The Abdus Salam 4
International Centre for Theoretical Physics (4

PO

2068-23

Advanced School in High Performance and GRID Computing -
Concepts and Applications

30 November - 11 December, 2009

40 ways to simulate liquid argon

A. Kohlmeyer

University of Pennsylvania
Philadelphia
USA

Strada Costiera | I, 34151 Trieste, ltaly - Tel.+39 040 2240 || 1; Fax +39 040 224 163 - sci_info@ictp.it



40 Ways to Simulate
Liquid Argon

A case study in optimization
and parallelization

Axel Kohlmeyer

GEODICMS

Institute for Computational Molecular Science

@ TEMPLE

M UNIVERSITY?



Today's Show

0) Overture: The physics of the model

1) Eirst Act: Writing and optimizing a serial code

2) Intermezzo: Improve scaling with system size

3) Second Act: MPI parallelization

4) Third Act: OpenM
5) Einale: GPU acce
6) Encore: Hybrid M

P parallelization
eration

P1/OpenMP parallelization

/) Last dance: Lessons learned

%DI CM S HPC
Institute for Computational Molecular Science

and GRID School



0) The Model for Liquid Argon

* Cubic box of particles
with a Lennard-Jones
type pairwise additive
Interaction potential

12 6

o

O

4 €
V_.Z rij I
l,]

0 , I.=>r

ij—"'c

e Periodic boundary
conditions to avoid
surface effects

%DICMS HPC and GRID School 3

putational Molecular Science



Newton's Laws of Motion

* \We consider our particles to be classical
objects so Newton's laws of motion apply:

* 1. In absence of a force a body rests or moves
In a straight line with constant velocity

» 2. A body experiencing a force F experiences
an acceleration a related to F by F = ma, where
m IS the mass of the body.

* 3. Whenever a first body exerts a force F on a
second body, the second body exerts a force
—F on the first body

SEOICMS  TreendERb e "



Velocity Verlet Algorithm

* The velocity Verlet algorithm is used to
propagate the positions of the atoms

Z(E+AL) = % (6)+7,(0)At+=a (t)(AL)

2
(t+%) - Vi(t)—l—%a’i(t)At
a(t+At) = _va X (t+At))
Blt+an) =7+ 55+ 2 a0 A7

L. Verlet, Phys. Rev. 159, 98 (1967); Phys. Rev. 165, 201 (1967).

»“G‘DICMS HPC and GRID School

1al Molec



Velocity Verlet Algorithm

* The velocity Verlet algorithm is used to
propagate the positions of the atoms

<t+%> - \_/'l-(t)—l—%c_ii(t)At
X(t+At) = xi(t)—l—v(t+7)At
. - — |ae|-12[2| +6[Z) <r.
G(t+A) = ——VV(F(t+ar) (rU i
0 r.>r
- At 1—» 2 4 c
V.(t+At) =v(t+7)+§al(t)A

L. Verlet, Phys. Rev. 159, 98 (1967); Phys. Rev. 165, 201 (1967).

%‘DICMS HPC and GRID School 6

1al Molecular Sci



What Do We Need to Program?

1. Read in parameters and initial status and
compute what is missing (e.g. accelerations)

2. Integrate Equations of motion with
Velocity Verlet for a given number of steps

a) Propagate all velocities for half a step

b) Propagate all positions for a full step

c) Compute forces on all atoms to get accelerations
d) Propagate all velocities for half a step

e) Output intermediate results, if needed

%GQIQIMS HPC and GRID School



1) Initial Serial Code: Velocity Verlet

void velverlet(mdsys_t *sys) {
for (int i=0; i<sys->natoms; ++i) {
sys->vx[i] += 0.5*sys->dt / mvsq2e * sys->fx[i] / sys->mass;
sys->vy[i] += 0.5*sys->dt / mvsq2e * sys->fy[i] / sys->mass;
sys->vz[i] += 0.5*sys->dt / mvsq2e * sys->fz[i] / sys->mass;
sys->1x[i] += sys->dt*sys->vx[i];
sys->1y[i] += sys->dt*sys->vyl[i];
sys->1z[i] += sys->dt*sys->vz[i];

}
force(sys);

for (int i=0; i<sys->natoms; ++i) {
sys->vx[i] += 0.5*sys->dt / mvsq2e * sys->fx[i] / sys->mass;
sys->vyl[i] += 0.5*sys->dt / mvsq2e * sys->fy[i] / sys->mass;
sys->vz[i] += 0.5*sys->dt / mvsq2e * sys->fz[i] / sys->mass;

}

%BSICMS HPC and GRID School 8

Institute for Computational Molecular Science



Initial Code: Force Calculation

for(i=0; i < (sys->natoms); ++i) {
for(j=0; j < (sys->natoms); ++j) {
if (i==j) continue;

rx=pbc(sys->1x[i] - sys->1x[j], 0.5*sys->box); :
ry=pbc(sys->1y[i] - sys->ry[j], 0.5*sys->box); Compute dlStanPe _
rz=pbc(sys->rz[i] - sys->1z[j], 0.5%sys->box); D€tween atoms | & |
r = sqri(rx*rx + ry*ry + rz*rz);

if (r < sys->rcut) { Compute energy and force
ffac = -4.0*sys->epsilon*(-12.0*pow(sys->sigma/r,12.0)/r
+6*pow(sys->sigma/r,6.0)/r);
sys->epot += 0.5*4.0*sys->epsilon*(pow(sys->sigma/r,12.0)
-pow(sys->sigma/r,6.0));

sys->fx[i] += rx/r*ffac; Add force contribution

sys->ty[i] += ry/r*ffac; _ _
sys->fz[i] += rz/r*ffac; of atom j on atom |

1
CEOICMS HPC and GRID School 9

Institute for Computational Molecular Science



How Well Does it Work?

 Compiled with:
gcec -0 1jmd.x 1jmd.c —-1m
Test input: 108 atoms, 10000 steps: 49s
Let us get a profile:

o

[¢}

time

713.
24 .

0.
.37
.00
.00
.00

O O O O

70
97
96

o
I for C

SEODICMS

Institute for Comput

cumulative
seconds
13.
18.
18.
18.
18.
18.
18.

87
57
75
82
82
82
82

ational Molecular Science

self

seconds

13.

4.
.18
.07
.00
.00
.00

O O O O O

877
70

calls
10001
346714668

10001
30006
101
12

self
ms/call
1.39
0.00

0.01
0.00
0.00
0.00

HPC and GRID School

total
ms/call

1

O O O O

.36
0.00

.01
.00
.00
.00

name
force
pbc
malin
ekin
azzZero
output
getline

10



Step One: Compiler Optimization

e Use of pbc() is convenient, but costs 25%
=> compliling with -O3 should inline It

* Loops should be unrolled for superscalar CPUs
=> compiling with -O2 or -O3 should do it for us

Time now: 39s (1.3x faster) Only abit faster

 Now try some more optimization options:
-ffast-math -fexpensive-optimizations -msse3

Time now: 10s (4.9x faster) Much better!
e Compare to LAMMPS: 3.6s => need to do more
%DICMS HPC and GRID School 11



Now Modify the Code

. Use physics! Newton's 3 : F = -F

for(i=0; 1 < (sys—->natoms)-1; ++i

for(j=i+1; j <
rx=pbc (sys—>
ry=pbc (sys—>
rz=pbc (sys—>
r = sgrt (rx*

if (r < sys-

ffac = —-4.
sys—>epot
sys—>fx[1i]
sys—>fy[i]

sys—>fz[i]

I8

Time now

SEOICMS

Institute for Computational Molecular Science

1 Ji
{

)
(sys—>natoms); ++73) {
rx[1] — sys—>rx[]j], 0.5*sys—>box);
ry[i] - sys—->ry[]j], 0.5*sys—->box);
rz[i] - sys—->rz[]j], 0.5*sys—->box);
SR e T2 rZ) ;
>rcut) {

O*sys—>epsilon* (-12.0*pow(sys—>sigma/r,12.0)/r
+6*pow (sys—->sigma/r,6.0)/r);

+= 0.5*%4.0*sys—>epsilon* (pow (sys—>sigma/r,12.0)
—pow (sys—>sigma/r, 6.0));

+= rx/r*ffac; sys—>fx[]Jj] —-= rx/r*ffac;
+= ry/r*ffac; sys—>fy[]Jj] —-= ry/r*ffac;
+= rz/r*ffac; sys—>fz[Jj] —-= rz/r*ffac;

: 5.4s (9.0X faster) Another big improvement

HPC and GRID School 12



More Modifications

» Avoid expensive math: pow(), sqrt(), division

cl2=4.0*sys—>epsilon*pow(sys—>sigma, 12.0);

co =4.0*sys—>epsilon*pow(sys—>sigma, 6.0);

rcsqg = sys—>rcut * sys—>rcut;

for (i=0; i < (sys—->natoms)-1; ++i) {
for(j=i+l1l; J < (sys—>natoms); ++7]) {

rx=pbc (sys—>rx[1] - sys—>rx[]], 0.5*sys—->box);
ry=pbc (sys—>ry[i] - sys—>ry[]J], 0.5*sys—>box);
rz=pbc (sys—>rz[1i] - sys—->rz[]], 0.5*sys—->box);

rsq = rx*rx + ry*ry + rz*rz;
if (rsg < rcsq) {
double r6,rinv; rinv=1.0/rsqg; ro6=rinv*rinv*rinv;

ffac = (12.0*cl2*r6 — 6.0*c6)*ro6*rinv;
sys—>epot += r6* (cl2*r6 - cb6);

sys—>fx[1] += rx*ffac; sys—>fx[]] —-= rx*ffac;
sys—>fy[i] += ry*ffac; sys—->fy[j] -= ry*ffac;
sys—>fz[1] += rz*ffac; sys—->fz[]] —= rz*ffac;

"' => 108 atoms: 4.0s (12.2x faster) still worth it

%DICMS HPC and GRID School 13

Institute for Computational Molecular Science



Improvements So Far

e Use the optimal compiler flags => ~5x faster
but some of it: inlining, unrolling could be coded

e Use our knowledge of physics => ~2x faster
since we need to compute only half the data.

* Use our knowledge of computer hardware
=> 1.35x faster. (there could be more: SSE)

We are within 10% (4s vs. 3.6s) of LAMMPS.

e Try a bigger system: 2916 atoms, 100 steps
Our code: 13.3s LAMMPS: 2.7s =>Bad scaling

with system size




2) Making it Scale with System Size

» Lets look at the algorithm again:
We compute all distances between pairs

* But for larger systems
not all pairs contribute
and our effort is O(N?)

SO we need a way to
avoid looking at pairs
that are too far away

=> Sort atoms into cell prile

lists, which is O(N)
ﬂlﬁlDICMS HPC and GRID School



The Cell-List Variant

» At startup build a list of lists to store atom indices
for atoms that “belong” to a cell

 Compute a list of pairs between cells which
contain atoms within cutoff. Doesn't change!

* During MD sort atoms into cells
* Then loop over list of “close” pairs of cells /1 and
* For pair of cells loop over pairs of atoms in them

 Now we have linear scaling with system size at
the cost of using more memory and an O(N) sort



Cell List Loop

for(i=0; i < sys—>npair; ++i) {
sSMasaT ], *c2;
cl=sys—>clist + sys—>plist[2*1];
c2=sys—>clist + sys—>plist[2*1+1];

for (int j=0; j < cl->natoms; ++7) {
int ii=cl->idxlist[]j];
double rxl=sys->rx[i
double ryl=sys—->ry|
double rzl=sys—->rz|

il;
11];
11];
for(int k=0; k < c2->natoms; ++k) {
double rx,ry,rz,rsq;
int jj=c2->idxlist[k];
rx=pbc (rxl - sys—>rx[jj], boxby2, sys—>box);

ry=pbc (ryl - sys—>ry[]]], boxby2, sys—->box);

e 2916 atom time: 3.4s (4x faster), LAMMPS 2.7s
%DICMS HPC and GRID School 17

Institute for Computational Molecular Science



Scaling with System Size

10000000 |
1000000 EESElE
== Optimized
100000

Cell-List
10000

1000
100
10

1=
0.1
108 atoms 2916 atoms 78732 atoms

* Cell list does not help (or hurt) much for small
Inputs, but is a huge win for larger problems
=> Lesson: always pay attention to scaling

%‘DICMS HPC and GRID School 18

1al Molecular Sci



3) What If optimization Is not enough?

* Having linear scaling is nice, but twice the
system size Is still twice the work
=> Parallelization

* Simple MPI parallelization first

 MPI is “share nothing” (replicated or distributed data)
 Run the same code path with the same data
but insert a few MPI calls

- Broadcast positions from rank O to all before force()
- Compute forces on different atoms for each rank
— Collect (reduce) forces from all to rank O after force()

%L‘B’DICMS HPC and GRID School 19

yutational Molecular Scien



Replicated Data MPI Version

static void force(mdsys_t *sys) {
double epot=0.0;
azzero(sys->CX,Sys->natoms); azzero(sys->Cy,sys->natoms); azzero(sys->cz,sys->natoms);
MPI_Bcast(sys->1x, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
MPI_Bcast(sys->1y, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
MPI_Bcast(sys->rz, sys->natoms, MPI_DOUBLE, 0, sys->mpicomm);
for (i=0; i < sys->natoms-1; i += sys->nsize) {
ii =1 + sys->mpirank;
if (ii >= (sys->natoms - 1)) break;
for (j=i+1; i < sys->natoms; ++j) {
[...]
sys->cyl[j] -= ry*ffac;
sys->cz[j] -= rz*ffac;
}) E—
MPI_Reduce(sys->cx, sys->fx, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
MPI_Reduce(sys->cy, sys->fy, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
MPI_Reduce(sys->cz, sys->fz, sys->natoms, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
MPI_Reduce(&epot, &sys->epot, 1, MPI_DOUBLE, MPI_SUM, 0, sys->mpicomm);
}

e Easy to implement, but lots of communication
%DICMS HPC and GRID School 20

Institute for Computational Molecular Science



MPI Parallel Efficiency

140
120

\/\

100

80

60 108 atoms /
O(N"2)
w0 ==2915 atoms /
O(N”"2)
2} 2916 atoms /
O(N)
1 task 2 tasks 4 tasks 8 tasks

%DICMS HPC and GRID School 21

A
J
tute for Computational Molecular Science



MPI Parallel Execution Times

120
== 108 atoms /
. O(N"2)
e ==2915 atoms /
O(N"2)
80 2916 atoms /
O(N)
60
40
20
0
1 task 2 tasks 4 tasks 8 tasks

%DICMS HPC and GRID School 22

A
J
tute for Computational Molecular Science



4) OpenMP Parallelization

 OpenMP is directive based
=> code (can) work without them

 OpenMP can be added incrementally

 OpenMP only works in shared memory
=> multi-core processors

 OpenMP hides the calls to a threads library
=> |ess flexible, but less programming

e Caution: write access to shared data can
easily lead to race conditions



Nalve OpenMP Version

#1if defined ( _OPENMP)

fpragma omp parallel for default(shared):Eachthread‘vﬂl
private (i) reduction (+:epot) .
bendif work on different
for (1=0; i < (sys—>natoms)-1; ++i) { values of “i”
double rxl=sys->rx[i];
double ryl=sys—->ry[i];
double rzl=sys—->rz[i];

4

sys—>fx[1] += rx*ffac; Race condition:
. sys—>Lfyl1] += ry*ffaci «j» will be unique for
Tlmlngs (108 atOmS). SYS—>fZ [l] += rziffac; eaCh thread, but not “j”
1 thread: 4.2s sys—>Ix[J] —= rx*ffaci _, nultiple threads may
7 threads: 7.1s sys—>fy[]j] —-= ry*ffac; o 1o th locati
L/ sys—>fz[3] -= rz*ffac, Writetothe same location

4 threads: 7.7s } concurrently
8 threads: 8.6s

%DICMS HPC and GRID School 24

Institute for Computational Molecular Science



Nalve OpenMP Version

#1if defined ( _OPENMP)
fpragma omp parallel for default (shared) \
private (i) reduction (+:epot)

#endif Each thread will
for (i=0; i < (sys—->natoms)-1; ++i) { work on different
double rxl=sys—>rx[1i]; values of “i”
double ryl=sys—>ry[i];
double rzl=sys->rz[i];
[...]
#if defined (_OPENMP) The “critical” directive will let only
#fpragma omp critical one thread execute this block at a time
#endif
{
Timings (108 atoms): Sys—>§xm = rx:iac;
: sys—>fy[i]l += ry*ffac;
1 thread: 4.2s sys—>fz[1] += rz*ffac;
2 threads: 7.1s sys—>fx[j] -= rx*ffac;
4 threads: 7.7s sys—>fy[j] -= ry*ffac;
8 threads: 8.6s sys=>fz[3] -= rz*iffac;

\:G‘DICMS HPC and GRID School 25

Institute for Computational Molecular Scienc



OpenMP Improvements

 Use omp atomic to protect one instruction
=> faster, but requires hardware support

108: 1T: 6.3s, 2T1:5.0s, 4T: 4.4s, 8T: 4.2s

2916: 1T: 126s, 2T: 73s, 4T:48s, 8T: 26s

=> some speedup

- but serial iIs faster for 108,

at 2916 atoms we are often beyond cutoff

e Don't use Newton's 3™ Law => no race condition

108: 1T: 6.5s, 21

. 3.7S,4T: 2.3s, 8T: 2.1s

2916: 1T: 213s, 2T: 106s, 4T: 53s, 8T: 21s

=> petter scaling,

out we lose 2x serial speed



MPI-like Approach with OpenMP

#if defined ( OPENMP)
#fpragma omp parallel reduction (+:epot)
#endif
{ double *fx, *fy, *fz;
#1f defined ( _OPENMP)
int tid=omp_get_thread_num(); Thread Id is like MPI rank

int tid=0; Sys->ix holds storage for one full fx array for

#endif each thread => race condition is eliminated.
fx=sys—>fx + (tid*sys—->natoms); azzero (fx,sys—>natoms
fy=sys—->fy + (tid*sys—>natoms); azzero(fy,sys—>natoms
fz=sys—->fz + (tid*sys—>natoms); azzero(fz,sys—>natoms
for(int 1=0; 1 < (sys—>natoms -1); 1 += sys—>nthreads

int 11 = 1 + tid;
if (11 >= (sys—->natoms -1)) break;
rxl=sys—->rx[1ii];
ryl=sys—->ry[ii];
rzl=sys—->rz[ii];

#felse

4

4

’

{

~—— ' N

%DICMS HPC and GRID School 27

Institute for Computational Molecular Science



MPI-like Approach with OpenMP (2)

e \We need to write our own reduction:

#1f defined (_OPENMP) = Neaad to make certain, all threads
#pragma omp barrier

fendif are done with computing forces

i =1+ (sys—->natoms / sys—->nthreads);
fromidx = tid * 1i;

toidx = fromidx + 1i;

1f (toidx > sys—>natoms) toidx = sys—>natoms;

for (i=1; 1 < sys—->nthreads; ++1) {
int offs = i*sys—>natoms;
for (int j=fromidx; j < toidx; +

. +3) 1 Use threads to
sys—>tx[J] += sys—>fx[offs+7]];
]
]

: parallelize the

sys—>fy[]] += sys—->fy[offs+]]; :
; reductions

[
sys—>fz[]] += sys—>fz[offs+t]

%DICMS HPC and GRID School 28

Institute for Computational Molecular Science



More OpenMP Timings

 The omp parallel region timings
108: 1T: 3.5s, 2T: 2.5s, 4T: 2.2s, 8T: 2.5S
2916: 1T: 103s, 2T: 53s,47T: 19s, 8T: 10s
=> petter speedup, but serial is faster for 108,
at 2916 atoms we are often beyond cutoff

e This approach also works with cell lists:

108: 1T: 4.3s, 2T: 3.1s, 4T: 2.4s, 8T: 2.9s
2916: 1T: 28s, 2T:. 15s, 4T:8.9s, 8T: 4.1s
=> 6.8x speedup with 8 threads.

That Is 62x faster than the first serial version



5) GPU Version with CUDA

 GPU is threading with thousands of threads

=> One thread per loop iteration
=> Same Issues as OpenMP, but more extreme

e Cannot use the best MPI-like threading strategy
as It would need too much memory

=> Don't apply Newton's 3" law
 Summing up of energy Is a problem

* Globally accessible memory is slow
* Fast memory is only shared by groups of threads



CUDA Force Kernel Launch

* Original force routine becomes a wrapper

 Move data between host and GPU
e Pad position and forces to be multiple of block size

static void force(mdsys_t *sys) {
cudaMemcpy(sys->g_pos, sys->pos, 3*sys->nwords*sizeof(double), cudaMemcpyHostToDevice);

int nblocks = sys->nwords/BLKSZ;
dim3 grid, block;

block.x = BLKSZ;

grid.x = nblocks;

g_force<<<grid,block>>>(sys->g_pos, sys->g _frc, sys->g_res, sys->g_sys);

cudaMemcpy(sys->frc, sys->g_frc, 3*sys->nwords*sizeof(double), cudaMemcpyDeviceToHost);

}

%DICMS HPC and GRID School 31

t or Computational Molecular Science



CUDA Force Kernel (part 1)

e Derive atom index to work on from block and
thread index number

 Use one large array for x-, y-, and z-data

__global_ void g_force (double *pos, double *frc, double *res,
gdata_t *sys)

{

__shared_ double mye[BLKSZ];
threadIldx.x;
blockIdx.x*blockDim.x + tid;

const
const
const
const
const
const
const

[...]

int tid =
int idx =
int offsl
int offs?2
double rx
double ry
double r=z

v Computational Molecular Science

sys—>nwords;
2*0ffsl;
pos[1dx];
pos[i1dx+toffsl];
pos[idx+toffs2];

HPC and GRID School

32



CUDA Force Kernel (part 2)

double fx, fy, fz;
fx = fy = fz = 0.0;
const int natoms = sys—->natoms;
for (int j = 0; idx < natoms && ] < natoms ; ++7) {
const double rx2=g_pbc(rx — pos[]j], boxby2, box);
const double ry2=g_pbc(ry - pos
const double rz2=g_pbc(rz — pos[]j + offs2], boxbyZ2, box);
const double rsg = rx2*rx2 + ry2*ry2 + rz2*rz2;
if (rsg > 0.1 && rsg < rcsq) {
const double rinv=1.0/rsqg;
const double ré6=rinv*rinv*rinv;
const double ffac = (12.0*cl2*r6 — 6.0*c6)*r6*rinv;
mye[tid] += 0.5*r6*(cl2*r6 — cb6);
fx += rx2*ffac;
fy += ry2*ffac;
fz += rz2*xffac;

r

I8

frc[idx] = £x;
frcloffsl+idx] = fy;
frcloffs2+idx] = fz;

%DICMS HPC and GRID School

Institute for Computational Molecular Science

J + offsl], boxby2, box);

33



CUDA Force Kernel (Part 3)

* Pre-summing the Energy into shared memory

 Reduce amount of data to be transferred

 Reduce computation on CPU

» Cascaded sum uses some threading

* Need to synchronize threads, but is “cheap” on GPU

/* tree reduction */
for (int 1=BLKSZ/2; 1 > 0; i >>= 1) {

_ _syncthreads () ;

if (tid < 1)

mye [tid] += mye[i+tid];

}
/* tid 0 has the sum over BLKSZ elements */
1f (tid == 0) res[blockIdx.x] = myel[0];

;GIQTDICMS HPC and GRID School 34

yutational Molecular Scien



CUDA Version Speed

« 108 atoms:  4x slower => not enough threads

« 2918 atoms: 5.4x faster for O(N?®) algorithm
1.5x faster than CPU with cell-list

« 78732 atoms: 12.0x faster for O(N?) algorithm
but: 2.2x slower than CPU with cell-list

* Using single precision math (8x more on GPU):
e 2918 atoms: 11x faster (2x faster than DP)
e /8732 atoms: 75x faster (6x faster than DP)



GPU Version Lessons

* Need enough work/data to use GPU efficiently

» Use single precision where possible, but
remember to accumulate critical data in double
(or use scaled 64-bit integers)

e Double precision only on new hardware

* Due to huge number of threads, computing
more numbers can be faster If it offsets memory
use and data transfer to and from the GPU

» Better scaling methods win over brute force



/) Hybrid OpenMP/MPI Version

* With multi-core nodes, communication between
MPI tasks becomes a problem
=> all communication has to us one link
=> reduced bandwidth, increased latency

 OpenMP and MPI parallelization are orthogonal
and can be used at the same time
Caution: don't call MPI from threaded region

» Parallel region OpenMP version is very similar
to MPI version, so that would be easy to merge




Hybrid OpenMP/MPI Kernel

* MPI tasks are like GPU thread blocks

* Need to reduce forces/energies first across

threads and then across all MPI tasks
[...]

incr = sys—>mpilisize * sys—>nthreads;
/* self interaction of atoms in cell */
for(n=0; n < sys—>ncell; n += 1incr) {
int i, j;
const cell_t *cl;

1 = n + sys—>mpirank*sys—->nthreads + tid;
if (1 >= sys—>ncell) break;
cl=sys—>clist + 1i;

for (j=0; j < cl->natoms-1; ++73) {
[ ]

;GIQTDICMS HPC and GRID School 38

yutational Molecular Scien



Hybrid OpenMP/MPI Timings

2916 atoms system: /8732 atoms system:
Cell list serial code: 18s 50.1s =
16 MPI x 1 Threads: 14s 19.8s g

8 MPI x 2 Threads: 5.5s 8.9s §
4 MPI x 4 Threads: 4.3s 8.2s =
2 MPI| x 8 Threads: 4.0s 7.3S 1%
=> Best speedup:  4.5x 6.9X §
=>Total speedup: 185x 333x iy
O

M



Total Speedup Comparison

350
B 108 Atoms [ 2916 Atoms | | 78732 Atoms ]
300
250
200
150
100
50
Compiler Opt Cell List MPI 4 task Hybrid 16 task
Baseline Optimal O(N"2) GPU O(N™2) OpenMP 4 task

SEOICMS

Institute for Computational Molecular Science

HPC and GRID School

40



Conclusions

 Make sure that you exploit the physics of your
problem well => Newton's 3" law gives a 2x
speedup for free (but interferes with threading!)

* et the compiler help you (more readable code),
but also make it easy to the compiler
=> unrolling, inlining can be offloaded

e Understand the properties of your hardware
and adjust your code to match it

» Strategies that help on GPU, help with threading



