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Hopefully this talk will (partially) Hopefully this talk will (partially) 
answeranswer……

�� What is a GPU?What is a GPU?
�� Why would I use a GPU for scientific computing?Why would I use a GPU for scientific computing?
�� When should I consider using When should I consider using GPUsGPUs to solve my to solve my 

problem?problem?
�� What are the main hardware features available What are the main hardware features available 

to the GPU programmer?to the GPU programmer?
�� How do I use the GPU to solve my problem?How do I use the GPU to solve my problem?
�� How do I use the GPU to solve my problem How do I use the GPU to solve my problem 

really fastreally fast??



What is a graphical processing unit What is a graphical processing unit 
(GPU)?(GPU)?

�� A processor you add to A processor you add to 
your computer to your computer to 
accelerate graphical accelerate graphical 
applications, e.g. applications, e.g. 
computer gamescomputer games

�� Most desktops and Most desktops and 
laptop computers laptop computers 
already contain a GPU already contain a GPU 
of some kindof some kind

http://www.nvnews.net/previews/geforce_8800_gtx
/images/geforce_8800_gts.jpg



Why do we want to use Why do we want to use GPUsGPUs forfor
scientific computing?scientific computing?

�� They are inexpensiveThey are inexpensive
�� They are readily They are readily 

available, and available, and 
possibly already possibly already 
present in your present in your 
desktop workstation desktop workstation 

�� They are fast for They are fast for 
floating point mathfloating point math

�� The operations The operations 
involved in game involved in game 
software are similar software are similar 
to those in scientific to those in scientific 
applicationsapplications

Processor Cost
Floating Point 
Performance

Memory
Bandwidth

Quad-Core Intel Xeon E5506 @2.13GHz $1500 68 Gflop/s 19 GB/s
NVidia GTX 275 +$300 304 Gflop/s 127 GB/s

GPUsGPUs outperform CPUs on a per dollar basisoutperform CPUs on a per dollar basis



How is a game similar to a physics How is a game similar to a physics 
simulation?simulation?

�� GamesGames areare physic simulationsphysic simulations
�� Graphical manipulations are linear algebraGraphical manipulations are linear algebra

Physics and games both require fast floating point mathPhysics and games both require fast floating point math



How fast?How fast?

�� HOOMDHOOMD J. A. Anderson, et al. J Comp. Phys. 227 (2008) 5342J. A. Anderson, et al. J Comp. Phys. 227 (2008) 5342

Thanks to Axel Kohlmeyer and David LeBard



How fast?How fast?

�� Radial Distribution FunctionsRadial Distribution Functions

r



How fast?How fast?

�� CP2KCP2K
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molecule in a 15 Å periodic 
box, Pade functional



GPU Acceleration StrategiesGPU Acceleration Strategies

More Work to CodeMore Work to Code

Faster PerformanceFaster Performance

Link to Link to 
LibrariesLibraries

HandHand--codecode
PerformancePerformance--

CriticalCritical
SubroutinesSubroutines

RewriteRewrite
Whole Code Whole Code 

From ScratchFrom Scratch

CP2K
(2-3x speedup)

HOOMD
(30x speedup)

Radial Distribution 
Functions

(10-100x speedup)



NVidiaNVidia GPU ArchitectureGPU Architecture

�� ParallelismParallelism
�� MemoryMemory

HierarchyHierarchy

Multiprocessor
(processes 32 

threads)

Shared Memory 
(16 kB / Multiproc.)

Multiprocessor
(processes 32 

threads)

8192 32-bit 
Registers 

Device Memory 
(up to 4 GB)

To PCI-E bus
8.0 GB/s

76.8 GB/s

8192 32-bit 
Registers 

32-bit load / 
thread / 4 cycles

32-bit load / 
thread / 4 cycles

Up to 32 Multi-
processors

32-bit load / 
thread / 4 cycles

Constant Cache 
(8 kB / Multiproc.)

Constant
Memory 

(up to 64 kB)



NVidiaNVidia GPU ArchitectureGPU Architecture

�� Applies the same Applies the same 
instruction to 32 instruction to 32 
pieces of data pieces of data 
simultaneouslysimultaneously
(SIMD)(SIMD)

Multiprocessor
(processes 32 

threads)

1 + 8 =  9

4 + 8 = 12

9 + 0 =  9

3 + 4 =  7

3 + 5 =  8

7 + 7 = 14

...

1 * 8 =  8

4 + 8 = 12

9 - 0 =  9

3 + 4 =  7

3 * 5 = 15

7 / 7 =  1

...



NVidiaNVidia GPU ArchitectureGPU Architecture

�� Double precision Double precision 
floating point floating point 
math is 7x slower math is 7x slower 
than single (next than single (next 
generationgeneration
““FermiFermi”” will be will be 
only 2x slower)only 2x slower)

�� Fused multiplyFused multiply--
addadd

Multiprocessor
(processes 32 

threads)

1 * 2 + 8 = 10

4 * 3 + 8 = 20

9 * 1 + 0 =  9

3 * 8 + 4 = 28

3 * 3 + 5 = 14

7 * 4 + 7 = 35

...



NVidiaNVidia GPU ArchitectureGPU Architecture

�� A GPU chip A GPU chip 
contains between contains between 
1 and 32 1 and 32 
multiprocessorsmultiprocessors

Multiprocessor
(processes 32 

threads)

Multiprocessor
(processes 32 

threads)

Up to 32 Multi-
processors

The key to successful GPU programming is keeping 
all multiprocessors busy as much as is possible

32 multiprocessors * 32 threads / multiprocessor * 
2 FLOPs per cycle  =  2048 FLOPS at one time!



NVidiaNVidia GPU ArchitectureGPU Architecture
Multiprocessor
(processes 32 

threads)

Shared Memory 
(16 kB / Multiproc.)

Multiprocessor
(processes 32 

threads)

8192 32-bit 
Registers 

Device Memory 
(up to 4 GB)

To PCI-E bus
8.0 GB/s

76.8 GB/s

8192 32-bit 
Registers 

32-bit load / 
thread / 4 cycles

32-bit load / 
thread / 4 cycles

Up to 32 Multi-
processors

32-bit load / 
thread / 4 cycles

Constant Cache 
(8 kB / Multiproc.)

Constant
Memory 

(up to 64 kB)

On-Chip

Off-Chip/On-Card



NVidiaNVidia GPU ArchitectureGPU Architecture
Multiprocessor
(processes 32 

threads)

Shared Memory 
(16 kB / Multiproc.)

Multiprocessor
(processes 32 

threads)

8192 32-bit 
Registers 

Device Memory 
(up to 4 GB)

To PCI-E bus
8.0 GB/s

76.8 GB/s

8192 32-bit 
Registers 

32-bit load / 
thread / 4 cycles

32-bit load / 
thread / 4 cycles

Up to 32 Multi-
processors

32-bit load / 
thread / 4 cycles

Constant Cache 
(8 kB / Multiproc.)

Constant
Memory 

(up to 64 kB)

�� Slow offSlow off--chipchip
memorymemory



NVidiaNVidia GPU ArchitectureGPU Architecture
Multiprocessor
(processes 32 

threads)

Shared Memory 
(16 kB / Multiproc.)

Multiprocessor
(processes 32 

threads)

8192 32-bit 
Registers 

Device Memory 
(up to 4 GB)

To PCI-E bus
8.0 GB/s

76.8 GB/s

8192 32-bit 
Registers 

32-bit load / 
thread / 4 cycles

32-bit load / 
thread / 4 cycles

Up to 32 Multi-
processors

32-bit load / 
thread / 4 cycles

Constant Cache 
(8 kB / Multiproc.)

Constant
Memory 

(up to 64 kB)

�� Slow offSlow off--chipchip
memorymemory

�� Fast onFast on--chipchip
memorymemory



NVidiaNVidia GPU ArchitectureGPU Architecture

Device (Global) Device (Global) 
MemoryMemory

�� SlowSlow
�� LargeLarge
�� Analogous to main Analogous to main 

memory in a memory in a 
desktop computerdesktop computer

�� Typically not Typically not 
cachedcached

�� Accessible from all Accessible from all 
threads on GPU and threads on GPU and 
from the CPUfrom the CPU

Multiprocessor
(processes 32 

threads)

Shared Memory 
(16 kB / Multiproc.)

Multiprocessor
(processes 32 

threads)

8192 32-bit 
Registers 

Device Memory 
(up to 4 GB)

To PCI-E bus
8.0 GB/s

76.8 GB/s

8192 32-bit 
Registers 

32-bit load / 
thread / 4 cycles

32-bit load / 
thread / 4 cycles

Up to 32 Multi-
processors

32-bit load / 
thread / 4 cycles

Constant Cache 
(8 kB / Multiproc.)

Constant
Memory 

(up to 64 kB)



NVidiaNVidia GPU ArchitectureGPU Architecture

RegistersRegisters
�� Loads very fastLoads very fast
�� Limited supply Limited supply 

(~25/thread for (~25/thread for 
good performance)good performance)

�� Each thread has its Each thread has its 
ownown

�� Analogous to Analogous to 
registers in a registers in a 
computercomputer

�� Can be accessed Can be accessed 
only from the GPUonly from the GPU

Multiprocessor
(processes 32 

threads)

Shared Memory 
(16 kB / Multiproc.)

Multiprocessor
(processes 32 

threads)

8192 32-bit 
Registers 

Device Memory 
(up to 4 GB)

To PCI-E bus
8.0 GB/s

76.8 GB/s

8192 32-bit 
Registers 

32-bit load / 
thread / 4 cycles

32-bit load / 
thread / 4 cycles

Up to 32 Multi-
processors

32-bit load / 
thread / 4 cycles

Constant Cache 
(8 kB / Multiproc.)

Constant
Memory 

(up to 64 kB)



NVidiaNVidia GPU ArchitectureGPU Architecture

Shared memoryShared memory
�� CanCan be as fast as be as fast as 

registersregisters
�� Limited supplyLimited supply
�� Like a cache, but Like a cache, but 

user controlleduser controlled
�� Shared by several Shared by several 

threadsthreads
�� Can only be Can only be 

accessed by the accessed by the 
GPUGPU

Multiprocessor
(processes 32 

threads)

Shared Memory 
(16 kB / Multiproc.)

Multiprocessor
(processes 32 

threads)

8192 32-bit 
Registers 

Device Memory 
(up to 4 GB)

To PCI-E bus
8.0 GB/s

76.8 GB/s

8192 32-bit 
Registers 

32-bit load / 
thread / 4 cycles

32-bit load / 
thread / 4 cycles

Up to 32 Multi-
processors

32-bit load / 
thread / 4 cycles

Constant Cache 
(8 kB / Multiproc.)

Constant
Memory 

(up to 64 kB)



NVidiaNVidia GPU ArchitectureGPU Architecture

Constant MemoryConstant Memory
�� Device memory Device memory 

which is associated which is associated 
with an onwith an on--chipchip
cachecache

�� As fast as registers As fast as registers 
if you are accessing if you are accessing 
cached datacached data

�� Limited supplyLimited supply
�� ReadRead--only from only from 

GPUGPU
�� ReadRead--write from write from 

CPUCPU

Multiprocessor
(processes 32 

threads)

Shared Memory 
(16 kB / Multiproc.)

Multiprocessor
(processes 32 

threads)

8192 32-bit 
Registers 

Device Memory 
(up to 4 GB)

To PCI-E bus
8.0 GB/s

76.8 GB/s

8192 32-bit 
Registers 

32-bit load / 
thread / 4 cycles

32-bit load / 
thread / 4 cycles

Up to 32 Multi-
processors

32-bit load / 
thread / 4 cycles

Constant Cache 
(8 kB / Multiproc.)

Constant
Memory 

(up to 64 kB)



Memory Hierarchy SummaryMemory Hierarchy Summary

The programmer has almost complete control over the 
location of data in this hierarchy!

Layers of memory differ inLayers of memory differ in
�� sizesize
�� speedspeed
�� whether they shared between among several whether they shared between among several 

threadsthreads
�� whether they can be written to from the GPU whether they can be written to from the GPU 

or only reador only read
�� whether they are associated with a cachewhether they are associated with a cache



What weWhat we’’ve learned so farve learned so far……

�� GPUsGPUs are fastare fast
�� GPUsGPUs are relatively inexpensiveare relatively inexpensive
�� The more time you put into programming, The more time you put into programming, 

the faster your GPU code can bethe faster your GPU code can be
�� GPUsGPUs are highly parallel processorsare highly parallel processors
�� GPU memory is broken down into a large GPU memory is broken down into a large 

amount of slow memory, and several amount of slow memory, and several 
small chunks of fast memorysmall chunks of fast memory

But what do we do if we want to use it?



First, stop and First, stop and THINKTHINK

�� How much time do I have to code? How much time do I have to code? –– A lot A lot 
of coding is needed to gain a large of coding is needed to gain a large 
speedup in most cases.speedup in most cases.

�� Which parts of my code are performance Which parts of my code are performance 
critical?critical? –– Perhaps optimizing a single Perhaps optimizing a single 
routine could give a substantial speedup.routine could give a substantial speedup.

�� Will my problem map well to the GPU?Will my problem map well to the GPU?



Will my problem map well to the Will my problem map well to the 
GPU?GPU?

�� Those which involve:Those which involve:
�� performing the same operations on a lot of dataperforming the same operations on a lot of data
�� lots of floating point mathlots of floating point math
�� regular memory access patternregular memory access pattern
�� problem which can be solved (mostly) in single problem which can be solved (mostly) in single 

precisionprecision
�� ExamplesExamples

�� algorithms based on linear algebraalgorithms based on linear algebra
�� parallel random number generation (MC with multiple parallel random number generation (MC with multiple 

walkers)walkers)



Compute Unified Device Compute Unified Device 
Architecture (CUDA)Architecture (CUDA)

�� Created by Created by NVidiaNVidia to allow their to allow their GPUsGPUs to be used for to be used for 
general highgeneral high--performance computing applicationsperformance computing applications

�� An extension to the C programming languageAn extension to the C programming language
�� Programming Guide:Programming Guide:

http://developer.download.nvidia.com/compute/cuda/2_http://developer.download.nvidia.com/compute/cuda/2_
3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.p3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.p
dfdf

�� To learn more about applications and find online To learn more about applications and find online 
tutorials:tutorials:
http://http://www.nvidia.com/object/cuda_education.htmlwww.nvidia.com/object/cuda_education.html



Installing CUDAInstalling CUDA

�� Download from:Download from:
http://http://www.nvidia.com/object/cuda_home.htmlwww.nvidia.com/object/cuda_home.html##

�� Download and install three thingsDownload and install three things
�� CUDA driver CUDA driver –– tells your computer how to access the GPU tells your computer how to access the GPU 

hardwarehardware
�� CUDA toolkit CUDA toolkit –– contains the NVCC compiler and libraries needed contains the NVCC compiler and libraries needed 

to compile GPU accelerated codeto compile GPU accelerated code
�� CUDA standard developers kit (SDK) CUDA standard developers kit (SDK) –– contains example codes contains example codes 

which are useful in learning CUDAwhich are useful in learning CUDA

�� Easiest to install with one of the supported Linux Easiest to install with one of the supported Linux 
distributions (distributions (RedhatRedhat Enter., Fedora, SUSE Enter., Enter., Fedora, SUSE Enter., 
OpenSUSEOpenSUSE,, UbuntuUbuntu))



Compiling CUDA CodeCompiling CUDA Code

�� Include the Include the cuda_runtimecuda_runtime header file at the header file at the 
beginning of your source filebeginning of your source file

#include <#include <cuda_runtime.hcuda_runtime.h>>
�� UseUse nvccnvcc just like any other compilerjust like any other compiler

nvccnvcc --oo xyz.exyz.e xyz.cuxyz.cu
�� Preprocessing is the same as for CPreprocessing is the same as for C
�� IMPORTANTIMPORTANT –– simply adding the above simply adding the above 
#include#include statement and compiling with statement and compiling with nvccnvcc
does not result in any portion of your code being does not result in any portion of your code being 
run on the GPU!run on the GPU!



Emulation ModeEmulation Mode

�� Emulation mode executables run GPU code on the CPU Emulation mode executables run GPU code on the CPU 
onlyonly

�� Emulation mode is particular useful for debugging Emulation mode is particular useful for debugging 
because input/output (e.g. because input/output (e.g. printfprintf) is not available on ) is not available on 
the GPUthe GPU

�� To compile in emulations mode:To compile in emulations mode:
nvccnvcc --oo xyz.exyz.e ––deviceemudeviceemu ––D__DEVICEEMUD__DEVICEEMU xyz.cuxyz.cu

�� Then, to printThen, to print
##ifdefifdef __DEVICEEMU__DEVICEEMU
printf(printf(““debuggingdebugging infoinfo””););
##endifendif



Math LibrariesMath Libraries

�� CUBLASCUBLAS –– Linear AlgebraLinear Algebra
�� Single and Double Precision BLAS RoutinesSingle and Double Precision BLAS Routines
�� Helper functionsHelper functions

�� cublasInitcublasInit andand cublasShutdowncublasShutdown must be run before and after any must be run before and after any 
callscalls

�� Routines to allocate and free device memoryRoutines to allocate and free device memory
�� Routines to move data between main memory and deviceRoutines to move data between main memory and device

�� http://developer.download.nvidia.com/compute/cuda/2_0/docs/http://developer.download.nvidia.com/compute/cuda/2_0/docs/
CUBLAS_Library_2.0.pdfCUBLAS_Library_2.0.pdf

�� CUFFTCUFFT –– Fast Fourier TransformsFast Fourier Transforms
�� Interface similar to FFTWInterface similar to FFTW
�� http://developer.download.nvidia.com/compute/cuda/1_1/CUFFThttp://developer.download.nvidia.com/compute/cuda/1_1/CUFFT

_Library_1.1.pdf_Library_1.1.pdf



Linking to the Math LibrariesLinking to the Math Libraries

�� To link to the CUBLAS or CUFFT libraries To link to the CUBLAS or CUFFT libraries 
include the appropriate header file in your include the appropriate header file in your 
source codesource code

#include <#include <cublas.hcublas.h>>
#include <#include <cufft.hcufft.h>>

�� Pass the option to link to the appropriate Pass the option to link to the appropriate 
library to library to nvccnvcc

nvccnvcc --oo xyz.exyz.e ––lcublaslcublas xyz.cuxyz.cu
nvccnvcc --oo xyz.exyz.e ––lcufftlcufft xyz.cuxyz.cu



TerminologyTerminology

�� Host = the nonHost = the non--GPU part of your machineGPU part of your machine
�� Host memory = main memoryHost memory = main memory
�� Host processor = CPUHost processor = CPU

�� Device = the graphics cardDevice = the graphics card
�� Device memory = the offDevice memory = the off--chip memory on the chip memory on the 

device (global memory)device (global memory)



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

�� The following code squares each element The following code squares each element 
of a vector of a vector A_host on the CPUon the CPU

void square_vec(float* A_host,
int n) {

for (int i=0; i<n; i++) {
A_host[i] = A_host[i] * 

A_host[i];
}

}



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

�� The main routine The main routine 
looks almost like looks almost like 
standard C standard C 

�� It is called from and It is called from and 
executed on the CPUexecuted on the CPU

void square_vec(float* A_host,
int n) {

float* A_dev;
cudaMalloc((void**)&A_dev,

n * sizeof(float));
cudaMemcpy(A_dev, A_host,

n * sizeof(float),
cudaMemcpyHostToDevice);

gpu_kernel<<<1,n>>>(A_dev);
cudaMemcpy(A_host, A_dev,

n * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(A_dev);
}



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

void square_vec(float* A_host,
int n) {

float* A_dev;
cudaMalloc((void**)&A_dev,

n * sizeof(float));
cudaMemcpy(A_dev, A_host,

n * sizeof(float),
cudaMemcpyHostToDevice);

gpu_kernel<<<1,n>>>(A_dev);
cudaMemcpy(A_host, A_dev,

n * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(A_dev);
}

A_host is a vector of length n
stored in the host (main) memory

This code with calculate 

A_host[i] = A_host[i]^2 

for all elements of A_host in
parallel on the GPU



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

void square_vec(float* A_host,
int n) {

float* A_dev;
cudaMalloc((void**)&A_dev,

n * sizeof(float));
cudaMemcpy(A_dev, A_host,

n * sizeof(float),
cudaMemcpyHostToDevice);

gpu_kernel<<<1,n>>>(A_dev);
cudaMemcpy(A_host, A_dev,

n * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(A_dev);
}

Enough global memory to store the 
array on the device is dynamically 
allocated using the cudaMalloc
library routine



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

void square_vec(float* A_host,
int n) {

float* A_dev;
cudaMalloc((void**)&A_dev,

n * sizeof(float));
cudaMemcpy(A_dev, A_host,

n * sizeof(float),
cudaMemcpyHostToDevice);

gpu_kernel<<<1,n>>>(A_dev);
cudaMemcpy(A_host, A_dev,

n * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(A_dev);
}

The contents of A_host (in main 
memory) are copied to A_dev (in
device memory) using the 
cudaMemcpy library routine



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

void square_vec(float* A_host,
int n) {

float* A_dev;
cudaMalloc((void**)&A_dev,

n * sizeof(float));
cudaMemcpy(A_dev, A_host,

n * sizeof(float),
cudaMemcpyHostToDevice);

gpu_kernel<<<1,n>>>(A_dev);
cudaMemcpy(A_host, A_dev,

n * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(A_dev);
}

gpu_kernel is a user written 
routine which runs on the GPU.

The bracketed numbers <<<1,n>>>
denote that 1 block of n threads will 
be spawned.

Blocks of threads share shared 
memory and can be synchronized 
with barriers; threads in different 
blocks cannot share memory or be 
syncronized.



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

void square_vec(float* A_host,
int n) {

float* A_dev;
cudaMalloc((void**)&A_dev,

n * sizeof(float));
cudaMemcpy(A_dev, A_host,

n * sizeof(float),
cudaMemcpyHostToDevice);

gpu_kernel<<<1,n>>>(A_dev);
cudaMemcpy(A_host, A_dev,

n * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(A_dev);
}

After gpu_kernel completes, the 
contents of A_dev (in device 
memory) are copied to A_host (in
main memory) using the 
cudaMemcpy library routine



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

void square_vec(float* A_host,
int n) {

float* A_dev;
cudaMalloc((void**)&A_dev,

n * sizeof(float));
cudaMemcpy(A_dev, A_host,

n * sizeof(float),
cudaMemcpyHostToDevice);

gpu_kernel<<<1,n>>>(A_dev);
cudaMemcpy(A_host, A_dev,

n * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(A_dev);
}

The dynamically allocated device 
memory pointed to by A_dev is
freed



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

void square_vec(float* A_host,
int n) {

float* A_dev;
cudaMalloc((void**)&A_dev,

n * sizeof(float));
cudaMemcpy(A_dev, A_host,

n * sizeof(float),
cudaMemcpyHostToDevice);

gpu_kernel<<<1,n>>>(A_dev);
cudaMemcpy(A_host, A_dev,

n * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(A_dev);
}



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

__global__ void gpu_kernel(
float* A_dev) {

float tmp;
tmp = A_dev[threadIdx.x];
tmp = tmp * tmp;
A_dev[threadIdx.x] = tmp;

}

Define the function with the 
__global__ function type qualifier 
to tell the compiler that this function 
will be called from the host, but run 
on the device



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

__global__ void gpu_kernel(
float* A_dev) {

float tmp;
tmp = A_dev[threadIdx.x];
tmp = tmp * tmp;
A_dev[threadIdx.x] = tmp;

}

Declaring tmp without a variable 
type qualifier indicates that we want 
the compiler to store tmp in a 
register if possible

If the compiler determines that it 
does not want to use a register for 
this variable it will be placed in 
global memory



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

__global__ void gpu_kernel(
float* A_dev) {

float tmp;
tmp = A_dev[threadIdx.x];
tmp = tmp * tmp;
A_dev[threadIdx.x] = tmp;

}

We load an element of the A_dev
into the register (tmp)

threadIdx.x is a unique identifier 
for each thread of the block, 
starting at 0 and counting up to 
blockDim.x-1, thus we load a 
unique element of A_dev for each 
thread



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

__global__ void gpu_kernel(
float* A_dev) {

float tmp;
tmp = A_dev[threadIdx.x];
tmp = tmp * tmp;
A_dev[threadIdx.x] = tmp;

}

Just multiplication, nothing special



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

__global__ void gpu_kernel(
float* A_dev) {

float tmp;
tmp = A_dev[threadIdx.x];
tmp = tmp * tmp;
A_dev[threadIdx.x] = tmp;

}

Store the result of the multiplication 
from the register (tmp) back into 
global memory (A_dev)



What Does CUDA Code Look Like?What Does CUDA Code Look Like?

__global__ void gpu_kernel(
float* A_dev) {

float tmp;
tmp = A_dev[threadIdx.x];
tmp = square(tmp);
A_dev[threadIdx.x] = tmp;

}

__device__ float square(
float x) {

float y 
y = x * x;
return y;

}

If we want we can create 
__device__ functions which are 
callable from the GPU and run on 
the GPU



Summary of CUDA extensions to Summary of CUDA extensions to 
standard Cstandard C

�� Memory ManagementMemory Management
�� cudaMalloccudaMalloc –– Allocates global memory on Allocates global memory on 

the devicethe device
�� cudaMemcpycudaMemcpy –– Copies memory from host to Copies memory from host to 

device and from device to hostdevice and from device to host
�� cudaFreecudaFree –– Frees dynamically allocated Frees dynamically allocated 

global memoryglobal memory



Summary of CUDA extensions to Summary of CUDA extensions to 
standard Cstandard C

�� Function type qualifiersFunction type qualifiers
�� __host____host__ or no type qualifier or no type qualifier –– runs on the runs on the 

host and is callable only from the hosthost and is callable only from the host
�� __global____global__ –– runs on the device but is runs on the device but is 

callable only from the hostcallable only from the host
�� __device____device__ –– runs on the device and is runs on the device and is 

callable only from the devicecallable only from the device



Summary of CUDA extensions to Summary of CUDA extensions to 
standard Cstandard C

�� Variable type qualifiersVariable type qualifiers
�� No type qualifier No type qualifier –– a scalar variable will a scalar variable will 

usually be stored as a register, an array will usually be stored as a register, an array will 
go to slow device memory.  In both cases the go to slow device memory.  In both cases the 
variable is accessible only from a single variable is accessible only from a single 
thread.thread.

�� __shared____shared__ –– store variable in fast shared store variable in fast shared 
memory.  Variable is accessible from all memory.  Variable is accessible from all 
threads in the thread block.threads in the thread block.




