The Abdus Salam 4
International Centre for Theoretical Physics (4

PO

2068-17

Advanced School in High Performance and GRID Computing -
Concepts and Applications

30 November - 11 December, 2009

Introduction to OpenMP

A. Kohlmeyer

University of Pennsylvania
Philadelphia
USA

Strada Costiera | I, 34151 Trieste, ltaly - Tel.+39 040 2240 || 1; Fax +39 040 224 163 - sci_info@ictp.it

Introduction to OpenMP

Advanced School in High Performance
and GRID Computing
Axel Kohimeyer

SEODICMS

Institute for Computational Molecular Science

OpenMP TReale s

Overview

* Fine grained (loop) parallelism
* For shared memory SMP machines

e Directive based parallelization:
Code should compile unaltered in serial mode

e Fortran 77/95 and C/C++ interface
* Incrementally parallelize a serial program
* Independent from and orthogonal to MPI

e http://www.openmp.org

OpenMP

Architecture

Application User
—IE — 3
Directive Environment
Comﬁiler Variables
=

Runtime Library

& =

Threads in Operating System

OpenMP

Execution Model

Fork-Join model on thread based machines

master
thread

{ parallel region } { parallel region }

OpenMP

Directives Example: Fortran

PROGRAM HELLO
INTEGER VAR1, VARZ, VAR3

Serial code

SOMP PARALLEL PRIVATE (VAR1,VARZ2) SHARED (VAR3)

Section executed in parallel by multiple threads

SOMP END PARALLEL

Resume serial code
END

OpenMP

Directives Example: C

#include <omp.h>
int main(int argc, char **argv) {
int varl, wvar2, var3;
Serial code
fpragma omp parallel private(varl,var2) shared(var3)
{
Section executed in parallel by multiple threads

}
Resume serial code

return 0;

}

OpenMP

Parallel Region

PROGRAM HELLO
INTEGER NTHREADS, TID, OMP_GET_NUM THREADS,
+ OMP_GET_THREAD NUM
1SOMP PARALLEL PRIVATE (TID)

TID = OMP_GET THREAD NUM/()

PRINT *, 'Hello World from thread = ', TID

IF (TID .EQ. 0) THEN

NTHREADS = OMP_GET_ NUM _ THREADS ()

PRINT *, 'Number of threads = ', NTHREADS

END IF
1SOMP END PARALLEL

OpenWiB

Loop Parallelization

PROGRAM VEC_ADD_DO

INTEGER

I

REAL*8 A (1000), B(1000), C(1000)

DO I =1
A(I) =
B(I) =
ENDDO
1$OMP PARALLEL
DO I =1
C(I)

ENDDO

1SOMP END PARALLEL

END

OpenM

4

4

1000
I * 1.0d40
A(I)*2.0d0

DO SHARED (A,B,C) PRIVATE (I)
1000

A(I) + B(I) /

“I”

value of

Remove data dependency
between threads. Each
thread will have its own
copy of “I".

QOutside of the parallel region the
Is undefined.

Loop Parallelization, cont'd

| |
| |
| |
| |
! S thread 0 |
i serial region |
| |
| |
| |
| |
| |
5
:!$DMP 1 :
| [[L |
I . thread 0 thread 1 thread 9 |
| parallel region |
| do i =1, 100 do i = 101, 200 | | do i = 901, 1000 |
| |
| |

———

c= S DA T

1
O
11

Reduction Operation

PROGRAM VEC_ADD_DO
INTEGER I
REAL*8 A(1000), B
DO I =1, 1000
A(I) = I * 1.0d0
ENDDO
ISOMP PARALLEL DO SHARED (A) PRIVATE (I) REDUCTION (+:B)

DO I =1, 1000 Each thread will do part of the sum
and the result from the threads will

B =B + A(I)) _ _
be combined into one final sum.

ENDDO
1SOMP END PARALLEL

END

OpenMP

Non-Parallelizable Operation

PROGRAM VEC_ADD_DO
INTEGER I
REAL*8 A(1000),B(1000),C(1000)

1SOMP PARALLEL DO SHARED (A,B) PRIVATE (I)
DO I =2, 999
C(I) = 0.25d0*(A(I-1)+A(I+1))-0.5d0*A(I)

g

B(I) = 0.25d0*(C(I-1)+C(I))+0.5d0*A(I)

ENDDO

A step of the iteration depends

of the result of a previous step,

END but with threading, we cannot know
if that result is already available.

1SOMP END PARALLEL

OpenMP

Race Condition

#if defined (_OPENMP)
#pragma omp parallel for default (shared) schedule(static))\
private (i, j) reduction (+:epot)
#endif
for(i=0; i < natoms-1; ++i) {
for(j=i+l; j < natoms; ++3j) {
d=r[j] - r[jl;
d=d*d;
if (d < rcutsq) {
rinv = 1.0/sqrt;
ré6=rinv*rinv*rinv;
ffac = (12.0*cl2*r6 — 6.0*c6) *r6*rinv;
epot += r6* (cl2*r6 - c6);
f[i] += ffac;
f£[j] -= ffac; The “” loop index will be distributed
} across multiple threads, so the “” on
} some thread may be the same number

} as “j” or “i” on some other thread.

OpenMP

Race Condition

#pragma omp parallel for default (shared) schedule(static))\
private (i, j) reduction (+:epot)
for(i=0; i < natoms-1; ++i) {
for(j=i+l; j < natoms; ++j) {
d=r[j] - r[3j];
d=d*d;
if (d < rcutsqg) {
rinv = 1.0/sqrt;
ré6=rinv*rinv*rinv;
ffac = (12.0*cl2*r6 - 6.0*c6) *r6*rinv;
epot += r6* (cl2*r6 - c6);
#pragma omp critical
{
f[i] += ffac;
f[j] -= ffac; The critical directive will guarantee,
} that only one thread at a time, will
} execute this part of the code.
} Problem: not parallel => slow

Race Condition Cont'd

#pragma omp parallel for default (shared) schedule(static))\
private (i, j) reduction (+:epot)
for(i=0; i < natoms-1; ++i) {
for(j=i+l; j < natoms; ++j) {
d=r[j] - r[3j];
d=d*d;
if (d < rcutsqg) {
rinv = 1.0/sqrt;
ré6=rinv*rinv*rinv;
ffac = (12.0*cl2*r6 - 6.0*c6) *r6*rinv;
epot += r6*(cl2*r6 - c6);
#pragma omp atomic
f[i] += ffac;
#pragma omp atomic
f£[j] -= ffac; The “atomic” directive will protect a single
} memory location. Much less overhead
} than “critical”, but requires support from
} processor hardware.

OpenMP

Race Condition Cont'd

#pragma omp parallel for default (shared) schedule(static))\
private (i, j) reduction (+:epot)
for(i=0; i < natoms; ++i) {
for(jJ=0; j < natoms; ++7j) {

If (i==]j) continue;

d=r[j] - r[3j];

d=d*d;

if (d < rcutsq) {
rinv = 1.0/sqrt;
ré6=rinv*rinv*rinv;
ffac = (12.0*cl2*r6 - 6.0*c6) *r6*rinv;
epot += 0.5*r6* (cl2*r6 — c6);
f[i] += ffac;

} The race condition can be completely
} avoided by changing the loop, but now
} we have twice the compute work to do.
Overall, this is still faster.

How To Activate OpenMP

e Compile with special flags:
* |ntel: -openmp
e PGl -mp
 GNU: -fopenmp
e Set number of threads:
* Environment: $SOMP_NUM_THREADS
* Function: omp_set num_threads()
* Implementation default

* For optimal performance, use with threaded, and
re-entrant BLAS/LAPACK library (MKL)

OpenMP

OpenMP vs. MPI

 OpenMP does not require code layout
change... in principle, but it may help a lot

e Thread creation/delete overhead on SMP
 OpenMP requires shared memory

* Fine grained, local changes

« MPI + OpenMP = 2-level parallelization
most efficient on cluster of SMP nodes

 No MPI call within OpenMP block

OpenMP

