WEIGHTED PROJECTIVE LINES AND INVARIANT SUBSPACES OF NILPOTENT OPERATORS

DIRK KUSSIN

This is a report on a joint work with Helmut Lenzing and Hagen Meltzer. Let $p \geq 2$ be an integer. We establish a close link between the category $S(\tilde{p})$ of invariant subspaces of (graded) linear operators of nilpotency index p, studied by Claus Ringel and Markus Schmidmeier [1], and the category vect(X) of vector bundles over a weighted projective line X = X(2, 3, p) of weight type (2, 3, p).

The category $S(\tilde{p})$ is known to be Frobenius in a natural way. There is a natural exact structure on vect(X) such that it is a Frobenius category with the system \mathcal{L} of line bundles as the indecomposable projective-injective objects.

Theorem. There is a (explicitly given) partition $\mathcal{L} = \mathcal{P} \sqcup \mathcal{F}$ into so-called persistent and fading line bundles, respectively, such that

- the factor category vect(X)/[F] is still Frobenius, the indecomposable projective-injective objects given by the system P of persistent line bundles, and
- (2) there is an equivalence of Frobenius categories between $\operatorname{vect}(\mathbb{X})/[\mathcal{F}]$ and $\mathcal{S}(\widetilde{p})$.

Corollary. There is an equivalence of triangulated categories between the stable categories $\underline{\operatorname{vect}}(\mathbb{X}) := \operatorname{vect}(\mathbb{X})/[\mathcal{L}]$ and $\underline{\mathcal{S}}(\widetilde{p})$.

Furthermore, we will discuss several applications to the category $\underline{S}(\tilde{p})$, like the

- description of the shape of the Auslander-Reiten components;
- explicit construction of a tilting object in $\underline{S}(\tilde{p})$ whose endomorphism ring is the path algebra of the linear quiver $1 \xrightarrow{x} 2 \xrightarrow{x} \ldots \xrightarrow{x} 2p - 3 \xrightarrow{x} 2(p-1)$ with relations $x^3 = 0$;
- computation of the fractional Calabi-Yau dimension of $\underline{S}(\hat{p})$.

References

 C. M. Ringel and M. Schmidmeier, Invariant subspaces of nilpotent linear operators. I. J. Reine Angew. Math. 614 (2008), 1–52.