Degenerations in the additive categories of almost cyclic coherent Auslander-Reiten components

Piotr Malicki Nicolaus Copernicus University, Toruń, Poland

Let A be a finite dimensional algebra over an algebraically closed field k and mod A(d) the affine variety of d-dimensional A-modules. The general linear group $\operatorname{Gl}_d(k)$ acts on $\operatorname{mod}_A(d)$ by conjugation, and the orbits correspond to the isomorphism classes of d-dimensional modules. We denote by $\mathcal{O}(M)$ the $\operatorname{Gl}_d(k)$ -orbit of a module M in $\operatorname{mod}_A(d)$. Then one says that a module N in $\operatorname{mod}_A(d)$ is a degeneration of a module M in $\operatorname{mod}_A(d)$ if N belongs to the Zariski closure $\overline{\mathcal{O}(M)}$ of $\mathcal{O}(M)$ in $\operatorname{mod}_A(d)$, and we denote this fact by $M \leq_{\operatorname{deg}} N$. Thus $\leq_{\operatorname{deg}}$ is a partial order on the set of isomorphism classes of A-modules of a given dimension. We consider also another partial order $\leq_{\operatorname{ext}}$ on the category $\operatorname{mod} A$ of finite dimensional A-modules defined as follows:

 $M \leq_{\text{ext}} N : \Leftrightarrow \text{ there are modules } M_i, U_i, V_i \text{ and short exact sequences } 0 \to U_i \to M_i \to V_i \to 0 \text{ in mod } A$ such that $M = M_1, M_{i+1} = U_i \oplus V_i, 1 \leq i \leq s$, and $N = M_{s+1}$ for some natural number s.

For all modules M and N in mod A(d), we have $M \leq_{\text{ext}} N \Longrightarrow M \leq_{\text{deg}} N$ but the converse implication is not true in general.

Recall that a connected component \mathcal{C} of the Auslander-Reiten quiver Γ_A of A is called *generalized* standard if $\operatorname{rad}^{\infty}(X,Y)=0$ for all modules X,Y in \mathcal{C} . Further, \mathcal{C} is called almost cyclic if all but finitely many modules of \mathcal{C} lie on oriented cycles (in \mathcal{C}). Moreover, \mathcal{C} is called coherent if every projective module P in \mathcal{C} is the starting module of an infinite sectional path and every injective module P in \mathcal{C} is the ending module of an infinite sectional path.

In the talk we describe when the partial orders \leq_{ext} and \leq_{deg} coincide for all modules of the same dimension from the additive category $\text{add}(\mathcal{C})$ of a generalized standard almost cyclic coherent component \mathcal{C} in Γ_A . Moreover, we also give a necessary and sufficient condition for the existence of degeneration $M \leq_{\text{deg}} N$ for arbitrary modules M, N of the same dimension from $\text{add}(\mathcal{C})$.