The Abdus Salam 4
International Centre for Theoretical Physics (4

PO

2068-18

Advanced School in High Performance and GRID Computing -
Concepts and Applications

30 November - 11 December, 2009

Introduction to Graphical Processing Units as Tools for
Scientific Computing

Ben Levine

Temple University
Philadelphia
USA

Strada Costiera | I, 34151 Trieste, ltaly - Tel.+39 040 2240 || 1; Fax +39 040 224 163 - sci_info@ictp.it

Introduction to Graphical
Processing Units as Tools for
Scientific Computing

Benjamin G. Levine

Institute for Computational Molecular Science
and Department of Chemistry

Temple University
Philadelphia, PA, USA

Hopefully this talk will (partially)
answer...

= What is a GPU?
= Why would I use a GPU for scientific computing?

= When should I consider using GPUs to solve my
problem?

s What are the main hardware features available
to the GPU programmer?

= How do I use the GPU to solve my problem?

= How do I use the GPU to solve my problem
really fast?

What is a graphical processing unit
(GPU)?

= A processor you add to
your computer to
accelerate graphical
applications, e.g.
computer games

= Most desktops and

laptop computers
already contain a GPU

http://www.nvnews.net/previews/geforce_8800_gtx

Of SO m e kl n d /images/geforce_8800_gts.jpg

Why do we want to use GPUs for
scientific computing?

= They are inexpensive = They are fast for

N They are read”y ﬂoating pOint math
available, and = The operations
possibly already involved in game
present in your software are similar
desktop workstation to those in scientific

applications
Floating Point Memory

Processor Cost Performance Bandwidth

Quad-Core Intel Xeon E5506 @2.13GHz $1500 68 Gflop/s 19 GB/s

NVidia GTX 275 +$300 304 Gflop/s 127 GB/s

GPUs outperform CPUs on a per dollar basis

How is a game similar to a physics
simulation?

s Games are physic simulations
s Graphical manipulations are linear algebra

Physics and games both require fast floating point math

| HOOMDJ.A.

Nanoseconds of simulated time per day

How fast?

Anderson, et al. J Comp. Phys. 227 (2008) 5342

300

250

200

150

100

50

Simulation Speed HOOMD vs. LAMMPS

BlueGene/L vs. 1 Desktop

B 40140 Atoms
B 160560 Atoms
[] 361260 Atoms
[1003500 Atoms

Processors

Thanks to Axel Kohlmeyer and David LeBard

How fast?

a Radial Distribution Functions

10 -
= o’
o
o
[&]
A
|_ 1t
Q
o
£
T
o
g &
z 01p
=
2 * NVidia GTX-260
@ s+ AMD Athlon 64 X2 @ 2.61 GHz

001 | | | |
0 8192 16384 24576 32768

Atoms in Selection

How fast?

s CP2K

500 - .
* FFTSG (CPU)
400 1 FFTW3 (CPU)
2 300+
Density functional £ . .
:) — .
calculation - A single water g 200 - .8
molecule in a 15 A periodic = . s
box, Pade functional 100 -
0
160 240 320 400 480

Plane W ave Cutoff / au

GPU Acceleration Strategies

_ Hand-code Rewrite
Link to Performance- Whole Code
Libraries Critical From Scratch
Subroutines

More Work to Code

aST

er Performance

HOOMD

CP2K (30x speedup)

(2-3x speedup)

Radial Distribution
Functions
(10-100x speedup)

NVidia GPU Architecture

a Parallelism

s Memory
Hierarchy

Up to 32 Multi-
processors

To PCI-E bus

NVidia GPU Architecture

= Applies the same -

instruction to 32
pieces of data
simultaneously
(SIMD)

4 W W o o R

+ 4+ o+ o+ o+ 4+
49 U1 A O ®
I
<

NVidia GPU Architecture

= Double precision -

floating point
math is 7x slower
than single (next
generation
“Fermi” will be
only 2x slower)

= Fused multiply-
add

= 10

= 20

28

= 14

49 W W o o R
*

W o Rk W N

+ + + o+ o+ o+

~J ul L o (0] 0o
Il

= 35

NVidia GPU Architecture

A A

s A GPU chip
contains between
1 and 32
multiprocessors

32 multiprocessors * 32 threads / multiprocessor *
2 FLOPs per cycle = 2048 FLOPS at one time!

The key to successful GPU programming is keeping
all multiprocessors busy as much as is possible

NVidia GPU Architecture

On-Chip

Up to 32 Multi-
processors

Off-Chip/On-Card

To PCI-E bus

NVidia GPU Architecture

s Slow off-chip
memory

Up to 32 Multi-
processors

To PCI-E bus

NVidia GPU Architecture

s Slow off-chip
memory

s Fast on-chip
memory

Up to 32 Multi-
processors

To PCI-E bus

NVidia GPU Architecture

Device (Global)
Memory

= Slow
s Large

= Analogous to main
memory in a
desktop computer Up to 32 Multi-

s Typically not b
cached

m Accessible from all
threads on GPU and
from the CPU

To PCI-E bus

NVidia GPU Architecture

Registers
s Loads very fast

s Limited suppliy
(~25/thread for
good performance)

m Each thread has its
own Up to 32 Multi-

o Anqlogou;:, to processors
registers in a
computer

= Can be accessed
only from the GPU

To PCI-E bus

NVidia GPU Architecture

Shared memory

m Can be as fast as
registers

s Limited supply

s Like a cache, but
user controlled Up to 32 Multi-

s Shared by several processors
threads

s Can only be
accessed by the
GPU

To PCI-E bus

Constant Memory

NVidia GPU Architecture

Device memory
which is associated
with an on-chip
cache

As fast as registers
if you are accessing Up to 32 Multi-
cached data processors

Limited supply

Read-only from
GPU

Read-write from
CPU

To PCI-E bus

Mermory Hierarchy Summary

Layers of memory differ in
m Size
m Speed

s Whether they shared between among several
threads

s Whether they can be written to from the GPU
or only read

s Whether they are associated with a cache

The programmer has almost complete control over the
location of data in this hierarchy!

What we've learned so far...

s GPUs are fast
s GPUs are relatively inexpensive

= The more time you put into programming,
the faster your GPU code can be

s GPUs are highly parallel processors

s GPU memory is broken down into a large
amount of slow memory, and several
small chunks of fast memory

But what do we do if we want to use it?

First, stop and THINK

= How much time do I have to code? — A lot
of coding is needed to gain a large
speedup in most cases.

= Which parts of my code are performance
critical? — Perhaps optimizing a single
routine could give a substantial speedup.

= Will my problem map well to the GPU?

Will my problem map well to the
GPU?

= Those which involve:
m performing the same operations on a lot of data
m lots of floating point math
m regular memory access pattern
= problem which can be solved (mostly) in single
precision
= Examples
m algorithms based on linear algebra

m parallel random number generation (MC with multiple
walkers)

Compute Unified Device
Architecture (CUDA)

Created by NVidia to allow their GPUs to be used for
general high-performance computing applications

An extension to the C programming language
Programming Guide:

nttp://developer. rlownlorjrl nvidia.com/cormpute/cuda/2
3/toolkit/docs/NVIDIA CUDA Programming Guide 2.3.p
af

To learn more about applications and find online
tutorials:

ntto://www.nvidia.com/object/cuda_education.ntml

Installing CUDA

s Download from:
nttp://www.nvidia.com/object/cuda nhome.ntmi#
s Download and install three things

s CUDA driver — tells your computer how to access the GPU
hardware

s CUDA toolkit — contains the NVCC compiler and libraries needed
to compile GPU accelerated code

s CUDA standard developers kit (SDK) — contains example codes
which are useful in learning CUDA
s Easiest to install with one of the supported Linux
distributions (Redhat Enter., Fedora, SUSE Enter.,
OpenSUSE, Ubuntu)

Compiling CUDA Code

= Include the cuda_runtime header file at the
beginning of your source file

#include <cuda runtime.h>

s Use nvcc just like any other compiler
Nnvcc -0 XYyZ.e Xyz.Cu

s Preprocessing is the same as for C

= IMPORTANT - simply adding the above

#include statement and compiling with nvcc

does not result in any portion of your code being
run on the GPU!

Emulation Mode

Emulation mode executables run GPU code on the CPU
only

Emulation mode is particular useful for debugging
because input/output (e.g. printf) is not available on

the GPU
To compile in emulations mode:

nvcc -o xyz.e —deviceemu —-D DEVICEEMU xyz.cu
Then, to print

#ifdef DEVICEEMU
printf (Ydebugging info”) ;
#endif

Math Libraries

s CUBLAS - Linear Algebra

s Single and Double Precision BLAS Routines

m Helper functions

J cuII:IJIasInit and cublasShutdown must be run before and after any
calls

= Routines to allocate and free device memory
= Routines to move data between main memory and device

= http://developer.download.nvidia.com/compute/cuda/2 0/docs/
CUBLAS Library 2.0.pdf
» CUFFT - Fast Fourier Transforms
= Interface similar to FFTW

= http://developer.download.nvidia.com/compute/cuda/l 1/CUFFT
Library 1.1.pdf

Linking to the Math Libraries

= To link to the CUBLAS or CUFFT libraries
include the appropriate header file in your
source code

#include <cublas.h>
#include <cufft.h>

s Pass the option to link to the appropriate
library to nvcc

nvcc -o xyz.e —-lcublas xyz.cu
nvcc -0 xXyz.e —-lcufft xyz.cu

Terminology

s Host = the non-GPU part of your machine
s Host memory = main memory
m Host processor = CPU

= Device = the graphics card

= Device memory = the off-chip memory on the
device (global memory)

What Does CUDA Code Look Like?

s The following code squares each element
of a vector A host on the CPU

void square vec (float* A host,

int n) {
for (int i=0; i<n; 1i++) {
A host[i] = A host[i] *

A host[i];
}
}

What Does CUDA Code Look Like?

- The ma|n rOUtlne void square_veci(rflioi)t*{A_host,
looks almost like Eloat” 2 vt
cudaMalloc ((void**) &A dev,
standard C n * sizeof (float));
] cudaMemcpy (A dev, A host,
s It is called from and e
cudaMemcpyHostToDevice) ;
eXGCUted on the CPU gpu_kernel<<<1l,n>>>(A dev);

cudaMemcpy (A host, A dev,
n * sizeof (float),
cudaMemcpyDeviceToHost) ;
cudaFree (A dev);

What Does CUDA Code Look Like?

A host is a vector of length n void square vec (float* A host,
stored in the host (main) memory int n) |

float* A dev;
This code with calculate cudaMalloc ((void**) &A dev,

n * sizeof (float));
cudaMemcpy (A dev, A host,

for all elements of 2 host in n * sizeof (float),
para||e| on the GPU a cudaMemcpyHostToDevice) ;
gpu_kernel<<<1l,n>>>(A dev);

cudaMemcpy (A host, A dev,
n * sizeof (float),
cudaMemcpyDeviceToHost) ;
cudaFree (A dev);

A host[i] = A host[i]"2

What Does CUDA Code Look Like?

vold square vec(float* A host,
int n) {

Enough global memory to store the float* A dev;

array on the device is dynamically cudaMalloc ((void**)sA dev,
allocated using the cudaMalloc 5% sfmee® (Elese)) ¢
library routine cudaMemcpy (A dev, A host,

n * sizeof(float),

cudaMemcpyHostToDevice) ;
gpu_kernel<<<1l,n>>>(A dev);
cudaMemcpy (A host, A dev,

n * sizeof(float),

cudaMemcpyDeviceToHost) ;
cudaFree (A dev);

What Does CUDA Code Look Like?

vold square vec(float* A host,
int n) {
float* A dev;
cudaMalloc ((void**) &A dev,

The contents of A host (in main . ijl * SiZ(:ogﬁloit})l) ;t
memory) are copied to A dev (in clLozbamepy (# dev, A nogt,

.) n * sizeof (float),
device memory) using the

_ : cudaMemcpyHostToDevice) ;
cudaMemcpy library routine gpu_kernel<<<l,n>>>(A dev);

cudaMemcpy (A host, A dev,
n * sizeof (float),
cudaMemcpyDeviceToHost) ;
cudaFree (A dev);

What Does CUDA Code Look Like?

vold square vec(float* A host,
int n) {

_ _ float* A dev;
gpu_kernel IS @ user written cudaMalloc ((void**) &A dev,

routine which runs on the GPU. n * sizeof (float)):

The bracketed numbers <<<1,n>>> cudaMemcpy (A_dev, A_host,
n * sizeof (float),

denote that 1 block of n threads will ,
b g cudaMemcpyHostToDevice) ;
€ Spawned. gpu_kernel<<<l,n>>> (A dev);

Blocks of threads share shared SUCESHER (A HOStE, & ES7,
memory and can be synchronized n * sizeof(float), .
with barriers; threads in different . da;ﬁzzbfimzzz?fVlceTOHOSt) ’
blocks cannot share memory or be } -

syncronized.

What Does CUDA Code Look Like?

vold square vec(float* A host,
int n) {
float* A dev;
cudaMalloc ((void**) &A dev,
n * sizeof (float));
cudaMemcpy (A dev, A host,
n * sizeof (float),
cudaMemcpyHostToDevice) ;

After gpu kernel completes, the gpu_kernel<<<1l,n>>>(A dev);
contents of A dev (in device cudaMemcpy (A_host, A_dev,
memory) are copied to A host (in e Bazeet (Eleat)

main memory) using the cudaMemcpyDeviceToHost) ;

i : I3 A ;
cudaMemcpy library routine cudaFree (A_dev)

What Does CUDA Code Look Like?

vold square vec(float* A host,
int n) {
float* A dev;
cudaMalloc ((void**) &A dev,
n * sizeof (float));
cudaMemcpy (A dev, A host,
n * sizeof(float),
cudaMemcpyHostToDevice) ;
gpu_kernel<<<1l,n>>>(A dev);
cudaMemcpy (A host, A dev,
n * sizeof(float),
The dynamically allocated device cudaMemcpyDeviceToHost) ;
memory pointed to by 2 dev is cudaFree (A dev) ;

freed }

What Does CUDA Code Look Like?

vold square vec(float* A host,
int n) {
float* A dev;
cudaMalloc ((void**) &A dev,
n * sizeof (float));
cudaMemcpy (A dev, A host,
n * sizeof(float),
cudaMemcpyHostToDevice) ;
gpu_kernel<<<l,n>>> (A dev);
cudaMemcpy (A host, A dev,
n * sizeof (float),
cudaMemcpyDeviceToHost) ;
cudaFree (A dev);

What Does CUDA Code Look Like?

Define the function with the

__global function type qualifier
to tell the compiler that this function
will be called from the host, but run

on the device

__global void gpu kernel (

float* A dev) {
float tmp;
tmp = A dev|[threadIdx.x];
tmp = tmp * tmp;
A dev[threadIldx.x] = tmp;

What Does CUDA Code Look Like?

Declaring tmp without a variable __global__ void gpu_kernel (
type qualifier indicates that we want float* A _dev) {
the compiler to store tmp in a floas o,

tmp = A dev|[threadIdx.x];
tmp = tmp * tmp;

If the compiler determines that it A_dev[threadldx.x] = tmp;
does not want to use a register for J

this variable it will be placed in

global memory

register if possible

What Does CUDA Code Look Like?

__global void gpu kernel (
We load an element of the 2 dev float* A dev) {

into the register (tmp) float tmp;

.) i o tmp = A dev|[threadIldx.x];
threadIdx.x IS a unique identifier g

for each thread of the block, A dev[threadldx.x] = tmp;
starting at 0 and counting up to b

blockDim.x-1, thus we load a

unique element of A dev for each

thread

What Does CUDA Code Look Like?

__global void gpu kernel (
float* A dev) {

float tmp;
tmp = A dev|[threadIdx.x];
Just multiplication, nothing special tmp = tmp * tmp;

A dev[threadIldx.x] = tmp;

What Does CUDA Code Look Like?

Store the result of the multiplication

from the register (tmp) back into
global memory (2 dev)

__global void gpu kernel (

float* A dev) {
float tmp;
tmp = A dev|[threadIdx.x];
tmp = tmp * tmp;
A dev[threadIldx.x] = tmp;

What Does CUDA Code Look Like?

__global wvoid gpu kernel (
float* A dev) {

float tmp;
tmp = A dev[threadIdx.x];

A dev[threadIldx.x] = tmp;
}

If we want we can create
__device functions which are
callable from the GPU and run on
the GPU

Summary of CUDA extensions to
standard C

s Memory Management

m cudaMalloc — Allocates global memory on
the device

m cudaMemcpy — Copies memory from host to
device and from device to host

m cudaFree — Frees dynamically allocated
global memory

Summary of CUDA extensions to
standard C

s Function type qualifiers

m host orno type qualifier — runs on the
host and is callable only from the host

m global -—runson the device but is
callable only from the host
m device -—runs on the device and is

callable only_from the device

Summary of CUDA extensions to
standard C

= Variable type qualifiers

m No type qualifier — a scalar variable will
usually be stored as a register, an array will
go to slow device memory. In both cases the
variable is accessible only from a single
thread.

m shared - store variable in fast shared

memory. Variable is accessible from all
threads in the thread block.

