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Preface

Piero Ravetto – Politecnico di Torino: 
• Professor of nuclear reactor physics
• Chair of the nuclear and energy

engineering program
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Activities on reactor physics
Transport theory:
• Development of algorithms in PN and 

SN framework (FEM, BEM …)
• Treatment of high anisotropy

problems and reduction of ray-
effects

• Neutron propagation phenomena
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Activities on reactor physics
Reactor dynamics:
• Development of algorithms and codes

(quasi-statics, multipoint…)
• ADS dynamics
• Interpretation of experiments
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Activities on reactor physics
Innovative reactor technology:
• Models and methods for fluid-fuel

(molten-salt) systems
• Liquid-lead cooled reactors
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PART I
• Introduction to problem
• The basics of the neutronic model
• The physical features of neutron

kinetics
• A simple but interesting example to

understand physics
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Standard tasks of reactor physics
1.

Describe basic phenomena of neutron
motion in material systems: 

neutronic design of steady-state
critical reactors

Provide multiplication parameters and 
flux distributions
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Standard tasks of reactor physics
2.

Short scale dynamic simulation

Provide information on transient
behaviour in operational and accident

conditions for stability and safety
assessments
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Standard tasks of reactor physics
3.

Long scale dynamic simulation

Provide information on burn-up and 
nuclide evolution for fuel management
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A new challenge of reactor physics

Neutronic design of innovative systems

New features in static and dynamic
simulations

Need to develop specific models and 
algorithms
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Basic model for the neutronics of 
nuclear reactors:

the transport equation
The equation is of deterministic nature, the 

balance is based on statistical principles
The equation for neutrons can be derived

from the original non-linear equation for
particles in a force field removing the 
force term and assuming neutron
collisions only with a fixed bakground of 
nuclei (equation becomes linear)
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Transport (kinetic) theory plays a 
fundamental role for all the standard and 

advanced tasks of reactor physicists

Ludwig E. Boltzmann (1844 – 1906)
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Basics of transport theory for
neutrons

To write the particle balance probabilities
per unit neutron path are needed: cross 
sections

Emission function is also needed
Note: isotropic medium is supposed (does

not imply isotropic emissions !)
[J.J Duderstadt, W. Martin, Transport Theory]
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Basics of transport theory for
neutrons

Neutron track length per unit volume, per 
unit energy, per unit solid angle, per unit
time: neutron flux (velocity x density)
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Basics of transport theory for
neutrons

Elementary neutron current vector, 
neutrons crossing the unit oriented area 
at one space point per unit time, per unit
energy, per unit solid angle
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Integro-differential form
(first order)

Local balance of particles

Initial conditions

Vacuum boundary conditions



November 2009 17

Integro-differential form
(second order, isotropic emissions)

even flux

odd flux

Space second order term
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Integral form

Global balance of particles
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Integral form for isotropic
emissions:

Peierls equation
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The Monte Carlo approach

The full statistical simulation retrieves
information on the solution of the 
integral equation

The simulation is performed on the 
basis of elementary interaction 
probability laws
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The emission from fission
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The emission from fission:
delayed neutrons

i



November 2009 23

The emission from fission:
delayed neutrons

Additional equations are needed for delayed precursors
(for solid fuel):

Initial conditions
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The source-free steady-state
problem and the eigenvalue
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The source-free steady-state
problem and the eigenvalue
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The source-free steady-state
problem and the eigenvalue
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The source-free steady-state
problem and the eigenvalue



November 2009 28

Eigenvalue:
various formulations

Multiplication k
Collision γ
Time α
Density δ
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Eigenvalue

The time eigenvalue can be defined to
include delayed neutron information
(ω-modes)
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Hence: k=1

What is a critical system?

A system for which a non-zero solution
exists in the absence of any external
source !

α=0
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What is a subcritical system?

A system for which fission production 
cannot compensate losses due to streaming
(leakage through the boundary) and net 
removal through collisions; only by a source
a steady-state can be established !

Hence: k<1

α<0
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What is a supercritical system?

A system for which fission production is
larger than losses due to streaming
(leakage through the boundary) and net 
removal through collisions; no steady-state
can be established !

Hence: k>1

α>0
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The adjoint transport equation

Two ways to approach this problem:
1. Construct the adjoint equation and 

interpret it physically
2.  Define the physical quantity

“neutron importance” and construct
its balance equation… observe it is
the adjoint
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The adjoint transport equation:
approach 1.

Definition of adjoint operator requires
definition of inner (scalar) product:

The adjoint operator is such that:
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The adjoint transport equation:
approach 1.

For the operators of the transport equation:

If functions of the adjoint space 
obey the following property
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The adjoint transport equation:
approach 1.

Here is the adjoint equation:

Has the adjoint function a physical meaning ?
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The adjoint transport equation

The neutron importance: the asymptotic
power reached within the stationary system 
folowing the insertion of one neutron at a 
given point in phase space (Ussachev)
A balance (importance conservation) equation
is written to verify that

is the neutron importance
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The adjoint transport equation

The neutron importance is a basic tool for
• Reactor kinetics
• Variational methods
• Perturbation theory
• Sensitivity analysis
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A digression on analytical methods

Why analytical methods?
• To grasp the mathematical nature of 

the problem
• To get full insight into physics
• To obtain reference solutions
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The role of delayed neutrons

• Time-dependent analysis of nuclear
systems can be done only taking
account of delayed emissions from
fission

• On the basis of elementary physics
considerations, a multiplying system 
evolution is regulated by the 
exponential law exp((δk/Λ)t), where …. 
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The role of delayed neutrons

Λ is a “characteristic” time
- No delayed neutrons: 10-4 (thermal reactors) –
- 10-6 s (fast reactors… depends on the velocity of 

neutrons)
- With delayed neutrons: Λprompt +β/λ∼10-1 s 

(λ∼ 10-1 s-1)

Evolution is dominated by delayed neutrons
(for sub-prompt-critical systems)
Note: β is an important dynamic parameter (the physical

fraction β is: for U235: 0.0065, for Pu239: 0.0022)…
the effective fraction may be more or less … why?
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Time-scales in the dynamics
of nuclear reactors

• Prompt neutron (very fast) scale, connected to the 
lifetime of prompt neutrons (10−4 - 10−6 s)

• Delayed emission scale, connected to evolution of 
delayed neutron precursors (10−1 - 101 s)

• Thermal-hydraulic scale (feedback), connected to
the evolution of temperatures and hydraulic
parameters (10−1 - 102 s)

• Control scale, connected to the movement of 
masses in the system (control rods, poisons)

• Nuclide transmutation scale, connected to neutron
transmutation phenomena (>102 s)
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Very different time-scales

the physico-mathematical problem
is stiff

Time-scales in the dynamics
of nuclear reactors
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Time-scales in the dynamics
of nuclear reactors

• We now focus our interest on the 
dynamics of nuclear systems during
operational and accidental transients
– Nuclide transmutation can be neglected, 

but still
• Delayed emissions
• Thermal feedback

are to be considered.
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Basic equations
for neutron dynamics (1)

Boltzmann transport equation in 
presence of delayed emissions:
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Basic equations
for neutron dynamics (2)

Balance operatorLeakage Prompt multiplication
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Basic equations
for neutron dynamics (3)

Delayed multiplication

Operators can be time-dependent
because of:

- effects independent of neutron flux (perturbations)

- non-linear effects (feedback)
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Formal approach to
neutron dynamics

In compact operator form:
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Formal approach to
neutron dynamics

Eigenstate (ω-modes) expansion method:

What are the characteristics of the spectrum (ωn) ?
Can the eigenvalue problem be solved for some models ?
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Formal approach to
neutron dynamics

The general (formal) solution can be written as:

Can an analytical solution be obtained ?
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A simple model

The point model and its solution

How to derive point equations consistently ?

Let us consider a simpler and easier
problem: space one-group diffusion

Basic equations
one-group diffusion in homogeneous
slab geometry with one delayed family and
time-constant properties
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A simple model
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A simple model
Exact solution by eigenfunction expansion
Helmholtz eigenfunctions (complete and 
orthogonal, most suitable base for the diffusion
problem)
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A simple model
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A simple model
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A simple model



November 2009 57

A simple model

Note: spectrum is real !



November 2009 58

A simple model
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A simple model
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A simple model
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A simple model
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A simple
model
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A simple
model



November 2009 64

A simple model
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A simple model
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A simple model
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Alternatively: the point model can be
derived in a general fashion assuming a 
factorization of the neutron flux in the 
product of an amplitude and a (constant) 
shape function (Henry approach)


