallel region the
Is undefined.



Loop Parallelization, cont'd
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Reduction Operation

PROGRAM VEC_ADD_DO
INTEGER I
REAL*8 A(1000), B
DO I =1, 1000
A(I) = I * 1.0d0
ENDDO
ISOMP PARALLEL DO SHARED (A) PRIVATE (I) REDUCTION (+:B)

DO I =1, 1000 Each thread will do part of the sum
and the result from the threads will

B =B + A(I) ) _ _
be combined into one final sum.

ENDDO
1SOMP END PARALLEL

END
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Non-Parallelizable Operation

PROGRAM VEC_ADD_DO
INTEGER I
REAL*8 A(1000),B(1000),C(1000)

1SOMP PARALLEL DO SHARED (A,B) PRIVATE (I)
DO I =2, 999
C(I) = 0.25d0*(A(I-1)+A(I+1))-0.5d0*A(I)

g

B(I) = 0.25d0*(C(I-1)+C(I))+0.5d0*A(I)

ENDDO

A step of the iteration depends

of the result of a previous step,

END but with threading, we cannot know
if that result is already available.

1SOMP END PARALLEL
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Race Condition

#if defined (_OPENMP)
#pragma omp parallel for default (shared) schedule(static))\
private (i, j) reduction (+:epot)
#endif
for(i=0; i < natoms-1; ++i) {
for(j=i+l; j < natoms; ++3j) {
d=r[j] - r[jl;
d=d*d;
if (d < rcutsq) {
rinv = 1.0/sqrt;
ré6=rinv*rinv*rinv;
ffac = (12.0*cl2*r6 — 6.0*c6) *r6*rinv;
epot += r6* (cl2*r6 - c6);
f[i] += ffac;
f£[j] -= ffac; The “” loop index will be distributed
} across multiple threads, so the “” on
} some thread may be the same number

} as “j” or “i” on some other thread.
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Race Condition

#pragma omp parallel for default (shared) schedule(static))\
private (i, j) reduction (+:epot)
for(i=0; i < natoms-1; ++i) {
for(j=i+l; j < natoms; ++j) {
d=r[j] - r[3j];
d=d*d;
if (d < rcutsqg) {
rinv = 1.0/sqrt;
ré6=rinv*rinv*rinv;
ffac = (12.0*cl2*r6 - 6.0*c6) *r6*rinv;
epot += r6* (cl2*r6 - c6);
#pragma omp critical
{
f[i] += ffac;
f[j] -= ffac; The critical directive will guarantee,
} that only one thread at a time, will
} execute this part of the code.
} Problem: not parallel => slow




Race Condition Cont'd

#pragma omp parallel for default (shared) schedule(static))\
private (i, j) reduction (+:epot)
for(i=0; i < natoms-1; ++i) {
for(j=i+l; j < natoms; ++j) {
d=r[j] - r[3j];
d=d*d;
if (d < rcutsqg) {
rinv = 1.0/sqrt;
ré6=rinv*rinv*rinv;
ffac = (12.0*cl2*r6 - 6.0*c6) *r6*rinv;
epot += r6*(cl2*r6 - c6);
#pragma omp atomic
f[i] += ffac;
#pragma omp atomic
f£[j] -= ffac; The “atomic” directive will protect a single
} memory location. Much less overhead
} than “critical”, but requires support from
} processor hardware.
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Race Condition Cont'd

#pragma omp parallel for default (shared) schedule(static))\
private (i, j) reduction (+:epot)
for(i=0; i < natoms; ++i) {
for(jJ=0; j < natoms; ++7j) {

If (i==]j) continue;

d=r[j] - r[3j];

d=d*d;

if (d < rcutsq) {
rinv = 1.0/sqrt;
ré6=rinv*rinv*rinv;
ffac = (12.0*cl2*r6 - 6.0*c6) *r6*rinv;
epot += 0.5*r6* (cl2*r6 — c6);
f[i] += ffac;

} The race condition can be completely
} avoided by changing the loop, but now
} we have twice the compute work to do.
Overall, this is still faster.




How To Activate OpenMP

e Compile with special flags:
* |ntel: -openmp
e PGl -mp
 GNU: -fopenmp
e Set number of threads:
* Environment: $SOMP_NUM_THREADS
* Function: omp_set num_threads()
* Implementation default

* For optimal performance, use with threaded, and
re-entrant BLAS/LAPACK library (MKL)
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OpenMP vs. MPI

 OpenMP does not require code layout
change... in principle, but it may help a lot

e Thread creation/delete overhead on SMP
 OpenMP requires shared memory

* Fine grained, local changes

« MPI + OpenMP = 2-level parallelization
most efficient on cluster of SMP nodes

 No MPI call within OpenMP block
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