

2055-30

Joint ICTP/IAEA School on Physics and Technology of Fast Reactors Systems

9 - 20 November 2009

Current status of development in dryPyroelectrochemical technology of spent nuclear fuel reprocessing (2)

Alexander Bychkov State Scientific Centre Research Institute of Atomic Reactors Dimitrovgrad Russia

niiar@niiar.ru niiar@niiar.ru Государственный научный центр

Научно-исследовательский институт атомных реакторов

CURRENT STATUS OF DEVELOPMENT IN DRY PYROELECTROCHEMICAL TECHNOLOGY OF SPENT NUCLEAR FUEL REPROCESSING

(2) Experience in Vibropac Fuel Development for Fast Reactors

Alexander Bychkov State Scientific Centre Research Institute of Atomic Reactors

Dimitrovgrad, Russia E-mail: <u>niiar@niiar.ru</u>, Web site: <u>http://www.niiar.ru</u>

- Fuel cycle of fast reactors
 - Spent fuel recycling
 - Granulation of U- and U-Pu oxide fuel
 - Manufacturing of MOX fuel pins by vibropacking process
 - In-pile tests and PIE of vibropac MOX fuel pins

- Purpose fuel pin of Closed Fuel Cycle
 - pyrochemical («dry») processing
 - vibropacking of granulated fuel for fuel pin manufacturing
 - automated remotely-controlled equipment for manufacturing granulated fuel, fuel pins, fuel assemblies
- History
 - the 60-70s
 - development of Fuel Cycle concept
 - scientific research for substantiation of fuel pin design
 - OREL facilities on manufacturing of granulated fuel, fuel pins, fuel assemblies for the research reactor BOR-60
 - the 80s
 - irradiation of vibropac FAs in the research reactor BOR-60
 - semi-industrial complex for manufacturing granulated fuel, fuel pins, fuel assemblies for BN-600 (BNPP)
 - ✤ irradiation tests of experimental vibropac FAs in BN-350, BN-600
 - the 90s
 - irradiation tests of experimental MOX-vibropac FAs in BN-600
 - since 2000
 - continuation of irradiation tests of experimental MOX-vibropac FAs in BN-600

Схема расположения оборудования для изготовления твэлов и ТВС в условиях защитных камер РФ-1 и РФ-2 1- бокс разделки твэлов; 2- подготовка гранулята; 3- виброуплотнение гранулята;
4- загрузка экрана; 5- загрузка верхней заглушки; 6- герметизация твэла;
7, 8, 9, 11, 16, 17, 18, 19, 20- хранение твэлов; 10, 13- транспортная система твэлов;
12- контроль герметичности твэлов; 14- контроль распределения компонентов топливного сердечника твэлов; 15- контроль геометрических размеров твэлов и их визуальный осмотр; 21- сборка ТВС; 22- сварка ТВС; 23- кантование ТВС;
24- контроль герметичности твэлов в составе ТВС; 25- измерение гидравлических характеристик ТВС; 26- контроль сварного шва; 27- визуальный осмотр ТВС;
28- радиографический контроль сварного шва; 29- сварка контровочной гайки; 30- хранилище ТВС.

5

Fluoride Volatility method for reprocessing of UO₂

- Fuel granulation by pyrohydrolysis of uranium hexafluorides
- Parameters of polydisperse granulated particles of UO_2 :
 - density of particles ~ 10.7 g/cm³
 - mass content of fluorine less than 0.005 %
 - absence of contamination of the equipment structural materials with cruds

Fluoride Volatility method for reprocessing of UO₂

Parameters of experimental fuel pins:

- enrichment in U-235 90 %
- smear density max 9.3 g/cm³
- nonuniformity of density distribution along the fuel column length within ± 5 %
- FA irradiation conditions:
 - irradiation duration 1984 1990
 - maximal burnup 14.8 % h.a.
 - maximal linear power generation 42.2 kW/m
 - maximal cladding temperature 711 °C

Fluoride Volatility method for reprocessing of (U,Pu)O₂

- Regeneration of spent BOR-60 UPuO₂ by gas-fluoride method (FREGAT-1, 2)
- Parameters of polydisperse granulated fuel:
 - output of the product:
 - ✤ Pu ~ up to 91 %
 - ✤ U ~ up to 99.3 %
 - purification factor:
 - ✤ Pu ~ 10³ 10⁴
 - ✤ U ~ 10⁷
 - productivity up to 3 kg/h

- Fuel granulation by pyrohydrolysis of uranium hexafluoride
- Parameters of experimental fuel pins:
 - enrichment in U-235: 90 %
 - smear density: 8.8 9.2 g/cm³
 - nonuniformity of density distribution along the fuel column length: within ± 5 %
- FA irradiation conditions:
 - irradiation duration: 1991 1993
 - burnup: 3.7 10.5 % h.a.
 - linear power generation: 32.2 43.5 kW/m
 - cladding temperature: 584 655 °C

- UO₂ production by sol-gel process VNIINM
- Manufacturing of fuel pins RIAR:
 - packing of the coarse fraction
 - infiltration and compacting of the fine fraction
 - $\boldsymbol{\ast}$ uniformity of density distribution is within ± 3 %
- FA irradiation conditions:
 - irradiation duration: 1984 1985
 - burnup: 5.7 % h.a.
 - maximal linear power generation: 54.0 kW/m
 - maximal cladding temperature: 750 °C

Electrochemical process

Screen sizing of particles

ниие

- 3, 4-fractional compositions
- polydisperse composition
- Parameters of granulated fuel

Fuel parameters	Fractions	Polydisperse		
i dei parameters	0.8 – 1.0	0.25 – 0.40	< 0.1	composition
Density, g/cm ³ :				
bulk	4.6 – 4.9	4.7 – 4.8	4.9 – 5.1	6.0 - 6.2
bottle	10.8 – 11.0	10.9 – 11.0	10.9 – 11.0	10.9
Yield, g/sec	18.5	17.0		21.0
Mass content, %:				
metal	87.9 ± 0.3	88.0 ± 0.2	87.8 ± 0.3	87.6
chlorine, 310 ⁻³	7 – 14	5 – 7	3 – 5	5 – 6
carbon 310 ⁻³	7 – 15	5 – 13	5 – 10	8 – 12
Content of impurities, %	0,20	0,15	0,30	0,25

Manufacturing of fuel pins by vibropacking process cladding tube loading of fuel vibropacking with lower blanket loading of upper blanket, welding fuel pin fixture, end plug pellet end plug fixture Macrostructure of unirradiated vibropack MOX-fuel

Manufacturing of fuel pins by vibropacking process

Parameters and mixing techniques

- Criteria
 - fuel column density
 - density and Pu distributions along the fuel column length
- Investigations
 - mixer design
 - filling of the mixer
 - fuel type (homogenuous, heterogeneous)
- Difficulties
 - bulk of portions
 - remote conditions

Manufacturing of fuel pins by vibropacking process

Pouring parameters and techniques

- Consecutive operations
 - mixing of portion
 - pouring
 - vibropacking
- Synchronous batching
 - pouring
 - vibropacking

Vibropacking modes

- frequency range 100...3000 Hz
- maximal acceleration up to 30g
- vibropacking time up to 120 sec

- Influence of features of fuel production and fuel pin manufacturing on operating parameters
 - Intercrystalline corrosion of the internal cladding surface due to increased humidity content in fuel
 >drying of cladding and fuel
 - Fuel-cladding chemical interaction (FCCI) on the fuelcladding boundary due to accumulation of corrosionactive FPs
 - ≻getter additive

Paramotor	Value					
Parameter	BOR-60		BN-350		BN-600	
Length of fuel pin, mm	1080 1050		1790		2440	2400
Diameter × thickness of fuel pin cladding, mm	6.0×0.3	6.9×0.4	6.9	× 0.4	6.6 × 0.4	6.6 × 0.4; 6.9 × 0.4
Material of fuel pin cladding	EI-847, EP-172, ChS-68, EP-450		EI-847		EP-172	ChS-68
Height of fuel column, mm	450		1060		950	950; 1030
Fuel column composition	UO ₂ ; UO ₂ +U; UPuO ₂ +U		UO ₂ +U	UPuO ₂ +U	UPuO ₂ +U	UPuO ₂ +U
Smear density of fuel column, g/cm ³	8.39.5		8.99.1	8.48.9	8.99.1	8.89.2
Plutonium content, %	1540		-	20	22	25
Enrichment in U-235, %	45	.90	24	10	0,7	0.7
Enrichment in Pu-239 %	60;	95	-	95	95	95
Getter content, %	3	.10	5	5	10	10
Relative non-uniformity of smear density along the fuel column, %	± 5					
Relative non-uniformity of plutonium content distribution along the fuel column, %	± 5					

НИИАР

Vibropac fuel in BOR-60 (1)

- Problems of fuel elements serviceability during the initial period:
 - intercrystalline corrosion of the cladding
 - lower smear density
 - insufficient reliability of the welded joint "cladding –upper endplug"

- Solution of problems
 - Getter additives in the form of metal U particles- 5-10 % wt.
 - Granulated fuel fuel
 - Special preparation of cladding and granulated fuel

НИИАР

Maximum linear power, W/cm	510
Maximum cladding temperature, °C	722
Maximum fuel burnup, % h.a. - standard FA - experimental FA - experimental fuel elements	18.0 30.0 32.3
Quantity of FA with burnup (pieces) - 10 – 15% h.a. - 15 – 20% h.a. - > 20% h.a.	279 25 10

Vibropac fuel in BOR-60 (3)

During 1977-1984 more than 190 FA for BOR-60 were fabricated at the OREL facility.

Total quantity of the BOR-60 FA is more than 420.

Vibropac fuel in BOR-60 (5)

Pins Requirements and Operating Limits

Fuel smear density
9±0,2 g/cm³

- U metal content
 - **3...5** %
- Density and Pu distribution
 - ± 5 %
- Cladding material
 - Stainless steel + c.w.

- Linear power rate
 50 kW/m
 Cladding temperature
 - 710 °C
- Damage doze
 - 70 dpa
- 🚸 Burnup
 - No limit

Vibropac fuel in BN-600 (1)

FA No	Year of fabrication	Maximum linear power, W/cm	Maximum cladding temperature, C	Burnup, % h.a.
WG0187	1987	450	670	6,8
WG0287	1987	450	670	10,8
03, 04, 05,06	1990	425450	680690	9,09,3
01.99, 02.99, 03.99	1999	360400	670680	10,210,5
04.01, 05.02, 06.02	2001, 2002	453	694	~ 10
07.03, 08.03, 09.03	2003	450	690	7,47,8 (under irradiation)
10.05, 11.05, 12.05	2005	Are transported for irradiation		

Vibropac fuel in BN-600 (3)

Vibropac fuel in BN-600 (4)

No specific differences in radiationthermal effects were observed in fuel pins and FA tested in BOR-60, BN-350 and BN-600.

НИИАР

Characteristic	Value	
Type of fuel	MOX	
Density of fuel column, g/cm ³	9,0±0,2	
Content of metal U in fuel, %	510	
Cladding Material	c.w. stainless steel	
Density and plutonium distribution, %	± 5	
Maximum burnup, % h.a.	10,7	
Maximum damage dose, dpa	84,3	
Maximum linear heat power rate, kW/m	47,6	
Maximum Cladding temperature, °C	710	

- Fuel pin design, technologies for granulated fuel production and fuel pins fabrication are ready for industrial application;
- After modernization SIC will have annual productivity 50 FA for BN-600;
- RIAR technologies are under implementation for BN-800 fuel supply.

No significant influence of used MOX-fuel of the following grades was observed:

- UO₂+PuO₂ mixture or co-precipitated fuel UPuO₂;
- Pu of various grades (weapon, power generating or recycled);
- \bullet fuel with PuO₂ content up to 45 wt. %;
- \bullet fuel with NpO₂ content up to 5 wt. %;
- I fuel with residual FPs content up to 8 wt. %

Государственный научный центр Научно-исследовательский институт атомных реакторов

Thank you for your attention!

Alexander Bychkov State Scientific Centre Research Institute of Atomic Reactors