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1. Module Category
K a field

algebra = finite dimensional K-algebra
(associative, with identity)

A algebra

mod A category of finite dimensional
(over K) right A-modules

ind A full subcategory of mod A formed
by all indecomposable modules

A°P opposite algebra of A

mod A°P category of finite dimensional
(over K) left A-modules

mod A mod A°P

D

D = Homg (—, K) standard duality of mod A
1



1,4 identity of A
ng ma(i)

1A—Z Z €ij

=1 j=1
€ pairwise orthogonal primitive idempotents
of A such that

GZ]A = e;]A for 3,1 € {1,...,mA(i)},
1e€{1,...,n4}.

ez-jA?_feklA for i,k € {1,...,nA} with ¢ = k
je{l,....,ma()},
Le{l,...,my(k)}.

canonical decomposition of 14

e; =¢€;1, 1 €{1,...,n4}, basic primitive
idempotents of A

nA
eq = >, e; basic idempotent of A

i=1
A basic algebra if ey =14
(equivalently, m4(i) =1 fori € {1,...,n4})



In general, A®> = ¢, Ae, basic algebra of A

(—)ea
b
mod A ~® pead mod A

equivalence of categories (A and Ab are Morita
equivalent)

o P, = ¢,A, i € {1,...,n4}, complete set
of pairwise nonisomorphic indecompos-
able projective right A-modules

o I, = D(Ae;), i € {1,...,n4}, complete
set of pairwise nonisomorphic indecom-
posable injective right A-modules

e S; =top(P) = e;Ale;rad A, 1 €{1,...,n4},
complete set of pairwise nonisomorphic
simple right A-modules

e S;=soc(l;),i€{l,...,ny}.



rad A Jacobson radical of A

rad A = intersection of all maximal right
ideals of A

= intersection of all maximal left
ideals of A

rad A two-sided ideal of A
(rad A)™ =0 for some m > 1

dimg (e;(rad A)e;/e;(rad A)2e;) = dimg ExtL (S;, S;)
fori,5€{1,...,n4}

Q4 valued quiver of A
1,2,...,mn=mn4 vertices of Q4

thereis an arrow i—j in Q4 if dimg Ext(S;, S;)
# 0, and has the valuation

(d'mEndA(Sj) EXt}{(SZ, Sj), dImEndA(SZ) EXt}{(S’L? S]))

EﬂdA(Sl), EﬂdA(SQ), ceey EndA(Sn) are
division K-algebras

G4 = Q4 (underlying graph of Q4)
valued graph of A



Kg(A)=Kp(mod A) Grothendieck group of A
Ko(A) = Fu/F)

F, free abelian group with Z-basis given
by the isoclasses {M} of modules M in
mod A

]—"1’4 subgroup of F4 generated by
{M} —{L} —{N}

for all exact sequences

O—L—M—N —O0

in mod A
[M] the class of a module M from mod A in
Ko(A)
Kg(A) free abelian group generated by
[S1], [S2]; - - -, [Shl
S1,S5o,...,5, complete set of pairwise
nonisomorphic simple right A-modules
M module in mod A
M) = 3 ci(M)IS]
c;(M) multiplicity of S; as composition
factor of M (Jordan-Holder theorem)
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Jacobson radical of mod A
A algebra over K
X,Y modules in mod A

radA(X, Y)

( idy —gf invertible

f e Homy(X,Y) ‘ in End4(X) for any
g € Hom 4 (Y, X)

idy —fg invertible
=< f e HomMy(X,Y) ‘ in End4(Y) for any
g € Hom4(X,Y)

7\

\

Jacobson radical of Hom4(X,Y)

rad 4(X,Y) subspace of Hom4(X,Y) formed
by all nonisomorphisms

rad 4 (X, X) = rad End 4(X) Jacobson radical
of EndA(X)

Lemma (Bautista). Let X andY be indecom-
posable modules in mod A and f € Hom 4(X,Y).
Then f € rad4(X,Y)\ rad4(X,Y) if and only
if f is an irreducible homomorphism

(f is neither section nor retraction and, for
any factorization in mod A

X%Y
\Z/h

g is a section or h is a retraction) 6



rad A ideal of the category mod A

rad™ A m-th power of rad A, m > 1

0 X m
rad’ = (1 rad)y

m=1

infinite (Jacobson) radical of mod A

A is of finite representation type if indA
admits only a finite number of modules
(up to isomorphism)

Theorem (Auslander). An algebra A is
of finite representation type if and only if
rad®® = 0. (= Harada-Sai lemma)

Theorem (Coelho-Marcos-Merklen-Skow-
ronski). Let A be an algebra of infinite rep-

2
resentation type. Then (radjif) = 0.



2. Auslander-Reiten quiver

A finite dimensional K-algebra over a field K
Z module in ind A
End4(Z) local K-algebra

Fy; =End4(Z)/rad End4(2)
= EndA(Z)/ radA(Z, Z)
division K-algebra

X,Y modules in ind A
irr,(X,Y) = rad4(X,Y)/rad4(X,Y)

the space of irreducible homomorphisms
from X to Y

irr4(X,Y) is an Fy-Fyx-bimodule
(h+rad4(Y,Y))(f+rad3(X,Y)) = hf+radi(X,Y)

(f+rad3(X,Y))(g+rad 4(X, X)) = fg+rad3(X,Y)
for ferady(X,Y), g € End4(X), h € End4(Y)

dxy = dimpg, irr 4 (X,Y)

d'yy = dimp, irr4(X,Y)



[ 4 Auslander Reiten quiver of A
valued translation quiver defined as follows:

e The vertices of I 4 are the isoclasses {X}
of modules X in ind A

e For two vertices {X} and {Y}, there is an
arrow {X} — {Y'} provided irr4(X,Y) #
O. Then we have in I 4 the valued arrow

1X} 1Y}

e 74 translation of ' 4 defined on each non-
projective vertex {X} of "4 by

TA{ X} ={ms X} ={DTr X}

e 7,1 translation of I, defined on each
noninjective vertex {X} of I 4 by

T X} = {1 X} = {Tr DX}

Tr the transpose operator
D the standard duality



We identify a vertex {X} of ' 4 with the in-
decomposable module X and write

(dXYadeY) (dXYadeY) .

» Y instead of {X}

and X — Y instead of X (1—1)> Y

1Y}

X,Y modules in ind A (vertices of I 4)

dxy = multiplicity of Y in the codomain of
a minimal left almost split homomor-
phism in mod A with the domain X

x L= vixy @ 0/

M’ without direct summand isomor-
phic to Y

dy = multiplicity of X in the domain of a
minimal right almost split homomor-
phism in mod A with the codomain Y

Naoxiky=NLy

N’ without direct summand isomor-
phic to X

10



e X noninjective then there is in mod A an
almost split sequence (Auslander-Reiten
sequence)

/
0o—x-LmLtx —o

f a minimal left almost split homomor-
phism, f’ a minimal right almost split ho-
momorphism

e Y nonprojective, then there is in mod A
an almost split sequence (Auslander-Reiten
sequence)

g g
O — 1Y — N Y — O
g a minimal right almost split homomor-
phism, ¢’ a minimal left almost split ho-
momorphism

e P indecomposable projective, then the em-
bedding

rad P —— P

IS @ minimal right almost split homomor-
phism in mod A

e /| indecomposable injective, then the ca-
nonical epimorphism

I — I/socl

IS a minimal left almost split homomor-

phism in mod A
11



(dXYvd/ ) . .
Assume X Y7, Y is an arrow in 4

e X noninjective, then I' 4 admits a valued
arrow

d. _ d’
( vy tx YTA/ZlX)

! / —

o —1
Y > TA X
with dYTng
sO we have the arrows

(dxy,dyy) v (dxy-dxy)

—1
TA_X

e Y nonprojective, then I 4 admits a valued
arrow

(dT Y x»d, )
A TAY X
TAY 4 X

: — 7/ / —
we have the arrows

d'sd dxy,d’
Y (dyydxy) o (dxyvdyy) o

e X simple projective, then Y is projective
e Y simple injective, then X is injective

12



e For each nonprojective indecomposable
module Y in mod A, the quiver [ 4 ad-
mMits a valued mesh

{Vi}

{VQ}
ALY} = (Y K iay) gyl Y

m\{vr}%wlf/’wﬁ

such that there is in mod A an almost
split sequence

(dvly7dV1Y) (dV1Y> %] y)

N Wy
O—>TAY—>@V7; v —Y — 0.

1=1

e For each noninjective indecomposable mod-
ule X in mod A, the quiver I 4 admits a
valued mesh

U1} (dx - dxUy)

d {UQ}(N) 1 1
{X} Uxvpdxy,)  xup®XUPr * X} = 7, {X}

(de\{U }W)

such that there is in mod A an almost
split sequence

(dxuydxyr,)

O—>X—>€SBUC-ZXU‘7—>T 1X—>O
. J A
=1 .
1



For each nonsimple projective indecom-
posable module P in mod A, the quiver
[ 4 admits a valued subquiver

R
iRli\iggfj%if)
2
- (nypd) > (P)
{Rt} R PR, p)
such that

Lo dpp
rad P = @Ri i

1=1

For each nonsimple injective indecompos-
able module I in mod A, the quiver I 4
admits a valued subquiver

T
(d[T]_?d/ ) { 1}
4//1/>{T2}
dITQ’d/ITQ
E;;;;;Z}ﬁj\*{jyn}

I}

such that

I/soci= @15
/ soc _691 PR
]:

14



e Assume A is an algebra of finite repre-

dxvyd'
sentation type and X (dxy.dxy)

arrow of I 4. Then

> Y IS an

dxy: 1 or d/XY: 1.

e Assume A is an algebra over an algebra-

dxy,d’
ically closed field K and X ldxy dy),

is an arrow of I 4. Then

dxy = dyy-
In particular, dxy = dyy = 1 if A is of
finite representation type.

In representation theory of finite dimensional
algebras over an algebraically closed field K,
instead of a valued arrow

(m,m)

X Y

of an Auslander-Reiten quiver [ 4, usually one
writes a multiple arrow

X .Y

consisting of m arrows from X to Y.

15



Component of [ 4 = connected component
of the quiver ' 4

Shapes of components of I 4 give important
information on A and mod A

A locally finite valued quiver without loops
and multiple arrows

A set of vertices of A
A1 set of arrows of A

d,d : A1 — Ag the valuation maps

T

Z/\ valued translation quiver

(ZD)o =7 x Do = {(i,2)|i € Z,z € Do} set
of vertices of ZA\.

(ZA)1 set of arrows of ZA consists of the
valued arrows

> (4, ),

d
> (4,y), (i+1,y)

(i, )
(dx 7d/ ) .
i € 7, for all arrows z ——Y" 4 in Aq.

The translation 7 : ZAg — ZAg is defined by
7(i,z) =G+ 1,2) foralli € Z, x € Ayp.

Z./\ stable valued translation quiver
16



For a subset I of Z, I/ is the full translation
subquiver of ZA given by the set of vertices
(llﬁk)() =1 X Zﬁso.

In particular, we have the valued translation
subquivers NA and (—N)A of ZA.

Examples

A1 (1,2) 5 (4,3) 3

Z/\ of the form
(1,1) 0,1) (—1,1) (=2,

/ &z)py (1.2)(2,1) Y\Q)(Q,l)
(—

(1,2) (0,2)

1)
44) <4& 44) (4,3) (3,4)(4,3) )/4
3

NA of the form
(3,1) (2,1) (1,1) (0,1)

(1L,2)(2,1) (1,2)(21) (1,2)(21) 2)
N N NN

(3,2) (2,2) (1,2) (0,2)

///E;i4)(4:;;\\\ ///f;i4)<4:;§\\\ ///E;T4)(4:;;\\\ ///?;;4)

(3,3) (2,3) (1,3) (0,3)

(—=N)A of the form
(0,1) (-1,1) (-2,1) (-3,

&2) (zy ﬁz)(z,l) &2)(2 1)
(—

(0,2) (-1,2)

1)
4 4) <4& (3.4)(4,3) (3,4)(4,3) {
3

(0,3) —-1,3) (=2,3) (=3,



Ax: 0—1—+2—3

ZA~ is the translation quiver

7(,5)) =G+ 1,9) for all 1 € Z, 5 € N.

For » > 1, we may consider the translation
quiver

ZAso/(T")

obtained from ZA by identifying each vertex
x with 7" and each arrow x — y with 7"z —

™.
ZA~/(7") stable tube of rank r.

All vertices of ZA~/(7") are r-periodic of
period r

18



A stable tube of rank 3 is of the form

TZU

/

2,

7N

X(

7R

N

XOX

/x‘“\

2

/

ZE3\

19



A algebra

¢ component of I 4 is regular if € contains

neither a projective module nor an injec-

tive module (equivalently, 74 and 7‘21 are

defined on all vertices of %)

Theorem (Liu, Zhang). Let A be an alge-
bra and ¢ be a regular component of T 4.
T he following equivalences hold.

(1) € contains an oriented cycle if and only
if € is a stable tube ZA~ /(7"), for some
r>1.

(2) € is acyclic if and only if € is of the form
7.\ for a connected, locally finite, acyclic,
valued quiver A.

A component @ of I 4 is postprojective (pre-
projective) if ¥ is acyclic and each module
in € is of the form Tng for a projective
module P in ¥ and some m > 0.

A component ¥ of I 4 is preinjective if ¢ is
acyclic and each module in € is of the form
711 for an injective module I in % and some

m > 0.
20



A finite dimensional K-algebra over a field K
¢,%Y components of I 4

We write Homy(%,7) = 0 if Hom4(X,Y) =
O for all modules X in ¥ and Y in ¥

¢ and 2 are orthogonal if Hom4(%,2) =0
and Hom 4(Z,¢) = 0O

In general, if € # 2, then Homy(X,Y) =
rad’°(X,Y) for all modules X in ¢ and Y in
9.

A component ¥ of I 4 is called generalized
standard if rad°(X,Y) = 0 for all modules
X and Y in ¥.

e & postprojective or preinjective compo-
nent of I 4, then ¥ is generalized stan-
dard

e A of finite representation type, ¥ com-
ponent of I 4, then ¥ is generalized stan-
dard

e ¥ is generalized standard component of
4, X and Y modules in &, then every
nonzero homomorphism f € rads(X,Y)
IS a sum of compositions of irreducible
homomorphisms between indecomposable

modules from ¥ . -



A component ¥ of [4 is called almost
periodic if all but finitely many 74-orbits in
¢ are periodic.

Theorem (Skowronski). Let A be an alge-
bra and € be an almost periodic component
of ' . Then, for each natural number d > 1,
¢ contains at most finitely many modules of
dimension d.

Theorem (Skowronski). Let A be an alge-
bra and € be a generalized standard compo-
nent of ' 4. Then € is almost periodic.

Theorem (Skowronski). Let A be an alge-
bra. Then all but finitely many generalized
standard components of I 4 are stable tubes.

% reqgular, generalized standard component
of I 4, then

e ¥ a stable tube, or

o ¢ = 7/, for a connected, finite, acyclic,
valued quiver A.

22



A prominent role is played by the following

Lemma (Skowronski). Let A be a finite di-
mensional K-algebra and n be the rank of
Kg(A). Assume

M = Ml D---P Mr
iIs a module in mod A such that

o Mq,..., M, are pairwise nonisomorphic and
indecomposable

e Hom (M, 74M) = 0.

Then r <n.

A finite dimensional K-algebra

¢ component of I 4

ann, % = (] anny X annihilator of ¢

Xe? (two-sided ideal of A)
ann4(X) = {a € A| Xa = 0} annihilator of
A-module X

¢ a faithful component of [ 4 ifanny % = 0

In general, ¢ is a faithful component of I' 4/ 4nn , %

¢ faithful = [ 4 is sincere (for any indecom-
posable projective A-module P there exists a
module X in ¥ with Hom 4 (P, X) # 0) o



3. Homological dimensions

A finite dimensional K-algebra over a field K

M a module in mod A

pd 4 M projective dimension of M in mod A

pdys M = m € N if there exists a projective
resolution
O—Ppn—FPp1——PL—-Fp—M-—20
of M in modA and M has no projective
resolution in mod A of length < m.

pdg M =oo if M does not admit a finite
projective resolution in mod A

id 4 M injective dimension of M in mod A

idgy M =m € N if there exists an injective
resolution
O—-M—-Ig—11—-—1y_1—In—0

of M in mod A and M has no injective reso-
lution in mod A of length < m.

idg M =oc0 if M does not admit a finite

injective resolution in mod A
24



e pdy M =m e Nifandonly if Extm"‘l(M, —)
= 0 and Ext}(M,—) # 0.

e pdy M = oo if and only if Ext(M,—-) # 0
for all n € N.

e idy M = m e Nifand only if Exty (-, M)
= 0 and Ext}(—, M) # 0.

o idy M = oo if and only if Exti(—, M) # 0
for all n € N.

Moreover, we have the following useful facts
e pdy M <1 if and only if
HomA(D(AA) TAM) = 0.
o idyM < 1 if and only if
HOmA(TA M,A,) =0.

For modules M and N in mod A, we have
o If pdy M <1, then
Exty (M, N) = DHom 4(N, 74 M)
as K-vector spaces.
o Ifidy M <1, then
Exth (M, N) =2 DHom (7' N, M)
as K-vector spaces.

For a faithful module M in mod A, we have
o If HomA(M,TAM) =0, then pdg M < 1.
o If Homy (7'M, M) =0, then idy M < 1.

25



r.gl.dimA = max{pd4 M | M modules in mod A}
right global dimension of A

l.gl.dim A = max{pd 4op N | N modules in mod A°P}
left global dimension of A

mod A mod A°P

D
D standard duality of mod A

pdg M = id gop D(M)

idy M = DdAopD(M)
for all modules M in mod A
Hence,

l.gl.dim A = max{id4 M | M modules in mod A}

r.gl.dimA = maX{idAoleN modules in mod AOD}

Theorem (Auslander). A finite dimensional
K-algebra over a field K. Then

r.gl.dim = {pd4 S| S simple right A-modules} .

26



Hence

e r.gl.dim A minimal m € NU{oo} such that
Ethf"’l(M, N) = 0 for all modules M, N
in mod A

e r.gl.dimA = max{idAM M injective mo‘}

dules in mod A
= l.gl.dimA

gl.dmA=r.g.dimA=1.gl.dmA
global dimension of A

e A algebra with acyclic valued quiver Q 4,
then gl.dim A < o©
(gl.dim A < length of longest path in Q4)

Theorem (Skowronski-Smalg-Zacharia).
Let A be a finite dimensional K-algebra with
gl.dimA = o. Then there exists an inde-
composable module M in mod A such that

pdg M = oo and idy M = oo.

27



A finite dimensional K-algebra
gl.dimA < o

(= —)a: Ko(A) x Kg(A) — Z
Euler nonsymmetric Z-bilinear form
o0 . .
(IM], [N]) a4 = > (—1)"dimg ExtY4 (M, N)

i=0
for modules M, N in mod A

g4 - Ko(A) — Z
Euler quadratic form

gA([M]) = 3 (—1)"dimy Extyy (M, M)
1=0

for a module M in mod A

28



Semisimple algebras

A finite dimensional K-algebra over a field K

M a module in mod A is semisimple if M is
a direct sum of simple right A-modules.

e M semisimple if and only if Mrad A =20

Theorem. A finite dimensional K-algebra. The
following conditions are equivalent:

(1) A4 is semisimple.

(2) Every module in mod A is semisimple.
(3) rad A = 0.

(4) Every module in mod A°P is semisimple.

(5) 4A is semisimple.

A semisimple algebra if A, and 4 A are semi-
simple modules

29



Theorem (Wadderburn). A finite dimensional
K-algebra over a field K. The following con-
ditions are equivalent:

(1) A is a semisimple algebra.
(2) gl.dim A = 0.

(3) There exist positive integersny,...,n, and
division K-algebras F1,..., Fy, such that

Observe that

e A is a semisimple algebra if and only if
the Auslander-Reiten quiver [ 4 consists
of the isolated vertices

{S1} {S2}p ... A{Sr}

corresponding to a complete set 541,55,
..., Sy of pairwise nonisomorphic simple
(equivalently, indecomposable) modules
in mod A.

30



4. Hereditary algebras

A finite dimensional K-algebra over a field K

A is right hereditary if any right ideal of A
IS a projective right A-module

A is left hereditary if any left ideal of A is a
projective left A-module

Theorem. Let A be a finite dimensional K-
algebra over a field K. The following condi-
tions are equivalent:

(1) A is right hereditary.

(2) Every right A-submodule of a projective
module in mod A is projective.

(3) The radical rad P of any indecomposable
projective module P in mod A is projec-
tive.

(4) gl.dim A < 1.

(5) The socle factor I/socI of any indecom-
posable injective module I in modA is
injective.

(6) Every factor module of an injective mo-
dule in mod A is injective.

(7) A is left hereditary.
31



A is hereditary if A is left and right hereditary

Examples. K a field

(1)

(2)

@ finite acyclic quiver
(arrows with trivial valuation)

A = K@ the path algebra of Q over K
A finite dimensional hereditary K-algebra

QA=

F, G finite dimensional division K-algebras
Mg F-G-bimodule

K acts centrally on pMg

dimg(pMg) < oo

:{[f O];fEF,geG,}
m-g m € pMg

finite dimensional hereditary K-algebra

F 0

A= rMqg G

Q 4 the valued quiver

(dimp(pMg),dimg(pMa))

2 1
For example,

R O R O R O R O

C CI’|IC R|’|H H|’|H R

R real numbers, C complex numbers,
H quaternions, are hereditary R-algebras

32



(3) Fq,F>,...,F, family of finite dimensional
division K-algebras

71.7\4(7 Fi-Fj-bimoduIes, 1,9 € {1, e ,n}
K acts centrally on ;M;, dimg(;M;) < oo

Consider the valued quiver Q:
1,2,...,n vertices of @)
There is an arrow j — ¢ in Q <= ;M; # 0

(dij,dy;)
Then we have the valued arrow j ’ >1

dij = dimg(;M;), di; = dimg,(;M;)

Assume that the valued quiver @ is acyclic
F=1]] F, M = @ iM;,
M is an F-F-bimodule, dlmKM < 00

@)
A= Tp(M) = @ 17 tensor algebra
=0 of M over F
M(0) — F, M) = p
MM = M@p--- @M n-times, for n > 2
() acyclic = M) =0 for large r

A finite dimensional hereditary K-algebra

Qa=C 23



Theorem. Let A be an indecomposable
finite dimensional hereditary K-algebra over
a field K. The following conditions are equiv-
alent:

(1) The Euler form q4 is positive definite.

(2) The valued graph G4 of A is one of the
following Dynkin graphs

Ay :e—e—...——0—e (m vertices), m>1
By, : 0(1’2)0 ...—eo—e (m vertices), m > 2
Cm : 2l e e (m vertices), m > 3
[
Dy, : PP (m vertices), m > 4
o
o
Ee : |
o o o o o
[
K7 : |
o o o o o o
o
Esg : |
[ [ [ [ [ [ [
Fq: @ 0(1’2)0 °

GQ . ‘(173)0 34




Theorem. Let A be an indecomposable
finite dimensional hereditary K-algebra over
a field K. The following conditions are equiv-
alent:

(1) The Euler form q4 is positive semidefinite
but not positive definite.

(2) The valued graph G4 of A is one of the
Euclidean graphs

,&11 : 0(1’4)0
,&12 ; 0(2’2)0
[ J ) .
Am: o ., (m+1 vertices),
N 7 m > 4
o )
Em : 0(1’2)0 ce .(271)‘ (m _I_?:,I’:L \;e;tl'ceS),
Cpy o 621 . §12), (m + 1 vertices),
m > 2
BC,, : %% ... &2 (m + 1 vertices),

m > 2
35



_—~ (m 4+ 1 vertices),
S m >3

_—~ (m+ 1 vertices),
S m >3

_—~ (m+ 1 vertices),

N m > 4
°
;
° ° °
°

° ° ° ° °
°
° ° ° ° ° °

(1’2)0 °

(2’1)0 °

36



A hereditary K-algebra

e A is of Dynkin type if G4 is a Dynkin
graph

e A is of Euclidean type if G4 is an
Euclidean graph

e Aisof wild type if G4 is neither a Dynkin
nor Euclidean graph

e A wild type, then there exists an inde-
composable module M in mod A such that

ga([M]) = dimg End 4(M)—dim g Exty (M, M) < 0
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Theorem. Let A be an indecomposable
finite dimensional hereditary K-algebra over
a field K, and QQ = Q4 the valued quiver of
A. Then the Auslander-Reiten quiver I 4 has
the following shape

}7’(14) o | R(A) - Q(A)>

e P(A) is the postprojective component con-

taining all indecomposable projective A-
modules

e Q(A) is the preinjective component con-

taining all indecomposable injective A-mo-
dules

e R(A) is the family of all regular compo-
nents

Moreover

(1) If A is of Dynkin type, then P(A) = Q(A)
is finite and R(A) is empty.

(2) If A is of Euclidean type, then P(A) =
(—N)Q°®P, Q(A) £ NQ°P and R(A) is an
infinite family of stable tubes, all but fi-
nitely many of them of rank one.

(3) If A is of wild type, then P(A) = (—N)Q°P,
Q(A) £ NQ°P, and R(A) is an infinite
family of components of type ZA.
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A indecomposable hereditary not of Dynkin
type, then

e Hom4(P(A),R(A)) # 0O,
Hom4(R(A),P(A)) =0,

e Hom,4(R(A),Q(A)) # 0O,
Hom4(Q(A), R(A)) =0,

e Hom,4(P(A), Q(A)) =0,
Hom 4(Q(A),P(A)) =0,

/X\
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A hereditary of Euclidean type, then R(A) is
an infinite family (7{1) yca of pairwise orthog-
onal generalized standard stable tubes sepa-
rating P(A) form Q(A): for any homomor-
phism f: X — Y with X in P(A) and Y in
Q(A) there exists a module Z in R(A) and a
factorization

X%Y
N
Z
A hereditary of Euclidean type, then

(rad¥) =0

A hereditary of wild type, then (rad®’)™ # 0
forallm>1
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5. Tilted algebras

A finite dimensional K-algebra over a field K

A module T in mod A is a tilting module if
the following conditions are satisfied:

(T1) pdaT < 1,
(T2) Exti(T,T) = 0;

(T3) T is a direct sum of n pairwise noniso-
morphic indecomposable modules, where
n = rank of Kg(A).

(Brenner-Butler, Happel-Ringel, Bongartz)

B = End 4(T) tilted algebra of A
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We have the torsion pairs
(F(T), 7(T)) in mod A
with torsion-free part
F(T)={X emodA| Hom(T, X) = 0}
= CogenTyT
torsion part

T(T) = {X € mod A| Exti(T, X) = o}
= GenT

and
(V(T), X(T)) in mod B
with torsion-free part
Y(T) = {Y € mod B| Torf(T,Y) =0}
= Gen Tng(BT)
torsion part

X(T)={Y emodB|Y @5 T = 0}
= Cogen D(gT)
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Theorem (Brenner-Butler). Let A be a
finite dimensional K-algebra over a field K, T
a tilting module in mod A, and B = End 4(T).
Then

(1) gT is a tilting module in mod B°P and
there is a canonical isomorphism of K-
algebras A — Endpgop(gT)°P.

(2) The functors Hom 4(T,—) : mod A — mod B
and —®pgT : mod B — mod A induce mu-
tually inverse equivalences

T(T) — Y(T)
(3) The functors ExtL (T, —) : mod A — mod B

and TorP(T,—) : mod B — mod A induce
mutually inverse equivalences

F(T) = x(7T)

4 F(T) T(T)
Ext} (T,= M4 (T,-)

~® M? (T,-)
B Y(T) X(T)

infAC7(T), projBC Y(T), 43



A finite dimensional K-algebra, T a tilting
module in mod A, and B = End4(T"). Then

e [gl.dimA—gl.dimB| <1.

e There is a canonical isomorphism
f: Ko(A) — Ko(B) of Grothendieck groups
such that

F([M]) = [Hom 4(T, M)] — [Ext}(T, M)]

for any module M in mod A.
Moreover, if gl.dim A < oo, then

(M], [Ny a = (F(AM]), fF(AND) B

for all modules M, N in mod A.

o If gl.dim A < oo then the Euler forms g4
of A and qp of B are Z-equivalent.
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A hereditary finite dimensional K-algebra
T tilting module in mod A

B = End4(T) tilted algebra (of type G4
(valued graph of A))

Then
e gl.dimB < 2;

e For every indecomposable module Y in
mod B, we have pdgY <1l oridgY <1;

e The torsion pair (Y(T),X(T)) in mod B
is splitting: every module from ind B be-
longs to Y(T') or X(T).
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Moreover, the images Hom 4 (7T,1) of the in-
decomposable injective modules I in mod A
via the functor Hom 4 (7T, —) : mod A — mod B
belong to one component ép of ' g, and form
a faithful section Ap £ Q5P of ¢

AT

Y(T)Ner CTrNX(T)

Cr
¢ connecting component of [ g determined
by T' (connects the torsion-free part with the
torsion part of I'g: every predecessor of a
module Homu(T,I) from Az in indB lies
in Y(T) and every successor of a module
Tél Hom (T, 1) in ind B lies in X(T"))

A7 section: acyclic, convex in €, and inter-
sects each Tp-orbit of ¢ exactly
once

A faithful: the direct sum of all modules
lying on A is a faithful B-mo-
dule (has zero annihilator in B)

¢r faithful generalized standard compo-
nent of [ 4 with a section A 46



Theorem (Ringel). Let A be a hereditary
algebra, T a tilting module in mod A, B =
End4(T) and ér the connecting component
of ' g determined by T'. Then

(1) %1 contains a projective B-module if and
only if T admits a preinjective indecom-
posable direct summand.

(2) 1 contains an injective B-module if and
only if T' admits a postprojective inde-
composable direct summand.

(3) 61 is regular if and only if T is regular
(belongs to add R(A)).

Theorem (Ringel). Let A be a hereditary
algebra. Then there is a regular tilting mod-
ule in mod A if and only A is of wild type and
Kg(A) is of rank > 3.
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Handy criterion for a tilted algebra

Theorem (Liu, Skowronski). Let B be a
finite dimensional K-algebra over a field K.
Then B is a tilted algebra if and only if ' g
admits a component ¢ with a faithful sec-
tion A such that Homg(X,7gY) = 0 for all
modules X,Y from A.

Moreover, in this case, if T* is the direct sum
of all modules lying on A, then

o T js a tilting module in mod B.

e A= Endg(T™*) is a hereditary K-algebra
of type A°P.

o T'= D(4T%) is a tilting module in mod A.

e B End (T).

Theorem (Liu, Skowronski). Let B be a
finite dimensional K-algebra over a field K.
Then B is a tilted algebra if and only if I' g
admits a faithful generalized standard com-

ponent € with a section A. "



Example. Let B = KQ/I where @ is the
quiver

s

x

12 2L 3.2 425
and I is the ideal of K() generated by af8voc

[ g is of the form

S1=P1=KO0000 O0K000=5> "\ 00KO00 = S3 00K00=S4 O0O000K=Ss=I5

NN AN N

P4 = KKKKO = Il

A faithful section of € =T g

T{ = S», T4 = 0KK00, Tj = 0OKKKO,
Ty =PFPs, T2=F
=171 013 01T, ®T%,

T* faithful tilting B-module,

Homp(T*, gT*) = 0

A = Endp(T*) hereditary K-algebra KA°P,
where A°P is of the form
4

1-—2-—3

\

S 49



T = D(4T%) tilting module in mod A

T:Tl@TQ@T3@T4@T5
T, = D(T?) for i € {1,2,3,4,5)

Ty =000  To=KKKk  T3=O0KKp
T, = 00K,  Ts=000%
4
o o o o
\./ \./ \./ \.

NN NN

o[> —-0—0—0—-[) 0

Tl/ \o/ \T3/ \o/ \T5

ExtL(7,7) 2 DHom (T, 74T) =0

Enda(T) =2 B=KQ/I
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A indecomposable hereditary finite dimensio-
nal K-algebra

T tilting module in mod A

B = End 4(T)

e A of Dynkin type
= A of finite representation type
= B of finite representation type

e B of finite representation type
= [ g = %7 and finite
= % contains all indecomposable pro-
jective modules and all indecomposa-
ble injective modules
= ' has a postprojective and a preinjec-
tive direct summand

e A of Euclidean type, T has a postprojec-
tive and a preinjective direct summand
= B is of finite representation type
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Concealed algebras
A indecomposable hereditary of infinite
representation type

T postprojective tilting module in modA,
T € add P(A)

B = End 4(T") concealed algebra of type G 4

; <7;/(<) NT(T), R(A) Q(A)
F(T)

Ext1 L(T,-)

Hom(T,—)

X(T)

Q(B) = 6r

e P(B) = Homu(T,P(A)NT(T)) postpro-
jective component of I'g containing all
indecomposable projective B-modules

e O(B) = ¢ = Homu(T,Q(A)) U X(T)
preinjective component of ' containing
all indecomposable injective B-modules

e R(B) = Homu(T,R(A)) family of all
regular components of I g

e A of Euclidean type = R(B) infinite fa-
mily of pairwise orthogonal generalized
standard stable tubes

e A of wild type = R(B) infinite family of
components of type ZA 52




T preinjective tilting module in modA,
T € add Q(A)

B = End4(T)
Q(A)
[ 4 P(A) 10(A) ﬂ]§12)> ;

R(A)
! ()
R(B) Q(B)

o P(B) =%r = Y(T)UExt{(T,P(A4)) post-
projective component of [ containing
all indecomposable projective B-modules

e O(B) = ExtL (T, Q(A) N F(T)) preinjecti-
ve component of ' containing all inde-
composable injective B-modules

e R(B) = Ext} (T, R(A)) family of all regu-
lar components of [

e A of Euclidean type = R(B) infinite fa-
mily of pairwise orthogonal generalized
standard stable tubes

e A of wild type = R(B) infinite family of
components of type ZA~

J—

B = End 4(T) for a postprojective tilting A-
module T' <= B £ End 4(T") for a preinjec-
tive tilting A-module T’ 53



Representation-infinite tilted algebras of
Euclidean type

A indecomposable hereditary of Euclidean
type

T tilting module in mod A without preinjec-
tive direct summands

B = EndA(T)

T = TPPQT"I, TPP € add P(A), T"9 € add R(A)
— TPP £ Q,

C = End 4(TPP) concealed algebra of Euclidean

type
C' factor algebra of B
O 2
[ B <73(B)=73(C) ; (
X(T)
- Q(B) = %r
e P(B) = Homu(T,7(T) n P(A)) =

Hom 4(TPP, T(T) N P(A)) = P(C) post-
projective component of g containing
all indecomposable projective C-modules

o O(B) =% = Homu(T,Q(A)UX(T) pre-
injective component of I'g containing all
indecomposable injective B-modules

o 758 = Hom (T, R(A) N T(T)) infinite fa-
mily of pairwise orthogonal generalized
standard ray tubes

e 75 contains a projective module <+—
Trg 7+_ 0 54



T tilting module in mod A without postpro-
jective direct summands

B = EndA(T)

T = Tr9¢TP, T € add R(A), TP € add Q(A)

= TP' £ 0O,

C = End 4(TP") concealed algebra of Euclidean
type

C factor algebra of B
~J

Y(T)
[ B Q(B) = 2(C) >
Ar

P(B) - CKT

TB
o P(B) =%r = Y(T)UExt{(T,P(4)) post-
projective component of ['g containing
all indecomposable projective B-modules
e Q(B) = Ext}(T,F(T) n Q(A)) =
ExtL (TP, F(T) N Q(A)) = Q(C) preinjec-
tive component of I'g containing all in-
decomposable injective C-modules
o 75 = Exti(T,R(A) N F(T)) infinite fa-
mily of pairwise orthogonal generalized
standard coray tubes

e 75 contains an injective module +—
T"9 %= 0 55



Almost concealed algebras of wild type

A indecomposable hereditary of wild type
T tilting module in mod A

T =TPPpT"I @ TP
TPP € add P(A), T"9 € add R(A), TP* € add Q(A)

B = End 4(T)

B almost concealed if T°PP = 0 or TP* = 0

T he cases
o [ =TPP
o [ =TI

were considered above

It remains to consider the cases
o I'=T"9
o I'=TPPpT", TPP £ 0, T"9 £ 0
o T =T"9¢ TP, T9 40, TP £ 0
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T = T"9 regular tilting module, B = End 4(T)

[ 4 § P(A) R(A) Q(A)

Ar /
I_B yr; Hom (T, Q(A)?;Exti(T, P(A)) s\ Xlp
(gT = ZAT == ZQZD \\

e ¢ regular connecting component
o Vg = Homy(T,7(T) N R(A)) contains
all indecomposable projective B-modules

and consist of
— one postprojective component P(B) =

P(C), for a wild concealed factor al-

gebra C' of B
— an infinite family of components ob-

tained from components of type ZA
by ray insertions, containing at least
one projective B-module
o X' = ExtL(T,F(T)NR(A)) contains all
indecomposable injective B-modules and
consist of
— one preinjective component Q(B) =
Q(C"), for a wild concealed factor al-

gebra C’ of B
— an infinite family of components ob-

tained from components of type ZA~
by coray insertions, containing at least
one injective B-module 57




T=TPPOT"Y, TPP £ 0, T™9 £ 0

[ g is of the form

AT /
yrB\, Hom 4 (T, Q(A); { . XTpg
Extl(T,P(4) N f(T))\\

Cr

e % connecting component containing at
least one injective module and no projec-
tive modules

o Vg = Homy(T,7(T) N (P(A) UR(A)))
contains all indecomposable projective B-

modules and consist of
— one postprojective component P(B) =

P(C), for a wild concealed factor al-

gebra C of B
— an infinite family of components ob-

tained from components of type ZA
by ray insertions, containing at least
one projective B-module

o X g = Exti(T,F(T) N R(A)) consists of
preinjective components and components
obtained from stable tubes or components
of type ZA by coray insertions
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T=T"9¢% TP, T # 0, TP* # 0

[ g of the form

HomA(T Q(A)N T(T)
YIipB ExtA(T P(A))

e ¢ connecting component containing at
least one projective module and no injec-
tive modules

e VI'p = Homu(T,7(T) N (R(A) U Q(A)))
consists of preprojective components and
components obtained from stable tubes
or components of type ZA by ray inser-
tions

o Xp = Exti(T,F(T) n (R(A) U Q(A)))
contains all indecomposable injective B-
modules and consist of
— one preinjective component Q(B) =

Q(C"), for a wild concealed factor al-

gebra C’ of B
— an infinite family of components ob-

tained from components of type ZA~
by coray insertions, containing at least

one injective B-module
59



Tilted algebras of wild type — dgeneral
case

A indecomposable hereditary algebra of wild
type

T tilting module in mod A

B = EndA(T)
[ g is of the form
ALY A AW
yI‘BZm\ 9](1) @51) ,XI_BSI)
@52) (X o
S NG BT
yl_B]@). 9 {
Al
[} A’Sn)
< 2t (g
VI gy (M)
= )
A CT
where

e ¢ connecting component of ['g deter-
minend by T, possibly ¢ = IN'g (if B is
of finite representation typeg

e For each ¢ € {1,...,m}, Al’) connected
valued subquiver of AF of Euclidean or
wild type, @l(z) = NAZZ) full translation
subquiver of ép closed under predeces-
SOrs |

e For each j € {1,...,n}, A,,(ﬂ) connected
valued subquiver of A of Euclidean or
wild type, @7@7) = (—N)Afﬂ) full transla-
tion subquiver of ér closed under succes-
SOrs 60



e For each ¢ € {1,...,m}, there exists a
tilted algebra

B{") = End Agg(Tl(i))

where Al(i) IS a hereditary algebra of type
Al(z) and TZ(Z) is a tilting module in mod Al(z)
without preinjective direct summands such
that

— Bl(i) is a factor algebra of B
- 7 =y,
l
— yrB(i) family of all connected compo-
l

nents of I_B(i) contained entirely in the
!

torsion-free part y(Tl(i)) of mod Bl(i)
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e For each 5 € {1,...,n}, there exists a
tilted algebra

quj) — EndAg’j) (Tr(]))

where Aq(aj) IS @ hereditary algebra of type
A,,(aj) and Tr(j) is a tilting module in mod Afaj)
without postprojective direct summands
such that

— Bﬁﬁ is a factor algebra of B
7§j) _ X(Tf,«(j)) A ch(j)
— XFB@ family of all ::onnected compo-
nents of I’Bﬁj) contained entirely in the

torsion part X(Tr(j)) of mod Bﬁj)

e All but finitely many modules of %1 are
in

2V y..ugm™ugy..uai
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We know from the facts described before
that

e For each ¢ € {1,...,m}, the translation
quiver yI‘Bl(Z-) consists of

— one postprojective component P(Bl(i))

— an infinite family of pairwise orthogo-
nal generalized standard ray tubes, if
Al(i) IS an Euclidean quiver, or an in-
finite family of components obtained
from components of type ZA~ by ray
insertions, if Al(i) is a wild quiver

e For each j € {1,...,n}, the translation
quiver AT 6) consists of

— one preinjective component Q(Bf,gj))

— an infinite family of pairwise orthogo-
nal generalized standard coray tubes,
it A,,(«j) iIs an Euclidean quiver, or an
infinite family of components obtained
from components of type ZA~ by coray

insertions, if Aﬁj) IS a wild quiver
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Acyclic generalized standard Auslander-
Reiten components

Theorem (Skowronski). Let A be a finite
dimensional K-algebra over a field K, € a
component of ' 4 and B= A/anny &.

(1) € is generalized standard, acyclic, with-
out projective modules if and only if B
is a tilted algebra of the form Endgy(T),
where H is a hereditary algebra, T is a
tilting module in mod H without preinjec-
tive direct summands, and € is the con-
necting component ¢ of I'g determined
by T'.

(2) € is generalized standard, acyclic, with-
out injective modules if and only if B is
a tilted algebra of the form Endgy(T),
where H is a hereditary algebra, T is a
tilting module in mod H without postpro-
jective direct summands, and € is the
connecting component ¢ of I'g deter-
mined by T.

(3) € is generalized standard, acyclic, regular
if and only if B is a tilted algebra of the
form Endy(T), where H is a hereditary
algebra, 1T is a reqgular tilting module in
mod H, and ¢ is the connecting compo-

nent ¢ of ' g determined by T.
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In general, an arbitrary acyclic generalized
standard component ¥ of I 4 is a glueing of

e torsion-free parts y(Tl(i)) N @ of the
[
connecting components CKT@ of tilted al-
!
gebras Bl(z) = EﬂdA(i)(Tl(Z)) of hereditary
!

algebras A{Y by tilting A{-modules T
without preinjective direct summands

e torsion parts X(T,%) ne @) of the con-
necting components %T(j)rof tilted alge-

bras BY) = EndA(j)(TT(j)) of hereditary

algebras Aq(aj) by tilting Aﬁj)—modules Tr(j)
without postprojective direct summands

along a finite acyclic part in the middle of ¥
(and usually ¥ does not admit a section)
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6. Quasitilted algebras

Abelian K-category ¢ over a field K is said
to be hereditary if, for all objects X and Y
of 77, the following conditions are satisfied

o Ext%, (X,Y)=0
o Hom »(X,Y) and Extl (X,Y) are finite
dimensional K-vector spaces

An object T of a hereditary abelian K-category
¢ is said a tilting object if the following
conditions are satisfied

o ExtL (T,T)=0

e For an object X of o, Hom ,»(T,X) =0
and Extl (T,X) =0 force X =0

e ' direct sum of pairwise nonisomorphic
indecomposable objects of 7

A finite dimensional hereditary K-algebra. Then
e 77 = mod A hereditary abelian K-category

e A moduleT in mod A is a tilting object of
mod A if and only if T is a tilting module

A quasitilted algebra is an algebra of the
form End ,»(T), where T is a tilting object of
an abelian hereditary K-category J7. ¢



A finite dimensional K-algebra over a field K

A path in ind A is a sequence of homomor-
phisms

Mo 5y 2 My — My I

in ind A with fq1, fo,..., ft nonzero and noni-
somorphisms

My predecessor of M; in ind A
M; successor of Mg in ind A

Every module M in ind A is its own (trivial)
predecessor and successor

L 4 full subcategory of ind A formed by all
modules X such that pdy Y < 1 for every
predecessor Y of X in indA

R 4 full subcategory of ind A formed by all
modules X in ind A such that idyY <1
for every successor Y of X in ind A

L 4 closed under predecessors in ind A

R 4 closed under successors in ind A
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Theorem (Happel-Reiten-Smalg). Let B
be a finite dimensional K-algebra. T he
following conditions are equivalent:

(1) B is a quasitilted algebra.

(2) gl.dim B < 2 and every module X inind B
satisfies pdp X <1 oridp X < 1.

(3) L contains all indecomposable projec-
tive B-modules.

(4) Rp contains all indecomposable injective
B-modules.

Theorem (Happel-Reiten-Smalg). Let B
be a quasitilted K-algebra. Then

(1) The quiver Qg of B is acyclic.
(2) indB=LgURg.

(3) If B is of finite representation type, then
B is a tilted algebra.
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Theorem (Skowronski). Let B be an in-
decomposable finite dimensional K-algebra.
T he following conditions are equivalent:

(1) B is a tilted algebra.

(2) gl.dmB < 2, indB = Lg U Rpg and
Lp N'Rp contains a directing module.

A module M in ind B is directing if M does
not lie on an oriented cycle in ind B.

Theorem (Coelho-Skowronski). Let B be
a quasitilted but not tilted algebra. Then
every component of I g is semiregular.

A component ¥ of g is semiregular if ¢
does not contain simultaneously a projective
module and an injective module.
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Canonical algebras

Special case: K a field

m > 2 natural number

p = (p1,...,pm) m-tuple of natural numbers

A = (Aq,...,\m) m-tuple of pairwise different
elements of P1(K) = K U {co}, normali-
sed such that A\{ = o0, Ao =0, \3=1

a1 Q@13 *1py—1
O < O < « o o — O
ozq/ ’\alpl
o o o A2pr—1 a2p
. 0o 21 o < 22 o 23 o 2 o 2 o w
A(p) : — \ — 9o
Oém]_\' * x/ampm
O < o < cee —— 0O
am?2 am3 Umpm—1

C(p, M) defined as follows.

Form =2, C(p,A\) = KA(p) path algebra of
A(p)

For m > 3, C(p,A) = KA(p)/I(p,)
I(p,)\) ideal of KA(p) ge-
nerated by Qjp, - - - Aj21 +
Alpy -+ - Q12011 T AjADp, - - - Q2227
for j € {3,...,m}

C(p,A) canonical algebra of type (p,))

p weight sequence, A parameter sequence

For K algebraically closed, these are all ca-
nonical algebras (up to isomorphism) 70



General case (version of Crawley-Boevey)

Let F' and G be finite dimensional division al-
gebras over a field K, pMg an F-G-bimodule
with (dim pM)(dim My) = 4, K acting cen-
trally on pMqg.

Denote

X = dim ]\4(;7

1, or 2.

N|—

hence y =

An M-triple is a triple (N, ¢, Ni), where pN

is a finite dimensional nonzero left F-module,
N a finite dimensional nonzero right G-module,
and ¢ : pN®7zN/ — pMg an F-G-homomorphism
such that

dimNé; — X

e whenever X and X are nonzero sub-
modules of pN and N/,, respectively, with

dim X | dim X
o(X®7X'") =0, then dim?N_I_dimNg < 1.
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Two M-triples (N1,¢1,N7) and (Na, ¢, N5)
are said to be congruent if there are isomor-
phisms of modules © : p(N1) — p(N>) and
©' : (N])g — (N5)g such that the following
diagram is commutative

The middle D of an M-triple (pN, ¢, N(,) is
defined to be the set of pairs (d,d’), where d
is an endomorphism of N and d’ is an endo-
morphism of Nf such that p(d® 1) = ¢(1®
d). Then D is a division K-algebra under
componentwise addition and multiplication,
N is an F-D-bimodule, N’ a D-G-bimodule,
and ¢ induces an F-G-homomorphism
0N Qp N/G — pMg.
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Let » >0 and nq,..
A canonical algebra A of type (ni,...,nr)
over a field K is an algebra isomorphic to
a matrix algebra of the form

.,nyr > 2 be integers.

F|Ny--- N{|Ns--- Ny N, --- N.| M

( D, -+ Dy N{
nm—14¢1 g Co 0 )
> 0 D N

Dy - D3 N}

no — 1 < 0 o :
. 0 Do N}

Dy - D, | N

=191 o 0 R
0O D, |N

0 0 G

where F' and G are finite dimensional division
algebras over K, M = pMqn an F-G-bimodule
with (dim pM)(dim M) = 4 and K acting
centrally on pM¢, (N1,91,N1),. .., (Nr,or, NJ.)
are mutually noncongruent M-triples with the
and the multiplication
given by the actions of division algebras on bi-
modules and the appropriate homomorphisms

middles Dq,..., Dy,

Ply,---5Pr-
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The valued quiver Qa of a canonical algebra
N\ of type (n1,...,n,) is of the form

oy (WD (L2 (L = 1)
0X%252) 5 1y (2. 2) .. (2, ns —@w
(m\(r,l)%(r,Q) e (ryny — 1)%
a; =dimpN;, by =dim(N;)p,
¢; = dimp, N}, d; = dim(N;)q

forie{l,...,r}

/A canonical algebra = gl.dimA <2

Hence the Euler form ga of A is defined

/A canonical algebra =

e g) Pbositive semidefinite of corank one or
two, or

e gy IS indefinite
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Theorem. Let A be a canonical algebra over
a field K. The following conditions are equiv-
alent:

(1) qp is positive semidefinite of corank one.
(2) Qa is of one of the following forms

ST 1.2 2.1y
° °
\‘e.”e‘/ .(2,1). .(1,2).
1,2 o 2,1 2,1 ® 1.2
paen  eneon
AN v AN g
Y e~ ---—©
° °
o/o\o 0‘/0 \o
\oe---eo/ \o o/
° °
o‘/o o\o o/ o\o
\0 ° o/ \0 ° ° o/
° °
./ \. ./ \.
(1:5\)0 061) (2}0 o(/LQ)
(13,3, LB1),(13),
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Theorem. Let A be a canonical algebra over
a field K. The following conditions are equiv-
alent:

(1) g is positive semidefinite of corank two.

(2) Qa is of one of the following forms

NEORCENN S (1),

J(22),22), S8, (22),

LD, 22, (22,04, 22,60,

@D aDeED @G
21 e (12) (1,20 e (21)  (1.2) e (2,1)
(] {

.é.l. .é.l.

(2,1) e*(1,2) (12) e*(2,1)

° [ ) [ )

'é‘:‘é' o (] o (]

ey .~ o
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o/.\o

e

e

AN

yd

[
o/ \o
(2,1)\‘<—.<—Q/(2,1)

-0 000

AN

.e.%./
./.\.

(172)\‘€.%‘/(172)

A

/A

/&
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/A canonical algebra over a field K

/A canonical algebra of Euclidean type:
qn is positive semidefinite of corank one

/A canonical algebra of tubular type:
gn 1S positive semidefinite of corank two

/A canonical algebra of wild type:
gn is indefinite

Qj\ the valued quiver obtained from the va-
lued quiver Qa of A by removing the
unique source and the arrows attached
to it

e /A canonical algebra of Euclidean type if
and only if Qj\ IS a Dynkin valued quiver

e /\ canonical algebra of tubular type if and
only if Qj‘\ is a Euclidean valued quiver
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Theorem (Ringel). Let N be a canonical
algebra of type (nq1,...,ny) over a field K.
Then the general shape of the Auslander-
Reiten quiver ' of A\ is as follows

NG

e PN s a family of components contain-
ing a unique postprojective component
P(N\) and all indecomposable projective
N-modules.

° Q/\ is a family of components containing
a unique preinjective component Q(A) and
all indecomposable injective A-modules.

o 7N is an infinite family of faithful pair-
wise orthogonal generalized standard sta-
ble tubes, having stable tubes of ranks
ni,...,ny and the remaining tubes of rank
one.

o TN separates PN from ON.

e pdp X <1 for all modules X in PNUTN.
e idyY <1 for all modules Y in TN uU QM.
o gl.dimA < 2. 70



Let A be a canonical algebra of type (n1,...,n,)

T tilting module in add P"

C = EndA(T) concealed canonical algebra

of type A

The general shape of [ is a as follows

)G

PC = Homp (T, T (T)NPMUEXEA(T, F(T))
is a family of components containing a
unique postprojective component P(C)
and all indecomposable projective C-modules.
Q¢ = Homu(T, Q") is a family of com-
ponents containing a unique preinjective
component Q(C) and all indecomposable
injective C-modules.

7¢ = Homa(T,7") is an infinite family
of faithful pairwise orthogonal general-
ized standard stable tubes, having stable
tubes of ranks n1,...,n,s and the remain-
ing tubes of rank one.

TC separates PC from QC.

pd~ X < 1 for all modules X in PCuUTC.
idcY < 1 for all modules Y in 7¢ U Q°.
gl.dimC < 2. 80



C = Enda(T), T tilting module in add P/, if
and only if C £ Enda(T"), T' tilting module
in add oM.

/A canonical algebra
T tilting module in add(PMNuTN)
B = EndA(T) almost concealed canonical

algebra of type A
The general shape of I g is as follows

TN N Ty

w1 ks>
7)B QB

TB
e PB = PC for a concealed canonical factor
algebra C of B.

e OB a family of components containing a
unique preinjective component Q(B) and
all indecomposable injective B-modules.

e 75 an infinite family of pairwise ortho-
gonal generalized standard ray tubes,
separating PB from QB.

e pdg X <1 for all modules X in PBUTB.
e idgY <1 for all modules Y in 75,
e gl.dimB < 2. 81



/A canonical algebra
T tilting module in add(7" u QM)
B = EndA(T)

The general shape of I g is as follows

TN YN

2 =) 0
PB QB

TB
PB a3 family of components containing
a unique postprojective component P(B)
and all indecomposable projective B-modules.

QB — QC for a concealed canonical factor
algebra C' of B.

75 an infinite family of pairwise orthogo-
nal generalized standard coray tubes,
separating PB from QPB.

pdg X < 1 for all modules X in P5.
idgY < 1 for all modules Y in 7P u 9B.
gl.dim B < 2.

B = Enda(T), T tilting module in add(7"N U
oN), if and only if BOP = Enda(T"), T tilting
module in add(P" u TN) (B°P almost con-
cealed canonical algebra) 82



Almost concealed canonical algebras of
Euclidean type

Theorem. (1) The class of concealed canon-

(2)

(3)

ical algebras of Euclidean type coincides
with the class of concealed algebras of
Euclidean type.

The class of almost concealed canoni-
cal algebras of Euclidean types coincides
with the class of tilted algebras of the
form Endy(T), where H is a hereditary
algebra of a Euclidean type and T’ is a tilt-
ing H-module without preinjective
direct summands.

The class of the opposite algebras of
almost concealed canonical algebras of
Euclidean types coincides with the class
of tilted algebras of the form Endgy(T),
where H is a hereditary algebra of a Eu-
clidean type and T is a tilting H-module
without postprojective direct summands.

(4) An algebra A is a representation-infinite

tilted algebra of a Euclidean type if and
only if A is isomorphic to B or B°P, for
an almost concealed canonical algebra B

of a Euclidean type. oa



Tubular algebra = almost concealed
canonical algebra of
tubular type

Theorem. Let B be a tubular algebra. Then
the Auslander-Reiten quiver I g of B is of the
form

C- W@W :

Ty gcQ+ TB

where PB is a postprojective component with
a Euclidean section, OB jsa preinjective com-
ponent with a Euclidean section, TOB iIs an
infinite family of pairwise orthogonal gener-
alized standard ray tubes containing at least
one indecomposable projective B-module, T£
is an infinite family of pairwise orthogonal
generalized standard coray tubes containing
at least one indecomposable injective B-module,
and each TP, for ¢ € QF (the set of positive
rational numbers) is an infinite family of pair-
wise orthogonal faithful generalized standard

stable tubes.
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Quasitilted algebra of canonical type — an
algebra A of the form End (7T), where T is
a tilting object in an abelian hereditary K-
category 7 whose derived category Db(%”)
of 7 is equivalent, as a triangulated cate-
gory, to the derived category Db(mod N) of
the module category mod A of a canonical
algebra A over K.

Theorem (Happel-Reiten). Let A be a
finite dimensional quasitilted K-algebra over
a field K. Then A is either a tilted algebra
or a quasitilted algebra of canonical type.
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Theorem (Lenzing-Skowronski). Let A be
a finite dimensional K-algebra over a field K.
The following conditions are equivalent:

(1) A is a representation-infinite quasitilted
algebra of canonical type.

(2) T 4 admits a separating family T4 of pair-
wise orthogonal generalized standard se-
miregular (ray or coray) tubes.

DA

TN

N

=)

QA

e Hom4(7T4,P4) =0, Hom4(04,T4) = 0,

Hom 4(Q4,P4) =0

e every homomorphism f : X — Y with X
in P4 and Y in 94 factorizes through a
module Z from add 74

Moreover, A admits factor algebras A; (left
part of A) and A, (right part of A) such that

e A; is almost concealed of canonical type
and P4 = pA

e APP is almost concealed of canonical type
and 94 = g4
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Example. Let A = KQ/I where @ is the

quiver
Y1 ')’3
(3,1) ¥ (3,2)
s] 5
5 -6 7-%-9
1%
8

and I is the ideal of K denerated by the
elements

agay + B3B8281 + v37271, @20, £v1, 072, Vo

Then A is a quasitilted algebra of canonical
type

A; = KQW /1 tubular algebra of type (3, 3, 3)

QW obtained from Q by removing the vertices
5,6,7,8,9 and the arrows &,m,0, 0,V

1M ideal of KQW) generated by

ooy + 8382081 + v3V2v1, Qo0
87



Ar = KQ(T)/I(T) almost concealed canonical
algebra of wild type (2,3,8)

Q") obtained from @ by removing the vertex
4 and the arrow o

(") ideal of KQ(T) generated by
aral + 6306201 + v3v2v1, €71, 02, Vo

|_A=7DA\/TA\/QA

pA=ph,  Qt=o

T4 semiregular family of tubes separating P4
from QA

T4 consists of a stable tube 7{! of rank 3
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S21) 92,2

NS R R
D VW ANVAN
NN AN
| AN

(identifying along the dashed lines)

consisting of indecomposable modules over
the canonical algebra C = KA/J, where A
is the full subquiver of @) given by the ver-
tices 0, w, (1,1), (2,1), (2,2), (3,1), (3,2)
and J is the ideal of KA generated by
azal + 530201 + v37271

RN A

1
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a coray tube 75! of the form

\/ Sy
/\/ N\,
\/\/\

[ o  J
/N /N e
(identifying along the dashed lines)

obtained from the stable tube TOC of ' of
rank 2, with 5(1,1) and N on the mouth, by

one coray insertion

/\1
\ /

90




a ray tube 75 of the form

/\/
\/\/\
/\/\/

\/\/\/\/\
/\/\/\/\/

5(3 1) [ ]

/\/\/\/\/\
\/\/\/\/\/

AN N AN AN
(identifying along the dashed lines)

obtained from the stable tube 7 of rank 3,

with S(3 1), S(3,2) and R on the mouth, by 5
ray insertions

/\
\ /

and the infinite famlly of stable tubes of rank
1, consisting of indecomposable C-modules
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7. Double tilted algebras

Theorem (Happel—-Reiten—Smalg). Let A
be a finite dimensional K-algebra such that
each indecomposable X in mod A satisfies
pdy X <1loridy X <1. Then gl.dimA < 3.

Following Coelho and Lanzilotta a finite
dimenisional K-algebra A is said to be

e shod (small homological dimension) if
every indecomposable module X in mod A
satisfies pdy X <1 oridy X < 1.

e strict shod if Aisshod and gl.dim A = 3.

Theorem (Coelho—Lanzilotta). Let A be a
finite dimensional K-algebra over a field K.
T he following conditions are equivalent:

(1) A is a shod algebra.

(2) iINndA=LA4URL.

(3) There exists a splitting torsion pair (Y, X)
in mod A such that pdyY < 1, for each
module Y € Y (torsion-free part), and
idy X <1, for each module X € X (tor-
sion part).
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Theorem. Let A be a shod algebra. The
following conditions are equivalent:

(1) A is a strict shod algebra.

(2) L4\ R4 contains an indecomposable in-
Jjective A-module.

(3) Rao\ L4 contains an indecomposable pro-
jective A-module.

Example. A = KQ/I, Q the quiver

1.2 5. P 3.7 4.9 5

I ideal of K@ generated by Ba and v3. The
Auslander-Reiten quiver I 4 is of the form

O— P4 — P — P3— Pp— 5S4 —0

minimal projective resolution of S4, so
pdy 5S4 = 3.

A strict shod algebra
03



A finite dimensional K-algebra over a field K
¢ a component of I 4.

A full translation subquiver A of ¥ is said
to be a double section of ¥ if the following
conditions are satisfied:

(al) A is acyclic.
(a2) A is convex in €.

(a3) For each r1g4-orbit O in ¥, we have
1<|ANO|<2.

(a4) If O is a T74-orbit O in € and |[ANO| =2
then ANO = {X, 74X}, for some module
X € %, and there exist sectional paths
I - -+ —>7m7y4X and X - --- — Pin &
with [ injective and P projective.

A double section A in ¥ with |[ANO| = 2, for
some 714-orbit O in ¢, is said to be a strict
double section of %.

94



A path Xg — X1 — -+ — Xy, with m > 2, in
an Auslander-Reiten quiver I 4 Is said to be
almost sectional if there exists exactly one
index i € {2,...,m} such that X;_» = 174X;.

For a double section A of ¥, we define the
full subquivers of A:

there is an almost sectional
Agz XeA;path X — -+ — P with P,
projective

there is an almost sectional
Al =¢{XeA;path I — .- — X with I in-},
jective

A= (A\A)UTqAL, left part of A,
Ar = (A\ ADUT AL right part of A.

A is a section if and only if A; = A = A,
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An indecomposable finite dimensional K-algebra
B is said to be a double tilted algebra if the
following conditions are satisfied:

(1) g admits a component ¥ with a faithful
double section A.

(2) There exists a tilted quotient algebra B()
of B (not necessarily indecomposable) such
that A, is a disjoint union of sections of
the connecting components of the inde-
composable parts of B and the cate-
gory of all predecessors of A; in ind B
coincides with the category of all prede-
cessors of A, in ind BO).

(3) There exists a tilted quotient algebra B(r)
of B (not necessarily indecomposable) such
that A, is a disjoint union of sections of
the connecting components of the inde-
composable parts of B("“), and the cate-
gory of all successors of A, in ind B coin-
cides with the category of all successors
of A, in ind B("),

B is a strict double tilted algebra if the
double section A is strict

B |eft tilted algebra of B
B(") right tilted algebra of B

B is a tilted algebra if and only if B = B() =
B() o6



Theorem (Reiten-Skowronski). An indecom-
posable finite dimensional K-algebra A is a
double tilted algebra if and only if the quiver

[ 4 contains a component € with a faithful
double section A such that Hom g (U,74V) =
O, for all modules U € A, and V € A;.

Theorem (Reiten-Skowronski). Let A be
an indecomposable finite dimensional K-algebra.
T he following conditions are equivalent:

(1) A is a strict shod algebra.
(2) A is a strict double tilted algebra.

(3) I 4 admits a component € with a faithful
strict double section A such that
Hom 4 (U,74V) = 0, for all modules U €
Ay and V € A;.

Corollary. An indecomposable finite dimen-
sional K-algebra A is a shod algebra if and
only if A is one of the following

e a tilted algebra,
e a strict double tilted algebra,

e a quasitilted algebra of canonical algebra.
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Example. A = KQ/I, Q the quiver

1.2 2 30 4.9 5

I ideal of K() generated by Ba and ~03

[ 4 is of the form

A faithful double section of € =T 4
A= {P, S}

A; = {S3, Py, Ps}

A= (A\ A UTHAL = {P2, 52, P3}

Ar = (A\ADUT Al = {P3,83, Py, Ps}

AW Jeft tilted algebra of A is hereditary of
Dynkin type A3

A() right tilted algebra of A is hereditary of
Dynkin type Ay 08



B strict double tilted algebra

[ admits a unique component ¥ = % with
a faithful double section A

Moreover,

I_B — yI'B(l) UCKB UXI_B(r)a

where

o VI 5 is the disjoint union of all com-
ponents of ' ,(;) contained entirely in the
torsion-free part Y(TW) of mod B, de-
termined by a tilting module T() over a
hereditary algebra AW of type A; such
that B = End , () (TW).

e XI () is the disjoint union of all com-
ponents of I 5(,) contained entirely in the
torsion part X(T(")) of mod B("), deter-
mined by a tilting module 7() over a
hereditary algebra A) of type A, such
that B(") 2 End ,(,y(T(").
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¢p connecting component of Mg

A,

JAV

Q@ | )
Ypo | EnY(TO) cpnx(T) | ATpo

/ .

e Homp (6, VI ) = 0, Homp(XT 4y, €R)
= 0, HomB(XI_B(r),yI_B(l)) = 0.

e 4p is generalized standard, contains at
least one projective module and at least
one injective module.

Theorem (Skowronski). Let A be an in-
decomposable finite dimensional K-algebra.
The following conditions are equivalent:

(1) A is a double tilted algebra.

(2) indA=LAUR4 and LAN(RAUTAR4)
contains a directing module.

(3) iNndA=L4URy and (LAUT L) NRA
contains a directing module.
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8. Generalized double tilted
algebras

A finite dimensional K-algebra

> full translation subquiver of I 4 is said to
be almost acyclic if all but finitely many
modules of 2 do not lie on oriented cycles
in I_A

¢ component of I 4

A full translation subquiver A of ¥ is said
to be a multisection of ¥ if the following
conditions are satisfied:

(1) A is almost acyclic.
(2) A is convex.

(3) For each t4-orbit O in %, we have
1<|ANO| < .

(4) |[ANnO| = 1, for all but finitely many
T4-0rbits O in ¥.

(5) No proper full convex subquiver of A sat-
isfies the conditions (1)—(4).

101



For a multisection A of a component ¥ of
I‘A we define the following full subquivers of

there is a nonsectional path
XeA; X —- ... - P with P projec-;,

tive
{ there IS @ nonsectional path}

- — X with I injective
—1
Al = XEA/,TA X ¢ ALl
Al ={X € Al;T4X ¢ ALY,
A= (A\ ALY UTAA!  left part of A,
Ar=(A\ADUT AT right part of A,
Ac=ANAL, core of A.

Theorem (Reiten-Skowronski). Let A be a
finite dimensional K-algebra. A component
¢ of I 4 is almost acyclic if and only if €
admits a multisection.

Theorem (Reiten-Skowronski). Let A be a
finite dimensional K-algebra, € a component
of T, and A a multisection of €. Then

(1) Every cycle of € lies in Ac.
(2) Ac is finite.
(3) Every indecomposable module X in € is

in A¢, or a predecessor of A; or a suc-
cessor of A, in €.

(4) A is faithful if and only if € is faithful.



A multisection of a component of [ 4

w(A) € NU {oco} width of A (numerical
invariant of A)
Take a path p in A. Then a subpath g of p

M—>Z(1)—>TE1M—>Z(2)—>7'22M—>. , .—>Z(n)—>TZnM

is called a hook path of length n (if n > 1),
and ¢ is a maximal hook subpath of p if ¢q
iIs not contained in any hook subpath of p of
larger length.

We associate to the path p a sequence of
maximal hook subpaths of p as follows (if
there are hook subpaths of p):

e Start with a maximal hook subpath
M—>Z(1)—>TX1M—>Z(2)—>TXQM—>. . .—>Z(n>—>TgnM

of p, where M is the first module on p
which is a source of hook subpath of p.

e [hen take a maximal hook subpath of p
with the source at the first possible suc-
cessor of 7, M on p.

e Continue the process.

i(p) = the sum of lengths of these hook sub-

paths of p
Then i(p) = O if and only if the path p is
sectional

w(A) = maximum of i(p) + 1 for all paths p
in A 103

w(A) € (N\{0}) U {oo}



A multisection A of ¥ with w(A) = n is
called n-section.

Observe that
e w(A) < o if and only if A is acyclic.

e A\ is a 1-section if and only if A is a
section.

e A is a 2-section if and only if A is a strict
double section.

Proposition. Let A be an algebra, € a com-
ponent of I' 4 and A, > are multisections of
€. Then

Ac=3. and w(A) =w(X).

Hence the core and the width of a multisec-
tion of an almost acyclic component € of [ 4
are invariants of ¥.

Every finite component of I 4 is trivially al-
most acyclic, and hence admits a multisec-

tion.
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An indecomposable finite dimensional K-algebra

B is said to be a generalised double tilted

algebra if the following conditions are satis-

fied:

(1) g admits a component € with a faithful
multisection A.

(2) There exists a tilted quotient algebra B()
of B (not necessarily indecomposable)
such that A, is a disjoint union of sec-
tions of the connecting components of
the indecomposable parts of B and the
category of all predecessors of A; inind B
coincides with the category of all prede-
cessors of A, in ind BO).

(3) There exists a tilted quotient algebra B(")
of B (not necessarily indecomposable)
such that A, is a disjoint union of sec-
tions of the connecting components of
the indecomposable parts of B("), and
the category of all successors of A, in
ind B coincides with the category of all

successors of A, in ind B(").
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B is said to be an n-double tilted algebra
if Mg admits a component ¥ with a faithful
n-section A and the conditions (2) and (3)
hold.

Observe that every indecomposable algebra
of finite representation type is a generalized
double tilted algebra.

Theorem (Reiten-Skowronski). Let B be
an n-double tilted algebra. Then

gl.dmB < n-+ 1.
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Theorem (Reiten-Skowronski). Let A be
an indecomposable finite dimensional K-algebra.
T he following conditions are equivalent:

(1) A is a generalized double tilted algebra.

(2) I 4 admits a component € with a faithful
multisection A such that Hom 4 (U, 74V) =
O, for all modules U € A, and V € A;.

(3) I 4 admits a faithful generalized standard
almost cyclic component.

Corollary. Let A be an indecomposable finite
dimensional K-algebra. The following equiv-
alences hold:

(1) A is an n-double tilted algebra, for some
n > 2, if and only if I 4 contains a faithful
generalized standard almost cyclic com-
ponent € with a nonsectional path from
an injective module to a projective mod-
ule.

(2) A is an n-double tilted algebra, for some
n > 3, if and only if " 4 contains a faithful
generalized standard component € with
a multisection A such that Ac #= 0.
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A an algebra
¢ component of I 4

Lo the set of all modules X in ¢ such that

pdaY <1 for any predecessor Y of X in
G .

R, the set of all modules X in ¢ such that
idyY <1 for any successor Y of X in @.

Observe that, if A is a multisection of €,
then

Theorem (Reiten-Skowronski). Let A be
an indecomposable finite dimensional K-algebra,
¢ a faithful component of ' 4 with a multi-
section A, and ¥ is not semiregular (con-
tains both a projective module and an injec-
tive module). Then the following conditions
are equivalent:

(1) ¥ is generalized standard.
(2) ngﬁcgUACUch.
108



Example. A = KQ/I, @ the quiver
1%28,304.258657.8

I ideal of K@ generated by ov, 60 and &9.

Then I‘A is of the form

S . /2\ ?_h
P3 = S3 Ps = Sg Is
N AN / NN
N / N, L NS
NSNS

Ps=1n, Ps=1Is

AWM = xu{Py, M, Ig} A2 = xU{Py, M, S5}
AB) = xu{Sy, M, Ig} AW = xU{Sy, M, Sg}
AB) = xU{Sy,1r,Ig} A = xU{S,, I, S5}

A(Y) — XU{517127P7} A(8) — XU{517127 58}

where X = {I3,S54, Ps, Ss, Pg, S¢, P7}, are all
multisections of € =T 4. Moreover,

w(ADY =3 and AW = {Sg) for i€ {1,...,8)
gl.dmA=4=w(A®) +1
O —>PFP3—>P4p—FP5—>PgpPg— Pr—S7—0

minimal projective resolution of S7 in mod A,
SO pdyS7 =4 109



B n-tilted algebra, n > 2

[ admits a unique component 4 = %pg
with a faithful n-section A
¢ connecting component of g

[ is of the form

yrB(o %Bﬁy(T(l))/ E%BHX(T())K XT gw

B

° y'_B(l) is the disjoint union of all com-
ponents of ' ,(;) contained entirely in the
torsion-free part Y(TW) of mod B, de-
termined by a tilting module 7 over a
hereditary algebra A() of type A; with
B(l) = EndA(l) T(l)

o XI () is the disjoint union of all com-
ponents of I 5(,) contained entirely in the

torsion part X(T(")) of mod B("), deter-
mined by a tilting module 7() over a
hereditary algebra AT of type A, with
B(T> = EndA(T) T(T)

[ HomB(CKB,yI‘B(l)) = 0, HomB(XI_B(T),‘KB)
= 0, HomB(XI‘B(r),yI‘B(l)) = 0.

e 4p is generalized standard, contains at

least one projective module and at least
one injective module. 110




Theorem (Skowronski). Let B be an inde-
composable basic finite dimensional K-algebra

over a field K. The following conditions are
equivalent:

(1) B is either a generalized double tilted
algebra or a quasitilted algebra.

(2) ind B\ (LgURpg) is finite.

(3) Thereis a finite set X of modules in ind B
such that every path in ind B from an
injective module to a projective module
consists entirely of modules from X .

Open problem. Let B be an indecompos-
able basic finite dimensional K-algebra over
a field K such that, for all but finitely many
modules X in ind B, we have pdp X < 1 or
idp X < 1. Is then B a generalized double
tilted algebra or a quasitilted algebra?

Confirmed only in special cases
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Theorem (Skowronski). Let A be a finite
dimensional K-algebra over a field K. The
following conditions are equivalent:

(1) A is a generalized double tilted algebra
and I 4 admits a connecting component
% 4 containing all indecomposable projec-
tive modules.

(2) rad(—, Ay) = 0.

(3) id4 X <1 for all but finitely many (up to
isomorphism) modules X in ind A.

cAnV(TWD) = (W) finite (YT iy empty)

Theorem (Skowronski). Let A be a finite
dimensional K-algebra over a field K. The
following conditions are equivalent:

(1) A is a generalized double tilted algebra
and I 4, admits a connecting component
¢ 4 containing all indecomposable injec-
tive modules.

(2) rad¥(D(44),~) = 0.
(3) pdy X <1 for all but finitely many (up to
isomorphism) modules X in ind A.

Canx (1) = x(T) finite (XT )y empty)
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9. Generalized multicoil
enlargements of concealed
canonical algebras

A finite dimensional K-algebra over a field K

A family € = (%6;);c; of components of 4
is called separating in mod A if the modules
in ind A split into three disjoint classes P4,
¢4 =€ and 94 such that

o ¥4 is a sincere family of pairwise orthog-
onal generalized standard components

e Hom 4(%¢4,PA) =0, Hom4(04,¢4) =0,
Hom 4(Q4,P4) = 0.

e any homomorphism from P4 to 94 fac-
tors through add ¥4.

Then we say that ¥4 separates P4 from
OA. Moreover, then P4 and 94 are uniquely
determined in ind A by 4.

QA

We write 4 = PA v E4v o4
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Theorem (Lenzing-Pena). An indecompo-
sable finite dimensional K-algebra over a field
K is a concealed canonical algebra if and only

if T 4 admits a separating family T of stable
tubes.

Theorem (Lenzing-Skowronski). An inde-
composable finite dimensional K-algebra over
a field K is a quasitilted algebra of canoni-
cal type if and only if I' 4 admits a separating

family T4 of semiregular tubes (ray or coray
tubes).

Theorem (Reiten-Skowronski). An inde-
composable finite dimensional K-algebra over
a field K is a generalized double tilted algebra

if and only if I 4 admits a separating almost
acyclic component €.
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A finite dimensional K-algebra
¢ component of I 4

% is said to be almost cyclic if all but finitely
many modules of € lie on oriented cycles of €.

% is said to be coherent if the following two
conditions are satisfied:

e For each projective module P in € there
IS an infinite sectional path

P=X1—->Xp— > X, > X;41— ...
in ¢

e For each injective module I in € there is
an infinite sectional path

=Y =Y, > =Yoo Y =1
in €.

Every stable tube (more generally, every semi-
regular tube) of I 4 is an almost cyclic and
coherent component

Theorem (Malicki-Skowronski). Let A be
a finite dimensional K-algebra and ¢ be a
component of I 4. Then ¢ is almost cyclic
and coherent if and only if € is a general-
ized multicoil (obtained from a finite family
of stable tubes by a sequence of admissible
operations). 115



For a finite family of C4,...,Cy of concealed
canonical algebras and ¢ = (C1 x---x (Cy, one
defines a generalized multicoil enlargement
B of C by iterated application of admissi-
ble operations (ad 1)—(ad 5) and their dual
operations (ad 1*)—(ad 5%).

Theorem (Malicki-Skowronski). Let A be
a finite dimensional K-algebra over a field K.
The following statements are equivalent:

(1) I 4 admits a separating family of almost
cyclic coherent components.

(2) A is a generalized multicoil enlargement
of a product C' of concealed canonical K -
algebras.
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Theorem (Malicki-Skowronski). Let A be
a finite dimensional K-algebra over a field
K with a separating family €4 of almost
cyclic coherent components in [ 4, and
Fa=PAvVEAv Q4. Then

(1) There is a unique factor algebra A; of
A which is a (not necesarily indecom-
posable) quasitilted algebra of canonical
type with a separating family T4t of coray
tubes such that I 4, =P4 v T4 v Q4 and
pA = p,

(2) There is a unique factor algebra A, of
A which is a (not necesarily indecom-
posable) quasitilted algebra of canonical
type with a separating family T4 of ray
tubes such that I 5 =P4rvT4rv Q4r and
oA = o4,

117



A; left quasitilted algebra of A

A, right quasitilted algebra of A

)14[

Q=0

e Every component of 4 not in €4 lies
entirely in P4 or lies entirely in 94

e Every component of M4 contained in P4
IS either postprojective, a stable tube
ZAs/(T"), for some r > 1, of the form
ZA~o, Or can be obtained from a stable
tube or a component of type ZA~ by a
finite number of ray insertions.

e Every component of M4 contained in Q4
is either preinjective, a stable tube ZA~/(7"),
for some r > 1, of the form ZA~,, or can
be obtained from a stable tube or a com-
ponent of type ZA~ by a finite number

of coray insertions.
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Theorem (Malicki-Skowronski). Let A be
a finite dimensional K-algebra over a field
K with a separating family €4 of almost
cyclic coherent components in [ 4, and
r4=PAvE&4Av QA. Then the following state-
ments hold:

(1) pdy X <1 for any module X in PA.
(2) idsY <1 for any module Y in Q4.

(3) pdgZ <2 and id4 Z < 2 for any module
Z in €4.

(4) gl.dim A < 3.
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One-point extensions and coextensions
of algebras
A finite dimensional K-algebra over a field K
F' finite dimensional division K-algebra
M = pM, F-A-bimodule

M, module in mod A

K acts centrally on pMg

(hence dimyg pM = dimg My)

One-point extension of A by M is the ma-
trix K-algebra of the form

A O _ Jla O] feF,acA,
Mg F m f|' meM

with the usual addition and multiplication.
Then the valued quiver Q 41, of A[M] con-
tains the valued quiver Q4 of A as a convex
subquiver, and there is an additional (exten-
sion) vertex which is a source. We may iden-
tify the category mod A[M] with the category
whose objects are triples (V, X, ¢), where X €
mod A,V eEmodF, and ¢ : Vp — Hom4(M, X) g
isan F-linear map. A morphismh: (V,X,p) —
(W,Y,) is given by a pair (f,g), where f :
V. —- W is F-linear, g : X — Y is a morphism
in modA and ¢ f = Hom4(M, g)p. Then the
new indecomposable projective A[M]-module
P is given by the triple (F,M,e), where e :
Fr — Hom (M, M) assigns to the identity

element of F' the identity morphism of {\240.

A[M] =




An important class of such one-point exten-
sions occurs in the following situation. Let A
be a finite dimensional K-algebra, P an inde-
composable projective A-module, p\/A = PHQ,
and assume that Homa(P,Q @& rad P) = 0.
Since P is indecomposable projective, S =
P/rad P is a simple A-module and hence Endp(S)
is a division K-algebra. Moreover, the canon-
ical homomorphism of algebras Endpa(P) —
Enda(S) is an isomorphism. Then we obtain
isomorphisms of algebras

A O
My F
where F' = Enda(P), A = Enda(Q), and M =

M4 = HOoma(Q, P) = rad P. Clearly K acts
centrally on pMy4.

A = Endpa(Ap) = = A[M],

Dually, one-point coextension of A by M is
the matrix K-algebra of the form

F of _[|f O _fEF,aEA,}
D(pMy) Al )|z al’ x € D(M)

where D(M) = Homg(pMy,K) is an A-F-
bimodule.

[M]A =
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For a finite dimensional division K-algebra F
and r > 1 natural number, T,(F) the r x r-
lower triangular matrix algebra

F 0 0 ... 0O O
F F O ... 00
F FF ... 00
F FF ... F O

A finite dimensional K-algebra

[ @ component of [ 4

X a module in I

S(X) the support of the functor Hom 4(X, —) |

is the K-linear category defined as follows

Hx the full subcategory of ind A consisting
of the indecomposable modules M in [
such that Hom 4 (X, M) # O,

Tx the ideal of Hx consisting of homomor-
phisms f : M — N (with M,N in Hy)
such that Hom4(X, f) = 0.

S(X) = Hx/Zx the quotient category
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Admissible operations

A finite dimensional K-algebra over a field K

[T a family of pairwise orthogonal generalized
standard infinite components of I 4

X indecomposable module in I

Assume X is a brick: ' = Fy = End4(X) is
a division K-algebra

X = pX 4y is an F-A-bimodule, K acts cen-
trally on X

For X with S(X) of certain shape, called
the pivot, five admissible operations
(ad 1)—(ad 5) and their duals (ad 1*)—(ad 5%)
are defined, modifying

A to a new algebra A’
= (I",7) to a new translation quiver (", 7)
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(ad 1) Assume S(X) consists of an infinite
sectional path starting at X:

X=Xg— X1 —=Xo— -

In this case, we let t > 1 be a positive integer,
D =T;(F) and Y7, Yo, ..., Y; denote the inde-
composable injective D-modules with' Y =Y
the unique indecomposable projective-injective
D-module. We define the modified algebra A’
of A to be the one-point extension

A'=(Ax D)X a]Y]
and the modified translation quiver ' of I
to be obtained by inserting in I the rectangle
1
fori >0, 1<j <t and X/ = (F,X;,1) for
1 > 0 as follows:

consisting of the modules Z;; = (F, X, PY;,
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The translation 7/ of I’ is defined as follows:
T,Zij — Z45—-1,5—-1 if 2 Z 1,j Z 277-/Zi1 — Xz'—l if
i > 1,7'Zo; =Y,_1 if j > 2,Zp1 is projective,
X, =Y, T'X = Z; 1, ifi > 1,7(r7IX) =
X! provided Xj; is not an injective A-module,
otherwise X/ is injective in I". For the re-
maining vertices of 7, 7/ coincides with the
translation of I, or I p, respectively.

If t = 0 we define the modified algebra A’
to be the one-point extension A’ = A[X] and
the modified translation quiver I’ to be the
translation quiver obtained from [ by insert-
ing only the sectional path consisting of the
vertices X/, ¢ > 0.

The nonnegative integer t is such that the
number of infinite sectional paths parallel to
Xg — X1 — Xo — -+ In the inserted rectan-
gle equals t+ 1. We call t the parameter of
the operation.

In case I is a stable tube, it is clear that
any module on the mouth of [ satisfies the
condition for being a pivot for the above op-
eration.
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(ad 2) Suppose that S(X) admits two sec-
tional paths starting at X, one infinite and
the other finite with at least one arrow:

Yi— - Yo —Y] —X=Xg—>X] > Xo— -+

where ¢t > 1. In particular, X is necessar-
ily injective. We define the modified algebra
A’ of A to be the one-point extension A’ =
A[X] and the modified translation quiver I’
of [ to be obtained by inserting in ' the
rectangle consisting of the modules Zij =
(F,Xi@Y-, 1 ) for . > 1, 1 < 49 < t, and
X! = (F, X;,1) for i > 1 as follows:
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The translation 7/ of I’ is defined as follows:
X(, is projective-injective, 7'Z;; = Z;_1 j_1 if
i > 2, > 2,721 = X1 ifi > 1,77y, =
Y1 if § > 27X = Z; 1, if i > 2,7X] =
Y, 7'(r71X;) = X! provided X; is not an in-
jective A-module, otherwise X/ is injective in
[’. For the remaining vertices of I, 7/ coin-
cides with the translation = of I'.

The integer t > 1 is such that the number of
infinite sectional paths parallel to Xg — X1 —
Xo — --- in the inserted rectangle equals t +
1. We call t the parameter of the operation.
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(ad 3) Assume S(X) is the mesh-category
of two parallel sectional paths:

Yi = Ys — o > Y
T T T

where t > 2. In particular, X;_q1 is necessarily
injective. Moreover, we consider the transla-
tion quiver I of [ obtained by deleting the
arrows Y, — Tlei_l. We assume that the
union I of connected components of ' con-
taining the vertices Tleg_l, 2 < ¢ <t is
a finite translation quiver. Then I is a dis-
joint union of [ and a cofinite full translation
subquiver I*, containing the pivot X. We de-
fine the modified algebra A’ of A to be the
one-point extension A’ = A[X] and the modi-
fied translation quiver I'" of ' to be obtained
from ™ by inserting the rectangle consist-

ing of the modules Z;; = (F, X, ®Y,, E ) for

i>1,1<j<t and X = (F,X;,1) fori>1
as follows:
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if ¢t is even.
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The translation 7/ of I’ is defined as follows:

X( is projective, 7'Z;; = Z;_1 ;-1 if i > 2,
2<3<¢t 771 =X;_1ifi> l,T/X,L( =Y, if
1 <1 <t T’Xéz i—1¢ if i >1t+41, TIY}'Z

Xl 5 if2<5 <t T(r7iXy) = X if i >t
provided X, is not injective in ', otherwise X,Lf
is injective in I'’. For the remaining vertices
of I'’, 7/ coincides with the translation 7 of
. We note that X] ; is injective.

The integer t > 2 is such that the number of
infinite sectional paths parallel to Xg — X1 —
Xo — --- In the inserted rectangle equals t +
1. We call t the parameter of the operation.
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(ad 4) Suppose that S(X) consists an infi-
nite sectional path, starting at X

X=Xg— X1 —=Xo—---
and
Y=Y1—-Y— - -—Y;

with t > 1, be a finite sectional path in I 4
such that Fy = FF = Fx. Let r be a positive
integer. Moreover, we consider the transla-
tion quiver ' of [T obtained by deleting the
arrowsAYi — Tle;_l. We assume that the
union I of connected components of [ con-
taining the vertices Tlei_l, 2 <1<t is
a finite translation quiver. Then [ is a dis-
joint union of T and a cofinite full transla-
tion subquiver '*, containing the pivot X.
For »r = 0O we define the modified algebra
A’ of A to be the one-point extension A’ =
A[X @ Y] and the modified translation quiver
" of T to be obtained from I* by insert-
ing the rectangle consisting of the modules

Zij = (F,Xz-@Y-, E ) for i >0, 1 <j<t

and X/ = (F,X;,1) for i > 1 as follows:
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The translation 7/ of I’ is defined as follows:
T,Zij = Zi—l,j—l if ¢ > 1,9 > 2,T/ZZ'1 = X;_1 if
i > 1,720, =Y;_1 if j > 2,Zp; is projective,
X, =Y, T'Xl = Z; 1,4 i > 1,7(r71X) =
er provided X; is not injective in ', otherwise
X! is injective in I'". For the remaining ver-
tices of ", 7' coincides with the translation
of I*.
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For » > 1, let G = Tr,a(F), Ul,t—|—11 U2,t—|—11 c ey
U141 denote the indecomposable projective
G-modules, Uy 41, Uptyo, ..., Upiy, denote
the indecomposable injective G-modules, with
Uy 141 the unique indecomposable projective-
injective G-module. We define the modified
algebra A’ of A to be the triangular matrix
algebra of the form:

A 00 0 0

Y F O 0 O

Y F F 0 O
Al =

Y F F ... FO

XY F F ... F F

with r+2 columns and rows and the modified
translation quiver I'" of " to be obtained from
[* by inserting the rectangles consisting of
the modules Uy =Y @ Uy 4y for 1 < k < r,

1 <[ < t, and Zz'j = (FaXi@Urja [}]) for

1 >0, 1<453<t+4+r, and Xg = (F,X;,1) for
¢ > 0 as follows:
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The translation 7/ of I’ is defined as follows:
T’Zij = Z;—1j-1 if¢>1,5>2,77;1 = X;_1
if ¢+ > 1,’7'/Zoj = Urj-1 if 2 <439 < t4r
Zo1,Ur1,1 < k < r are projective, 7'Uy

Uk—l,l—l f2<k<nr 2<I<t+4+r, T/Ull
Viop if2<1<t+1, 7X) = Upigr, X =
Zi 144 i > 1,7(r71X;) = X/ provided X;
is not injective in I, otherwise X/ is injec-
tive in ". For the remaining vertices of I/, 7/
coincides with the translation of I'*, or I,

respectively.
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We note that the quiver Q 4 of A’ is obtained
from the quiver of the double one-point ex-
tension A[X][Y] by adding a path of length
r + 1 with source at the extension vertex
of A[X] and sink at the extension vertex of
AlY].

The integers t > 1 and » > 0 are such that
the number of infinite sectional paths paral-
lel to Xg — X7 — X5 — --- in the inserted
rectangles equalst+r+1. We call t+ r the
parameter of the operation.

To the definition of the next admissible op-
eration we need also the finite versions of the
admissible operations (ad 1), (ad 2), (ad 3),
(ad 4), which we denote by (fad 1), (fad 2),
(fad 3) and (fad 4), respectively. In order
to obtain these operations we replace all in-
finite sectional paths of the form Xg — X1 —
X5 — --- (in the definitions of (ad 1), (ad 2),
(ad 3), (ad 4)) by the finite sectional paths
of the form XO —>X1 %XQ — ..+ — Xgs. For
the operation (fad 1) s > 0, for (fad 2) and
(fad 4) s > 1, and for (fad 3) s> t—1. In all
above operations X is injective.
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(ad 5) We define the modified algebra A’
of A to be the iteration of the extensions
described in the definitions of the admissible
operations (ad 1), (ad 2), (ad 3), (ad 4), and
their finite versions corresponding to the op-
erations (fad 1), (fad 2), (fad 3) and (fad 4).
The modified translation quiver I’ of I" is ob-
tained in the following three steps: first we
are doing on I one of the operations (fad 1),
(fad 2) or (fad 3), next a finite number (pos-
sibly empty) of the operation (fad 4) and fi-
nally the operation (ad 4), and in such a way
that the sectional paths starting from all the
new projective vertices have a common cofi-
nite (infinite) sectional subpath.
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C finite dimensional K-algebra

7C a family of pairwise orthogonal generali-
zed standard stable tubes of I (.

A finite dimensional K-algebra algebra A is
a generalized multicoil enlargement of C,
with respect to TC, if Ais obtained from C by
an iteration of admissible operations of types
(ad 1)—(ad 5) and (ad 1*)—(ad 5*) performed
either on stable tubes of TC, or on general-
ized multicoils obtained from stable tubes of
T7C by means of operations done so far.

A generalized multicoil is a translation quiver
obtained from a finite family 77,...,7s of sta-
ble tubes by an iteration of admissible (trans-
lation quiver) operations of types (ad 1)—
(ad 5) and (ad 1*)—(ad 5%).
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