Advanced School in High Performance and GRID Computing -
Concepts and Applications

30 November - 11 December, 2009

40 ways to simulate liquid argon

A. Kohlmeyer
University of Pennsylvania
Philadelphia
USA
40 Ways to Simulate Liquid Argon

A case study in optimization and parallelization

Axel Kohlmeyer

Institute for Computational Molecular Science
0) Overture: The physics of the model
1) First Act: Writing and optimizing a serial code
2) Intermezzo: Improve scaling with system size
3) Second Act: MPI parallelization
4) Third Act: OpenMP parallelization
5) Finale: GPU acceleration
6) Encore: Hybrid MPI/OpenMP parallelization
7) Last dance: Lessons learned
0) The Model for Liquid Argon

- Cubic box of particles with a Lennard-Jones type pairwise additive interaction potential

\[
V = \sum_{i,j} \begin{cases}
4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right], & r_{ij} < r_c \\
0, & r_{ij} \geq r_c
\end{cases}
\]

- Periodic boundary conditions to avoid surface effects
Newton's Laws of Motion

- We consider our particles to be classical objects so Newton's laws of motion apply:
- 1. In absence of a force a body rests or moves in a straight line with constant velocity
- 2. A body experiencing a force \mathbf{F} experiences an acceleration \mathbf{a} related to \mathbf{F} by $\mathbf{F} = m\mathbf{a}$, where m is the mass of the body.
- 3. Whenever a first body exerts a force \mathbf{F} on a second body, the second body exerts a force $-\mathbf{F}$ on the first body
Velocity Verlet Algorithm

- The velocity Verlet algorithm is used to propagate the positions of the atoms

\[
\begin{align*}
\vec{x}_i(t+\Delta t) &= \vec{x}_i(t) + \vec{v}_i(t) \Delta t + \frac{1}{2} \vec{a}_i(t) (\Delta t)^2 \\
\vec{v}_i(t+\frac{\Delta t}{2}) &= \vec{v}_i(t) + \frac{1}{2} \vec{a}_i(t) \Delta t \\
\vec{a}_i(t+\Delta t) &= -\frac{1}{m} \nabla V(\vec{x}_i(t+\Delta t)) \\
\vec{v}_i(t+\Delta t) &= \vec{v}_i(t+\frac{\Delta t}{2}) + \frac{1}{2} \vec{a}_i(t) \Delta^2
\end{align*}
\]

Velocity Verlet Algorithm

- The velocity Verlet algorithm is used to propagate the positions of the atoms

\[\ddot{v}_i(t + \frac{\Delta t}{2}) = \ddot{v}_i(t) + \frac{1}{2} \dddot{a}_i(t) \Delta t \]

\[\dddot{x}_i(t + \Delta t) = \dddot{x}_i(t) + \dddot{v}_i(t + \frac{\Delta t}{2}) \Delta t \]

\[\dddot{a}_i(t + \Delta t) = -\frac{1}{m} \nabla V(\dddot{x}_i(t + \Delta t)) \begin{cases} 4\epsilon \left[-12 \left(\frac{\sigma}{r_{ij}} \right)^{13} + 6 \left(\frac{\sigma}{r_{ij}} \right)^{7} \right], & r_{ij} < r_c \\ 0, & r_{ij} \geq r_c \end{cases} \]

\[\ddot{v}_i(t + \Delta t) = \ddot{v}_i(t + \frac{\Delta t}{2}) + \frac{1}{2} \dddot{a}_i(t) \Delta^2 \]

What Do We Need to Program?

1. Read in parameters and initial status and compute what is missing (e.g. accelerations)
2. Integrate Equations of motion with Velocity Verlet for a given number of steps
 a) Propagate all velocities for half a step
 b) Propagate all positions for a full step
 c) Compute forces on all atoms to get accelerations
 d) Propagate all velocities for half a step
 e) Output intermediate results, if needed
void velverlet(mdsys_t *sys) {
 for (int i=0; i<sys->natoms; ++i) {
 sys->vx[i] += 0.5*sys->dt / mvsq2e * sys->fx[i] / sys->mass;
 sys->vy[i] += 0.5*sys->dt / mvsq2e * sys->fy[i] / sys->mass;
 sys->vz[i] += 0.5*sys->dt / mvsq2e * sys->fz[i] / sys->mass;
 sys->rx[i] += sys->dt*sys->vx[i];
 sys->ry[i] += sys->dt*sys->vy[i];
 sys->rz[i] += sys->dt*sys->vz[i];
 }
}

force(sys);

for (int i=0; i<sys->natoms; ++i) {
 sys->vx[i] += 0.5*sys->dt / mvsq2e * sys->fx[i] / sys->mass;
 sys->vy[i] += 0.5*sys->dt / mvsq2e * sys->fy[i] / sys->mass;
 sys->vz[i] += 0.5*sys->dt / mvsq2e * sys->fz[i] / sys->mass;
}
}
Initial Code: Force Calculation

```c
for(i=0; i < (sys->natoms); ++i) {
    for(j=0; j < (sys->natoms); ++j) {
        if (i==j) continue;

        rx = pbc(sys->rx[i] - sys->rx[j], 0.5*sys->box);
        ry = pbc(sys->ry[i] - sys->ry[j], 0.5*sys->box);
        rz = pbc(sys->rz[i] - sys->rz[j], 0.5*sys->box);
        r = sqrt(rx*rx + ry*ry + rz*rz);

        if (r < sys->rcut) {
            ffac = -4.0*sys->epsilon*(-12.0*pow(sys->sigma/r,12.0)/r
                +6.0*pow(sys->sigma/r,6.0)/r);
            sys->epot += 0.5*4.0*sys->epsilon*(pow(sys->sigma/r,12.0)
                -pow(sys->sigma/r,6.0));

            sys->fx[i] += rx/ffac;
            sys->fy[i] += ry/ffac;
            sys->fz[i] += rz/ffac;
        }
    }
}
```

Compute distance between atoms i & j
Compute energy and force
Add force contribution of atom j on atom i
How Well Does it Work?

• Compiled with:
  ```bash
gcc -o ljmd.x ljmd.c -lm
```
Test input: 108 atoms, 10000 steps: 49s
Let us get a profile:

<table>
<thead>
<tr>
<th></th>
<th>cumulative time</th>
<th>cumulative seconds</th>
<th>self time</th>
<th>self seconds</th>
<th>calls</th>
<th>self ms/call</th>
<th>total ms/call</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>force</td>
<td>73.70</td>
<td>13.87</td>
<td>13.87</td>
<td>10001</td>
<td>1.39</td>
<td>1.86</td>
<td>force</td>
<td></td>
</tr>
<tr>
<td>pbc</td>
<td>24.97</td>
<td>18.57</td>
<td>4.70</td>
<td>346714668</td>
<td>0.00</td>
<td>0.00</td>
<td>pbc</td>
<td></td>
</tr>
<tr>
<td>main</td>
<td>0.96</td>
<td>18.75</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td>main</td>
<td></td>
</tr>
<tr>
<td>ekin</td>
<td>0.37</td>
<td>18.82</td>
<td>0.07</td>
<td>10001</td>
<td>0.01</td>
<td>0.01</td>
<td>ekin</td>
<td></td>
</tr>
<tr>
<td>azzero</td>
<td>0.00</td>
<td>18.82</td>
<td>0.00</td>
<td>30006</td>
<td>0.00</td>
<td>0.00</td>
<td>azzero</td>
<td></td>
</tr>
<tr>
<td>output</td>
<td>0.00</td>
<td>18.82</td>
<td>0.00</td>
<td>101</td>
<td>0.00</td>
<td>0.00</td>
<td>output</td>
<td></td>
</tr>
<tr>
<td>getline</td>
<td>0.00</td>
<td>18.82</td>
<td>0.00</td>
<td>12</td>
<td>0.00</td>
<td>0.00</td>
<td>getline</td>
<td></td>
</tr>
</tbody>
</table>
Step One: Compiler Optimization

- Use of pbc() is convenient, but costs 25% => compiling with -O3 should inline it
- Loops should be unrolled for superscalar CPUs => compiling with -O2 or -O3 should do it for us
 Time now: 39s (1.3x faster) Only a bit faster
- Now try some more optimization options: -ffast-math -fexpensive-optimizations -msse3
 Time now: 10s (4.9x faster) Much better!
- Compare to LAMMPS: 3.6s => need to do more
Now Modify the Code

- Use physics! Newton's 3rd law: \(\mathbf{F}_{ij} = -\mathbf{F}_{ji} \)

```c
for(i=0; i < (sys->natoms)-1; ++i) {
    for(j=i+1; j < (sys->natoms); ++j) {
        rx=pbc(sys->rx[i] - sys->rx[j], 0.5*sys->box);
        ry=pbc(sys->ry[i] - sys->ry[j], 0.5*sys->box);
        rz=pbc(sys->rz[i] - sys->rz[j], 0.5*sys->box);
        r = sqrt(rx*rx + ry*ry + rz*rz);
        if (r < sys->rcut) {
            ffac = -4.0*sys->epsilon*(-12.0*pow(sys->sigma/r,12.0)/r
                +6*pow(sys->sigma/r,6.0)/r);
            sys->epot += 0.5*4.0*sys->epsilon*(pow(sys->sigma/r,12.0)
                -pow(sys->sigma/r,6.0));
            sys->fx[i] += rx/r*ffac;  sys->fx[j] -= rx/r*ffac;
            sys->fy[i] += ry/r*ffac;  sys->fy[j] -= ry/r*ffac;
            sys->fz[i] += rz/r*ffac;  sys->fz[j] -= rz/r*ffac;
        }
    }
}
```

Time now: 5.4s (9.0x faster) Another big improvement
More Modifications

- Avoid expensive math: pow(), sqrt(), division

```c
double r6, rinv; rinv = 1.0 / rsq; r6 = rinv * rinv * rinv;
ffac = (12.0 * c12 * r6 - 6.0 * c6) * r6 * rinv;
sys->epot += r6 * (c12 * r6 - c6);
sys->fx[i] += rx*ffac; sys->fx[j] -= rx*ffac;
sys->fy[i] += ry*ffac; sys->fy[j] -= ry*ffac;
sys->fz[i] += rz*ffac; sys->fz[j] -= rz*ffac;
```

=> 108 atoms: 4.0s (12.2x faster) still worth it

HPC and GRID School
Improvements So Far

- Use the optimal compiler flags => ~5x faster
 but some of it: inlining, unrolling could be coded

- Use our knowledge of physics => ~2x faster
 since we need to compute only half the data.

- Use our knowledge of computer hardware
 => 1.35x faster. (there could be more: SSE)

We are within 10% (4s vs. 3.6s) of LAMMPS.

- Try a bigger system: 2916 atoms, 100 steps
 Our code: 13.3s LAMMPS: 2.7s => Bad scaling
 with system size
2) Making it Scale with System Size

- Let's look at the algorithm again: We compute all distances between pairs.
- But for larger systems, not all pairs contribute and our effort is $O(N^2)$.
- So we need a way to avoid looking at pairs that are too far away.

=> Sort atoms into cell lists, which is $O(N)$.
The Cell-List Variant

- At startup build a list of lists to store atom indices for atoms that “belong” to a cell
- Compute a list of pairs between cells which contain atoms within cutoff. Doesn't change!
- During MD sort atoms into cells
- Then loop over list of “close” pairs of cells i and j
- For pair of cells loop over pairs of atoms in them
- Now we have linear scaling with system size at the cost of using more memory and an O(N) sort
Cell List Loop

```c
for(i=0; i < sys->npair; ++i) {
    cell_t *c1, *c2;
    c1=sys->clist + sys->plist[2*i];
    c2=sys->clist + sys->plist[2*i+1];

    for (int j=0; j < c1->natoms; ++j) {
        int ii=c1->idxlist[j];
        double rx1=sys->rx[ii];
        double ry1=sys->ry[ii];
        double rz1=sys->rz[ii];

        for(int k=0; k < c2->natoms; ++k) {
            int jj=c2->idxlist[k];
            double rx,ry,rz,rsq;
            double rx1=sys->rx[jj];
            double ry1=sys->ry[jj];
            double rz1=sys->rz[jj];

            rx=pbc(rx1 - sys->rx[jj], boxby2, sys->box);
            ry=pbc(ry1 - sys->ry[jj], boxby2, sys->box);
            rz=pbc(rz1 - sys->rz[jj], boxby2, sys->box);
            ...
        }
    }
}
```

- 2916 atom time: 3.4s (4x faster), LAMMPS 2.7s
Scaling with System Size

- Cell list does not help (or hurt) much for small inputs, but is a huge win for larger problems

=> Lesson: always pay attention to scaling
3) What if optimization is not enough?

- Having linear scaling is nice, but twice the system size is still twice the work
 => Parallelization

- Simple MPI parallelization first
 - MPI is “share nothing” (replicated or distributed data)
 - Run the same code path with the same data but insert a few MPI calls
 - Broadcast positions from rank 0 to all before force()
 - Compute forces on different atoms for each rank
 - Collect (reduce) forces from all to rank 0 after force()
Replicated Data MPI Version

```c
static void force(mdsys_t *sys) {
    double epot=0.0;
    azzero(sys->cx,sys->natoms); azzero(sys->cy,sys->natoms); azzero(sys->cz,sys->natoms);
    MPI_Bcast(sys->rx, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
    MPI_Bcast(sys->ry, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
    MPI_Bcast(sys->rz, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
    for (i=0; i < sys->natoms-1; i += sys->nsize) {
        ii = i + sys->mpirank;
        if (ii >= (sys->natoms - 1)) break;
        for (j=i+1; i < sys->natoms; ++j) {
            [...]
            sys->cy[j] = ry*ffac;
            sys->cz[j] = rz*ffac;
        }
    }
    MPI_Reduce(sys->cx, sys->fx, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
    MPI_Reduce(sys->cy, sys->fy, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
    MPI_Reduce(sys->cz, sys->fz, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
    MPI_Reduce(&epot, &sys->epot, 1, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
}
```

- Easy to implement, but lots of communication
MPI Parallel Efficiency

- 108 atoms / $O(N^2)$
- 2915 atoms / $O(N^2)$
- 2916 atoms / $O(N)$
MPI Parallel Execution Times

- 108 atoms / $O(N^2)$
- 2915 atoms / $O(N^2)$
- 2916 atoms / $O(N)$

HPC and GRID School
4) OpenMP Parallelization

- OpenMP is directive based
 => code (can) work without them
- OpenMP can be added incrementally
- OpenMP only works in shared memory
 => multi-core processors
- OpenMP hides the calls to a threads library
 => less flexible, but less programming
- **Caution:** write access to shared data can easily lead to race conditions
Naive OpenMP Version

```c
#if defined(_OPENMP)
#pragma omp parallel for default(shared)
    private(i) reduction(+:epot)
#endif
for(i=0; i < (sys->natoms)-1; ++i) {
    double rx1=sys->rx[i];
    double ry1=sys->ry[i];
    double rz1=sys->rz[i];
    [...]
}
```

Each thread will work on different values of “i”

Timings (108 atoms):
1 thread: 4.2s
2 threads: 7.1s
4 threads: 7.7s
8 threads: 8.6s

Race condition: “i” will be unique for each thread, but not “j”
=> multiple threads may write to the same location concurrently
Naive OpenMP Version

```c
#if defined(_OPENMP)
#pragma omp parallel for default(shared) \ 
   private(i) reduction(+:epot)
#endif
for(i=0; i < (sys->natoms)-1; ++i) {
   double rx1=sys->rx[i];
   double ry1=sys->ry[i];
   double rz1=sys->rz[i];
   [...]
#endif
```

Each thread will work on different values of “i”

```c
#if defined(_OPENMP)
#pragma omp critical
#endif
{ }
```

The “critical” directive will let only one thread execute this block at a time

Timings (108 atoms):

1 thread: 4.2s
2 threads: 7.1s
4 threads: 7.7s
8 threads: 8.6s
OpenMP Improvements

• Use **omp atomic** to protect one instruction => faster, but requires hardware support
 108: 1T: 6.3s, 2T: 5.0s, 4T: 4.4s, 8T: 4.2s
 2916: 1T: 126s, 2T: 73s, 4T: 48s, 8T: 26s
 => some speedup, but serial is faster for 108, at 2916 atoms we are often beyond cutoff

• Don't use Newton's 3rd Law => no race condition
 108: 1T: 6.5s, 2T: 3.7s, 4T: 2.3s, 8T: 2.1s
 2916: 1T: 213s, 2T: 106s, 4T: 53s, 8T: 21s
 => better scaling, but we lose 2x serial speed
#if defined(_OPENMP)
#pragma omp parallel reduction(+:epot)
#endif
{
 double *fx, *fy, *fz;
 #if defined(_OPENMP)
 int tid=omp_get_thread_num();
 #else
 int tid=0;
 #endif
 fx=sys->fx + (tid*sys->natoms); azzero(fx,sys->natoms);
 fy=sys->fy + (tid*sys->natoms); azzero(fy,sys->natoms);
 fz=sys->fz + (tid*sys->natoms); azzero(fz,sys->natoms);
 for(int i=0; i < (sys->natoms -1); i += sys->nthreads) {
 int ii = i + tid;
 if (ii >= (sys->natoms -1)) break;
 rx1=sys->rx[ii]; ry1=sys->ry[ii];
 rz1=sys->rz[ii];
 }
 Thread Id is like MPI rank
 sys->fx holds storage for one full fx array for each thread => race condition is eliminated.
MPI-like Approach with OpenMP (2)

• We need to write our own reduction:

```
if defined (_OPENMP)
#pragma omp barrier
#endif

i = 1 + (sys->natoms / sys->nthreads);
fromidx = tid * i;
toidx = fromidx + i;
if (toidx > sys->natoms) toidx = sys->natoms;

for (i=1; i < sys->nthreads; ++i) {
    int offs = i*sys->natoms;
    for (int j=fromidx; j < toidx; ++j) {
        sys->fx[j] += sys->fx[offs+j];
        sys->fy[j] += sys->fy[offs+j];
        sys->fz[j] += sys->fz[offs+j];
    }
}
```

Need to make certain, all threads are done with computing forces

Use threads to parallelize the reductions
More OpenMP Timings

- The **omp parallel** region timings

 108: 1T: 3.5s, 2T: 2.5s, 4T: 2.2s, 8T: 2.5s
 2916: 1T: 103s, 2T: 53s, 4T: 19s, 8T: 10s

 => better speedup, but serial is faster for 108, at 2916 atoms we are often beyond cutoff

- This approach also works with cell lists:

 108: 1T: 4.3s, 2T: 3.1s, 4T: 2.4s, 8T: 2.9s
 2916: 1T: 28s, 2T: 15s, 4T: 8.9s, 8T: 4.1s

 => 6.8x speedup with 8 threads.

That is **62x** faster than the first serial version
5) GPU Version with CUDA

- GPU is threading with thousands of threads
 => One thread per loop iteration
 => Same issues as OpenMP, but more extreme

- Cannot use the best MPI-like threading strategy as it would need too much memory
 => Don't apply Newton's 3rd law

- Summing up of energy is a problem
 - Globally accessible memory is slow
 - Fast memory is only shared by groups of threads
CUDA Force Kernel Launch

- Original force routine becomes a wrapper
 - Move data between host and GPU
 - Pad position and forces to be multiple of block size

```java
static void force(msys_t *sys) {
    cudaMemcpy(sys->g_pos, sys->pos, 3*sys->nwords*sizeof(double), cudaMemcpyHostToDevice);

    int nblocks = sys->nwords/BLKSZ;
    dim3 grid, block;
    block.x = BLKSZ;
    grid.x = nblocks;

    g_force<<<grid,block>>>(sys->g_pos, sys->g_frc, sys->g_res, sys->g_sys);

    cudaMemcpy(sys->frc, sys->g_frc, 3*sys->nwords*sizeof(double), cudaMemcpyDeviceToHost);
}
```
CUDA Force Kernel (part 1)

- Derive atom index to work on from block and thread index number
- Use one large array for x-, y-, and z-data

```c
__global__ void g_force(double *pos, double *frc, double *res, gdata_t *sys)
{
    __shared__ double mye[BLKSZ];
    const int tid = threadIdx.x;
    const int idx = blockIdx.x*blockDim.x + tid;
    const int offs1 = sys->nwords;
    const int offs2 = 2*offs1;
    const double rx = pos[idx];
    const double ry = pos[idx+offs1];
    const double rz = pos[idx+offs2];
    [...]
```
double fx, fy, fz;
fx = fy = fz = 0.0;
const int natoms = sys->natoms;
for (int j = 0; idx < natoms && j < natoms; ++j) {
 const double rx2=g_pbc(rx - pos[j], boxby2, box);
 const double ry2=g_pbc(ry - pos[j + offs1], boxby2, box);
 const double rz2=g_pbc(rz - pos[j + offs2], boxby2, box);
 const double rsq = rx2*rx2 + ry2*ry2 + rz2*rz2;
 if (rsq > 0.1 && rsq < rcsq) {
 const double rinv=1.0/rsq;
 const double r6=rinv*rinv*rinv;
 const double ffac = (12.0*c12*r6 - 6.0*c6)*r6*rinv;
 mye[tid] += 0.5*r6*(c12*r6 - c6);
 fx += rx2*ffac;
 fy += ry2*ffac;
 fz += rz2*ffac;
 }
}
frc[idx] = fx;
frc[offs1+idx] = fy;
frc[offs2+idx] = fz;
CUDA Force Kernel (Part 3)

- Pre-summing the Energy into shared memory
 - Reduce amount of data to be transferred
 - Reduce computation on CPU
 - Cascaded sum uses some threading
 - Need to synchronize threads, but is “cheap” on GPU

```c
/* tree reduction */
for (int i=BLKSZ/2; i > 0; i >>= 1) {
    __syncthreads();
    if (tid < i)
        mye[tid] += mye[i+tid];
}
/* tid 0 has the sum over BLKSZ elements */
if (tid == 0) res[blockIdx.x] = mye[0];
```
CUDA Version Speed

- 108 atoms: 4x slower => not enough threads
- 2918 atoms: 5.4x faster for $O(N^2)$ algorithm
 1.5x faster than CPU with cell-list
- 78732 atoms: 12.0x faster for $O(N^2)$ algorithm
 but: 2.2x slower than CPU with cell-list
- Using single precision math (8x more on GPU):
 - 2918 atoms: 11x faster (2x faster than DP)
 - 78732 atoms: 75x faster (6x faster than DP)
GPU Version Lessons

- Need enough work/data to use GPU efficiently
- Use single precision where possible, but remember to accumulate critical data in double (or use scaled 64-bit integers)
- Double precision only on new hardware
- Due to huge number of threads, computing more numbers can be faster if it offsets memory use and data transfer to and from the GPU
- Better scaling methods win over brute force
7) Hybrid OpenMP/MPI Version

- With multi-core nodes, communication between MPI tasks becomes a problem
 => all communication has to use one link
 => reduced bandwidth, increased latency

- OpenMP and MPI parallelization are orthogonal and can be used at the same time
 Caution: don't call MPI from threaded region

- Parallel region OpenMP version is very similar to MPI version, so that would be easy to merge
Hybrid OpenMP/MPI Kernel

• MPI tasks are like GPU thread blocks
• Need to reduce forces/energies first across threads and then across all MPI tasks

```c
... incr = sys->mpisize * sys->nthreads;
/* self interaction of atoms in cell */
for(n=0; n < sys->ncell; n += incr) {
    int i,j;
    const cell_t *c1;

    i = n + sys->mpirank*sys->nthreads + tid;
    if (i >= sys->ncell) break;
    c1=sys->clist + i;

    for (j=0; j < c1->natoms-1; ++j) {
        [...]
    }
}
```
Hybrid OpenMP/MPI Timings

<table>
<thead>
<tr>
<th>System</th>
<th>2916 atoms</th>
<th>78732 atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell list serial code</td>
<td>18s</td>
<td>50.1s</td>
</tr>
<tr>
<td>16 MPI x 1 Threads</td>
<td>14s</td>
<td>19.8s</td>
</tr>
<tr>
<td>8 MPI x 2 Threads</td>
<td>5.5s</td>
<td>8.9s</td>
</tr>
<tr>
<td>4 MPI x 4 Threads</td>
<td>4.3s</td>
<td>8.2s</td>
</tr>
<tr>
<td>2 MPI x 8 Threads</td>
<td>4.0s</td>
<td>7.3s</td>
</tr>
</tbody>
</table>

=> Best speedup: 4.5x 6.9x
=> Total speedup: 185x 333x
Total Speedup Comparison

- 108 Atoms
- 2916 Atoms
- 78732 Atoms

HPC and GRID School
Conclusions

- Make sure that you exploit the physics of your problem well => Newton's 3rd law gives a 2x speedup for free (but interferes with threading!)
- Let the compiler help you (more readable code), but also make it easy to the compiler => unrolling, inlining can be offloaded
- Understand the properties of your hardware and adjust your code to match it
- Strategies that help on GPU, help with threading