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Abstract. We show how to associate to a triple of positive integers (p1, p2, p3)
a two-dimensional isolated graded singularity by an elementary procedure

that works over any field k (with no assumptions on characteristic, algebraic

closedness or cardinality). This assignment starts from the triangle singularity
xp11 +xp22 +xp33 and when applied to a Platonic (or Dynkin) triple produces the

famous list of A-D-E-singularities. As another particular case the procedure

produces Arnold’s famous strange duality list consisting of the 14 exceptional
unimodular singularities (and an infinite sequence of further singularities which

are not treated in theses lectures).

To analyze the arising singularities we attach to each of them an abelian
hereditary k-linear category H with Serre duality having a tilting object T ,

whose endomorphism ring is a canonical algebra (with three arms). These

categories H has an interpretation as the category of coherent sheaves coh-X
on a weighted projective line X whose weight type is just the triple of integers

we started with.
In the focus of the lectures is the construction and analysis of three types

of (usually not equivalent) triangulated categories which are naturally attached

to coh-X. These categories all have a tilting object and thus each one yields an
explicit link to the representation theory of finite dimensional algebras. One of

the three categories is the bounded derived category of coh-X, the two others

are obtained from two (usually different) Frobenius category structures on the
category vect-X of vector bundles on X. Due to a general result of Happel

the associated stable categories are triangulated. Following work of Buchweitz

(1987) they are equivalent to the stable categories of (suitably graded) Cohen-
Macaulay modules, see [2].

The topics discussed in the final part of the lectures are related to recent

work (2006) of Kajiura, Saito, Takahashi, Ueda and Lenzing–de la Peña. A key
role in these developments is played by a theorem of Orlov (2005) dealing with

the analysis of singularities by means of the triangulated category of (graded)
singularities (=the stable derived category in Buchweitz’s sense).

Throughout the lectures we pointed to the relationship of the topics under

discussion to the other lectures of the Advanced School; we have kept these
pointers in this written version, which is a slight expansion the actual lectures.
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CHAPTER 1

From Dynkin diagrams to simple singularities

1. Introduction

An important aspect of singularity theory is incorporated in the following table
of simple singularities:

Dynkin diagram ∆ simple singularity f∆

An : ◦ ◦ ◦ · · · ◦ ◦ zy + xn+1

◦
EEE

Dn : ◦ ◦ · · · ◦ ◦
◦

yyy

z2 + y2x+ xn−1

◦

E6 : ◦ ◦ ◦ ◦ ◦

z2 + y4 + x3

◦

E7 : ◦ ◦ ◦ ◦ ◦ ◦

z2 + y3x+ x3

◦

E8 : ◦ ◦ ◦ ◦ ◦ ◦ ◦

z2 + y3 + x5

The A-D-E-singularities for the base field C

The above singularities should, for the moment, considered to be defined over the
field of complex numbers, giving rise to the simple isolated singularities R∆ =
C[x, y, z]/(f∆)1. As the Dynkin diagrams these singularities appear in many math-
ematical contexts where we only mention a few here. They appear

(1) in the classification of critical points of differential maps,
(2) rings of invariants under the natural action of finite subgroups of SL(2,Z)

acting on C[[X,Y ]]. (A graded version with the action on C[X,Y ] is also
available). This links the topic with the ancient classification of regular
or Platonic solids.

(3) in finite dimensional representation theory as orbit algebras of the Auslander-
Reiten translation.

For further information on the omnipresence of Dynkin diagrams and singularities
we refer to [8], [23] and [3].

1Simple singularities were discussed in I. Reiten’s lecture on Auslander-Reiten theory and in
O. Iyama’s lectures on stable categories of Cohen-Macaulay modules. In G. Zwara’s lectures on
singularities of module varieties their appearance as singularities of module varieties was discussed.
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6 1. FROM DYNKIN DIAGRAMS TO SINGULARITIES

A look (even a longer one) on the table does not reveal any building law. And,
of course, in the setting discussed the equations f∆ are far from being unique, since
the real object of interest is the ring R∆ which is not changed if we change the
variables x, y, z by a linear base change with coefficients in C. The first aim of
these lectures is therefore to work in a graded setting in order

(1) to present an elementary method to generate the singularities f∆ system-
atically, and basically produces a unique list,

(2) to work over an arbitrary field, and to design the construction as to be in-
dependent on any extra assumptions on this (characteristic, algebraically
closedness).

(3) to recover from f∆ or the associated graded ring k[x, y, z]/(f∆).

Later we are giving a more direct link to finite dimensional representation theory
via associated abelian hereditary category and three related triangulated categories.
The link is then established by means of appropriate tilting objects.

2. Dynkin diagrams

Assume we are given a triple (p1, p2, p3) of integers pi ≥ 0. By the symbol
[p1, p2, p3] we denote the star-shaped graph

◦

[p1, p2, p3] : ◦

◦

◦ ◦ ◦ • ◦ ◦ ◦
with base point, where the number pi indicates the length of the ith branch (which
for pi = 1 degenerates to the base point). Here the length of the ith branch counts
the number of vertices in the branch including the fat base point. In this notation
a Dynkin diagram ∆ is just a star [p1, p2, p3] satisfying the inequality

(2.1) 1/p1 + 1/p2 + 1/p3 > 1.

We thus have Dn = [2, 2, n − 2] with n ≥ 4, E6 = [2, 3, 3], E7 = [2, 3, 4] and
E8 = [2, 3, 5]. For An there is some ambiguity, since any triple (p, q, 1) with p+ q−
1 = n produces the Dynkin diagram An. Taking the base point into account, what
we are going to do consistently, the ambiguity obviously disappears. Any triple
(p1, p2, p3) satisfying the inequality (2.1) we will call a Dynkin triple or, following
F. Klein [11] a Platonic triple.

3. Triangle singularities

We work over an arbitrary field k and fix a triple (p1, p2, p3) of integers ≥ 1
integers, called weight triple. Let L = L(p1, p2, p3) be the abelian group given
by generators ~x1, ~x2, ~x3 and the defining relations p1~x1 = p2~x2 = p3~x3 =: ~c. The
element ~c is called the canonical element of L. As is easily seen the group L has
rank one, thus has shape L ∼= Z⊕F , where F is a finite (abelian) group. As a group,
L is not particularly interesting. We are therefore putting additional structure on
L.

First of all L is an ordered group with the members from N~x1 + N~x2 + N~x3

forming its positive cone. Thus ~x ≤ ~y if and only if ~y − ~x is a positive integral
linear combination of the generators ~x1, ~x2 and ~x3. Putting p̄ = lcm(p1, p2, p3)
there is a uniquely defined homomorphism of groups, actually a homomorphism of
ordered groups δ : L −→ Z sending each generator ~xi to p̄/xi. We further note that
δ : L→ Z is surjective and its kernel is the (finite) torsion group of L. In order to
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deal with elements of L explicitly it is useful to have the following property: Each
element ~x of L can uniquely written in normal form

(3.2) ~x =

3∑
i=1

`1~xi + `~c with 0 ≤ `i < pi and ` ∈ Z.

Moreover if and element ~x is in normal form as above, then ~x ≥ 0 if and only if
` ≥ 0.

There is a further element of L which is important for reasons becoming clear
only later. This is the dualizing element ~ω = ~c− (~x1 +~x2 +~x3). For the moment
we remark that the dualizing element is useful to determine how far the order ≤
on L is from a total order, since an element ~x of L either satisfies ~x ≥ 0 or else
~x ≤ ~c+ ~ω, a property whose proof we leave as a simple exercise. We are now in a
position to introduce the triangle singularity2

(3.3) h(p1,p2,p3) = xp11 + xp22 + xp33

over k and the associated algebra S = k[x1, x2, x3]/(xp11 +xp22 +xp33 ). By forming the

k-linear span of all monomials x`11 x
`2
2 x

`3
3 having the same degree ~x = `1~x1 + `2~x2 +

`3~x3, we obtain a finite dimensional k-vectorspace S~x such that S =
⊕

~x∈S S~x.

Proposition 1.1. Assume (p1, p2, p3) is a weight triple. Then the following prop-
erties hold:

(a) The k-algebra S is positively L-graded by attaching degree ~xi to each gen-
erator xi. That is

S =
⊕
~x≥0

S~x, S0 = k, S~x · S~y ⊆ S~x+vy for all ~x, ~y ∈ L.

Moreover, the homogeneous components S~x of S are finite dimensional
over k.

(b) Restricting the grading of S to the subgroup Z~c we obtain the heart

H = S|Z =
⊕
n≥0

Sn~x = k[xp11 , x
p2
2 ]

of S which ‘is’ the polynomial algebra in the ‘variables’ xp11 and xp22 , viewed
to be homogeneous of degree one. Accordingly H =

⊕
n≥0Hn with Hn of

k-dimension n+ 1 for n ≥ 0.
(c) If ~x = `1~x1 + `2~x2 + `3~x3 + `~c has normal form, with ` ≥ 0, then

S~x = x`11 · x
`2
2 · x

`3
3 ·H`(3.4)

dimk S~x = `+ 1.(3.5)

Proof. Assertion (c) follows by collecting monomials having the same degree
and using the relation xp33 = −(xp11 +xp22 ). Property (c) then implies assertions (a)
and (b). �

The next consequence explains the role of the order on L.

Corollary 1.2. For ~x ∈ L we have ~x ≥ 0 if and only if S~x 6= 0. �

Corollary 1.3. As an L-graded algebra S satisfies the following properties:

(a) S is graded-integral, that is, if x and y are non-zero homogeneous ele-
ments of S then also xy is non-zero.

2Properly speaking, the name makes sense only if all pi ≥ 2. By abuse of language we extend
the terminology to the present slightly more general setting.
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(b) The k-algebra S is graded-factorial, that is, each non-zero homogeneous
element is a product of homogeneous prime elements. (Here, a homoge-
neous element p of S is called prime if S/(p) is graded-integral.)

(c) The non-zero homogeneous prime elements of S form naturally a P1(k)-
family.

Proof. Concerning (a) it follows from formula (3.4) that each homogeneous

element of S has the form xl11 x
l2
2 x

l3
3 hl, where hl is a homogeneous element of the

heart H of S which is an integral domain. Claim (b) follows in a similar way,
observing that H is clearly graded-factorial. Using the known structure of homo-
geneous prime polynomials in H, claim (c) follows along the same lines. (If k is not
algebraically closed, we have to interpret the projective line as a scheme, not as a
variety.) �

Comments 1.4. (1) One should not mix the concepts “graded-integral” and
”graded plus integral”. For instance we have in characteristic two that the square of
x = x1+x2+x3 is zero in the L(2, 2, 2)-graded algebra S = k[x1, x2, x3]/(x2

1+x2
2+x2

3)
which, as we have pointed out, is graded-integral. Note, in this context, that x is
not a homogeneous element with regard to the L-grading.

(2) A similar remark replies to all other “graded concepts”. So a k-algebra R
is a “graded field” (to be thought of as one word!) if each non-zero homogeneous
element has a homogeneous inverse with respect to multiplication. In the graded
sense therefore the algebra of Laurent polynomials K = k[X,X−1], (considered to
be Z-graded by attaching degree 1 to X) is a graded field. Similar care has to
be taken, when dealing with graded modules. For instance the concepts “graded-
injective” module and “graded plus injective” module will usually be different. For
instance dealing with the Z-graded polynomial algebra k[X], where we give X
degree one, the graded module K of Laurent polynomials, graded as above, is an
injective object in the category of graded modules but K is far from being injective
in the category of all k[X]-modules.

(3) If k is an algebraically closed field, then the algebras S(p1, p2, p3) exhaust
the graded-factorial affine k-algebras of Krull dimension two which have three gen-
erators and are graded by a rank-one abelian group. This follows from a result of
Kussin [12]. In that paper the more general situation of an arbitrary number of
weights is treated, yielding the corresponding result. For simplicity we restrict in
our lectures to three weights which is simplifying notation and nevertheless allows
to cover the most interesting singularities.

Lemma 1.5. The degree δ(~ω) is negative if and only if the triple (p1, p2, p3) is —
up to reordering — one of (1,1,1), (1,1,p), (1,p,2), (2,2,n), (2,3,3), (2,3,4) and
(2,3,5). Moreover, we have δ(~ω) = 0 if and only if the triple is one of the triples
(3,3,3), (2,4,4) and (2,3,6), called tubular. For all remaining triples, called wild,
we have δ(~ω) > 0. �

4. The simple singularity attached to a Dynkin diagram

We are now going to show how to associate to each Dynkin diagram, equiv-
alently to each triple (p1, p2, p3) of negative degree a simple singularity. This is
simply done by restricting the L-graded algebra to the (infinite cyclic) subgroup
Z~ω. This restriction is defined to be the Z~ω-graded algebra R =

⊕
n∈Z Sn~ω. By

our assumption on the degree of ~ω we can have n~ω ≥ 0 only if n ≤ 0. By means
of the bijection Z→ Z~ω, n 7→ n~ω, we may thus view R as the positively Z-graded
algebra with homogeneous components Rn = S−n~ω.
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Theorem 1.6. For any weight triple (p1, p2, p3) with δ(~ω) < 0 let ∆ = [p1, p2, p3]
denote the attached Dynkin diagram. Then the restriction of the grading of S =
S(p1, p2, p3) to Z~ω yields a Z-graded algebra having a (minimal) system of three
homogeneous generators x, y, z, all being monomials in x1, x2, x3. With this choice
of generators we have

R := S|Z~ω = k[x, y, z]/(f∆)

where f∆ is the simple graded singularity from the table below. Moreover, with the
above assumptions, the singularity f∆ can be chosen as a sum of monomials in
x, y, z and then is unique.

Dynkin diagram ∆ generators (x, y, z) deg(x, y, z) relation f∆ deg(f∆)

Ap+q = [p, q] (x1 x2, x
p+q
2 , xp+q

1 ) (1, p, q) xp+q − y z p + q

D2l+2 = [2, 2, 2l] (x2
3, x

2
1, x1 x2 x3) (2, 2l, 2l + 1) z2 + x(y2 + y xl) 4l + 2

D2l+3 = [2, 2, 2l + 1] (x2
3, x1 x2, x

2
1 x3) (2, 2l + 1, 2l + 2) z2 + x(y2 + z xl) 4l + 4

E6 = [2, 3, 3] (x1, x2 x3, x
3
2) (3, 4, 6) z2 + y3 + x2 z 12

E7 = [2, 3, 4] (x2, x
2
3, x1 x3) (4, 6, 9) z2 + y3 + x3 y 18

E8 = [2, 3, 5] (x3, x2, x1) (6, 10, 15) z2 + y3 + x5 30

The simple graded surface singularities (arbitrary base field)

We postpone a discussion of the proof for a moment in order to point out an
interesting consequence.

Corollary 1.7. Each algebra R∆ = k[x, y, z]/(f∆), with f∆ from the above list
where k is an arbitrary field, is an integral domain (both in the graded and ungraded
sense). Accordingly the polynomial f∆ is a prime element in k[x, y, z] (both in the
graded and ungraded sense).

Just judging from the form of the relations f∆ this not at all obvious, compare
the example Comments 1.4, (2). With Theorem 1.6 at hand, this proof becomes
very easy:

Proof. Since S is graded integral, the same holds true for its restriction
R = S|Z~ω. Now, any positively Z-graded algebra R which is graded integral is
also integral. For this write two non-zero elements x, y as a sum of homogeneous
elements x = x0 + x1 + · · ·+ xm and y = y0 + y1 + · · ·+ yn with leading terms xm
and yn different from zero. Then the product of x and y has the non-zero leading
term xm yn and hence is non-zero. �

We now sketch the proof of Theorem 1.6. The proof relies on two useful
lemmas. Recall for this that the Poincaré series or Hilbert-Poincaré series of a
positively Z-graded algebra R =

⊕
n≥0Rn with finite dimensional components Rn

is the formal power series in x given as PR =
∑
n≥0 dimk Rnx

n.3

Lemma 1.8. Let (p1, p2, p3) be a weight triple where each pi is ≥ 2. Let δ = δ(~ω).

(a) If δ < 0 then the Poincaré series of R = S|Z~ω with Rn = S−n~ω is

(4.6) PR = − 1

1− x
− 1

(1− x)2
+

1

1− x

3∑
i=1

1

1− xpi
.

(b) If δ > 0 then the Poincaré series of R = S|Z~ω with Rn = Sn~ω is

(4.7) x+
1

1− x
+

x

(1− x)2
− x

1− x

3∑
i=1

1

1− xpi
.

3Recall that Hilbert-Poincaré series turned out to be a useful tool in D. Zacharia’s lectures.
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Proof. We sketch the argument assuming δ < 0 and all pi ≥ 2. In this case
the element −~ω = x1 +x2 +x3−~c is already in normal form. For n ≥ 0 the element
n~xi = has normal form (n − pi[ npi ]~xi) + [ npi ]~c, where bracket notation [q] denotes

the integral part of a rational number q. For n ≥ 0 it follows that the normal form
of −n~ω is given by

−n~ω =

3∑
i=1

(
n− pi

[
n

pi

])
~xi +

(
−n+

3∑
i=1

[
n

pi

])
~c

One then uses Proposition 1.1 and takes care of what happens for small values of
n. The claim follows.

Concerning (b) the proof is similar, calculating this time the normal form of

n~ω and using that the normal form of ~ω is (
∑3
i=1(pi − 1) ~xi)− 2~c. �

Lemma 1.9. Assume the algebra A = k[u1, u2, u3]/(f) is positively Z-graded such
that the generators ui and the relation f are homogeneous of degree ci ≥ 1 and d,
respectively. Then the Hilbert series PA of A is given by the rational function

(4.8) PA =
1− xd

(1− xc1)(1− xc2)(1− xc3)
.

Proof. The polynomial ring Ai = k[ui] with deg(ui) = ci has Hilbert se-
ries 1/(1 − xci). As the tensor product of the Ai, the polynomial algebra B =

k[u1, u2, u3] thus gets the Hilbert series
∑
n≥0 bnx

n =
∏3
i=1 1/(1 − xci). Finally,

since f has degree d, we get exact sequences 0→ Bn−d
f ·−→ Bn −→ An → 0, yield-

ing dimk An = bn − bn−d and then PA = (1− xd)PB . This proves the claim. �

To prove the theorem, each row of the table is separately dealt with. For two
cases we show the arguments involved. First we deal with the case E8 = [2, 3, 5].
Here, practically nothing is to show, since in this case Z~ω = L, that is, up to
renaming the grading group R coincides with S. In more detail we have −6~ω = ~x3,
−10~ω = ~x2 and 14~ω = ~x1. The corresponding components are R6 = kx3, R10 = kx2

and R15 = kx1. Thus x = x3, y = x2 and z = x1 are homogeneous generators for
R satisfying the relation f∆ = z2 + y3 + x5. Thus R = k[x, y, z]/(f∆) as claimed.
Of course, in this case we do not need the two Lemmata stated above.

Next, we deal with case E6 = [2, 3, 4]. In calculating normal forms of −n~ω,
n = 0, 1, 2, · · · we first determine for small values of n those multiples −n~ω which
are ≥ 0 and then by means of Proposition 1.1 (c) determine the members of Rn.
Here we get

−3~ω = ~x1 hence R3 = kx1

−4~ω = ~x2 + ~x3 hence R4 = kx2x3

−6~ω = ~c hence R6 = kx3
2 + kx3

3.

Restricting to monomials we have no choice in the first two cases, obtaining x = x1

of degree 3 and y = x2x3 of degree 4. Concerning the third case we have three
monomials in x1, x2, x3 lying in R6, namely x2

1, x3
2 and x3

3. Since x2
1 equals x2, only

the choices z = x3
2 respectively z = x3

3 make sense. Because of weight type (2, 3, 3)
these two choices are equivalent, and so let z = x3

2. As is easily checked, the elements
x, y, z are indeed generators for R (use some almost-periodicity of the expression
−n~ω with “period” 6 = lcm(2, 3, 3), resulting in some almost-periodic building law
for Rn of the same “period”). The canonical homomorphism φ from the polynomial
algebra k[u1, u2, u3] to R sending u1, u2, u3 to x, y, z is therefore surjective; moreover
φ is a homomorphism of graded algebras if we put deg(u1, u2, u3) = 3, 4, 6, respec-
tively. Finally, x, y, z satisfy the relation f∆(x, y, z) = 0 since using x2

1 +x3
2 +x3

3 = 0
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we get z2 = −x3
2(x2

1 + x3
2) = −zx2 − y3. Hence we obtain a surjective algebra ho-

momorphism ψ : k[u1, u2, u3]/(f∆(u1, u2, u3)) → R which preserves degrees. Lem-
mata 1.9 and 1.8 show that both algebras have the same Poincaré series, and it
follows that ψ is an isomorphism, as claimed. �

5. Conclusions

Comments 1.10. We comment on various aspects of the Theorem:
(1) In Theorem 1.6 we show uniqueness of the relation f∆ if the minimal gener-

ators x, y and z for R∆ are chosen from the set of monomials in x1, x2, x3. However,
any choice of a minimal triple of homogeneous generators x, y, z yields a valid re-
lation g∆. For the types E7 = [2, 3, 4] and E8 = [2, 3, 5] each such system x, y, z is
formed by monomials in x1, x2, x3 up to multiplication with non-zero scalars. For
the remaining cases we have a choice. This explains that in the literature one often
finds different relations than those derived here.

(2) For instance, for type E6 = [2, 3, 3] the usual form of the relation is given
as g = z2 + y4 + x3 and not as f = z2 + y3 + x2z. We show how by simple
base change equation f transforms into equation g provided the base field k is
algebraically closed of characteristic 6= 2. First we note that for an arbitrary λ ∈ k
the elements x, y and z̄ = z + λx2 are again a minimal set of generators for R
having degrees 3, 4 and 6, respectively. Substitution into f yields the new relation
(λ2 − λ)x4 + (1 − 2λ)x2 + y3 + z̄2. We now put λ = 1/2 such that the quadratic
term in x disappears and introduce the new variable x̄ = µx where µ is a 4th
root of −1/4. This yields, as claimed, for new the generators x̄, y, z̄ the relation
z̄2 + y3 + x̄4. With similar arguments the relations f∆ for Dn can be transformed
into those from the previous list. Again this works for fields of characteristic 6= 2
which are algebraically closed.

(3) The degrees of the generators x, y, z and the degree of f∆ are important
numerical invariants of the graded singularity f∆. For instance, the degree of
f∆ equals the Coxeter number h∆ of the Dynkin diagram ∆ which equals the
period of the Coxeter transformation of the Dynkin diagram ∆, and thus reflects
important homological information of the Auslander-Reiten translation for mod-k∆
where k∆ is the path algebra: If S1, . . . , Sn denote the simple k∆-modules (up to
isomorphism) and P1, . . . , Pn (resp. I1, . . . , In) are their projective covers (resp.
injective hulls). Then the Coxeter transformation Φ of ∆ is the automorphism of
the Grothendieck group K0(mod-k∆) sending each class [Pi] to the class −[Ii].

Another more conceptual description states that the Auslander-Reiten trans-
lation τ is a self-equivalence of the bounded derived category Db(mod-k∆) in-
duces the transformation Φ on the Grothendieck K0(Db(mod-k∆)) = K0(mod-k∆).
It is well-known that Φ is periodic in the Dynkin situation with the numbers
n+1, 2(n−1), 12, 18 and 30 being the periods for An,Dn,E6,E7 and E8, respectively.
Here, the equality of the numbers deg f∆ and h∆ occurs a surprising coincidence.
Under a more advanced aspect we will return to this question in Lecture 4, where
the relationship will be established on a conceptual level.

(4) The table contains further interesting information. The sum of the degrees
of the generators x, y, z equals 1 + deg(f∆).

Summary 1.11. We summarize what we have achieved in the first lecture and
also address some obvious questions:

(1) To each Dynkin diagram ∆ = [p1, p2, p3] the restriction of the L(p1, p2, p3)-
graded triangle singularity S = S(p1, p2, p3) to the infinite cyclic group Z~ω, identi-
fied to Z via n~ω ↔ −n, yields a positively Z-graded k-algebra R∆ = k[x, y, z]/(f∆),
where f∆ is a homogeneous prime polynomial whose degree is the Coxeter num-
ber h∆ of ∆. Moreover, R∆ is a Z-graded integral domain which is noetherian of
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Krull dimension two. Unlike the L-graded k-algebra S, the k-algebra R is no longer
graded factorial (except for the Dynkin diagram E9 = [2, 3, 5]).

(2) Our treatment still leaves important questions open: What is the conceptual
role of the grading group L? What is the special role of the dualizing element ~ω in
L making the correspondence ∆ 7→ R∆ work? Sofar our correspondence ∆ 7→ R∆

looks a bit ad-hoc. On the other hand, we have seen that the restriction of S to the
subgroup Z~c of L generated by the canonical element always yields the polynomial
algebra k[x, y], x = xp11 , y = xp22 , where x and y both get degree one. So what are
the properties that are making ω so special that for ~ω the correspondence works?

(3) In the next lecture we describe a setting, where the above questions get a
natural answer. To give a brief indication already now, we first comment how to
think of the L-graded algebra S. For many questions it is natural to replace the
L-graded algebra by its companion category which is equipped with a natural
shift-action of L. This means to consider the k-linear category [L;S] given by the
following data

- the objects are just the elements ~x of the grading group L,
- the morphism space Hom(~x, ~y) equals S~y−~x,
- composition of morphisms corresponds to the multiplication of S,
- An element ~x ∈ L sends an object ~y to the object ~y(~x) := ~x+~y and yields

on morphisms the mapping

S~z−~y = Hom(~y, ~z)→ Hom(~y(~x), ~z(~x)) = S~z−~y,

corresponding to the identity map on S~z−~y.

In Lecture 2 we are going to construct the category coh-X of coherent sheaves on
the weighted projective line X of weight type (p1, p2, p3), and we will see there that
our companion category [L;S] is equivalent on to the category of all line bundles
on X. Under this equivalence, moreover, the action of ~ω on [L;S] corresponds to
the (restriction of the) Auslander-Reiten translation of coh-X. In that sense the
L-graded algebra S embodies the properties of the Auslander-Reiten translation of
the category coh-X. It thus comes as a surprise that studying the simple singularity
f∆ thus means to study the Auslander-Reiten translation on the category coh-X
and conversely.

(4) Recall in this context that weighted projective lines (also those with more
than three weights) appeared in Happel’s lectures in the following context: Assume
that the base field k is algebraically closed, and H is a connected hereditary abelian
k-linear category which is Ext-finite and has a tilting object. Then H is derived

equivalent to the module category mod-k~∆ over the path algebra of a quiver ~∆
or to a category coh-X of coherent sheaves on a weighted projective line, see [7].
If k is not algebraically closed then the class of weighted projective lines has to
be enlarged to take many further cases into account, compare for this [13], [17]
and [22].



CHAPTER 2

From singularities to diagrams

1. An analysis of the problem

We have seen in Lecture 1 how to attach to a Dynkin diagram ∆ = [p1, p2, p3],
that is, to a weight triple (p1, p2, p3) whose dualizing element satisfies δ(~ω) < 0 a
simple Z-graded surface singularity R by forming the restriction of the L-graded
triangle singularity S = k[x1, x2, x3]/(xp11 + xp22 + xp33 ) to the subgroup Z~ω of L.
Under the present assumptions the group Z~ω is infinite cyclic; we identify Z~ω
with the integers by means of the correspondence −n~ω ↔ n. In this way we have
obtained a list (f∆), ∆ Dynkin, of simple graded surface singularities, a list working
for any field.

Remark 2.1. Certain aspects of the theory, nevertheless, still need clarification.

(1) We need a conceptual understanding why it is natural to consider the
restriction of the L-grading of S to Z~ω and not to another infinite cyclic
subgroup of L. (Usually there are many such subgroups around.)

(2) Assume we are presented a (graded) singularity f∆ from the list (but
without the list itself and, of course, without the attached Dynkin label).
How can we recover the Dynkin diagram, giving rise to it?

(3) More generally, and this time not restricting to the Dynkin triples, we may
want to analyze the complexity (or shape) of an isolated graded surface
singularity R by attaching somehow canonically suitable invariants which
in the special case of Dynkin triples, should contain all the information
on the Dynkin diagram in question.

(4) Actually in Idun Reiten’s lectures1 she discussed already a method how
to do this. The context was not quite the same since she dealt with the
ungraded complete simple singularities. In brief, starting with a simple
isolated surface singularity f∆ from our first table of singularities, Reiten
was studying the ring R = k[[x, y, z]]/(f∆) and it’s category CM(R) of
Cohen-Macaulay modules and also the stable category CM(R) obtained
from CM(R) by factoring out all morphisms factoring through projec-
tive modules.. The main assertion in this context is that both categories
have almost-split sequences and the AR-quiver in the first case is ob-
tained from the extended Dynkin diagram ∆̃, in the second case from the
Dynkin diagram ∆ itself by replacing each edge by a double arrow 
,
more specifically a 2-cycle.

(5) We will follow this pattern, establishing a graded version of the above and
we will experience similar effects. The graded setting will also enable us
to cover a larger range of phenomena.

2. Dynkin and extended Dynkin diagrams

Remark 2.2. For the discussion to follow, it is useful to have a clear conception
of the natural bijection between Dynkin and extended Dynkin diagrams. (Note:

1The matter is going to be taken up again in Osamu Iyama’s lectures.

13



14 2. FROM SINGULARITIES TO DIAGRAMS

they are not just lists of graphs! More structure is around.) The correspondence is
given by looking at subadditive respectively additive functions2.

(a) Recall that a positive integral function λ on a graph ∆ is additive in a
vertex v provided 2λ(v) =

∑
v−p λ(p), where the sum is over all vertices which

are incident with v. Subadditivity in v means that we weaken the condition to
2λ(v) ≥

∑
v−p λ(p)

(b) Dynkin diagrams are exactly the connected finite graphs such there is a
unique (normalized) subadditive function which fails to be additive in a single
vertex. Given a Dynkin graph ∆, let v be the vertex where a subadditive function
fails to be additive. Attaching to v a new edge with a vertex yields an extended
Dynkin diagram, denoted by ∆̃.

(c) Extended Dynkin diagrams are exactly the finite connected graphs admit-
ting an additive function. These function are all proportional, and it is possible to
choose one, called normalized, attaining value 1. Deleting any vertex (and adjacent
edges) then yields a Dynkin diagram.

(d) The two procedures in (b) and (c) are inverse to each other (on the level of
isomorphism classes of graphs). We illustrate this by an example:

The Dynkin graph D6 admits the subadditive function depicted below:

1 EEE

2 2 2 1

1
yyy

It is additive, except in the framed vertex. Adding a new edge here, yields the
extended Dynkin graph D̃6.

Conversely, the extended Dynkin graph D̃6 has a unique normalized additive
function λ depicted below:

1 EEE 1

2 2 2 EEE
yyy

1
yyy

1

There are four vertices v with λ(v) = 1. As we see it does not matter which one
we delete. The four choices give rise to the “same” Dynkin diagram.

3. The Serre construction

We now describe how to attach to the L-graded singularity S a hereditary K-
linear category which is Hom-finite. (A similar construction will later be discussed
for the Z-graded algebra R if δ(~ω) is non-zero.)

First we form the abelian k-linear category of finitely generated L-graded
S-modules which we denote by modL-S. The objects of this category are the
finitely generated L-graded S-modules. We thus have M =

⊕
~x∈LM~x such that

S~xMvy ⊆M~x+~y holds for all ~y and ~y from L. It follows that all components M~x are
finite-dimensional over k. Equipped with the degree-preserving morphisms (=mor-

phism of degree zero) the category modL-S is a k-linear abelian category with finite
dimensional Hom-spaces.

An important feature of this category is the action of the grading group
L by shift: If M =

⊕
~x∈LM~x is a graded S-module and y ∈ L we define M(~y)

to be the graded module with M(~y)~x = M~x+~y. In particular, each indecomposable

projective object in modL-S has the form the modules S(~x) with ~x ∈ L. Viewed
from a graded point of view the algebra S is graded-local3, that is, it has a unique

2The matter was treated in I. Reiten’s lectures.
3See previous remarks how to interpret concepts in the graded sense!
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maximal graded ideal m = (x1, x2, x3). Accordingly S/m = k is simple in modL-S;
moreover each simple graded S-module has the form k(~x) for a unique ~x in L.
We conclude that a graded S-module has finite length if and only if it is finite
dimensional. We denote by modL

0 -S the full subcategory of modL-S consisting of
all finite length objects. It is a Serre subcategory, that is, it is closed under
subobjects, factor objects and extensions.

The setting allows us to deal with an L-grading variant of the socalled Serre
construction going back to Serre (1955). This is done by forming the quotient
category4

H =
modL-S

modL
0 -S

which is again an abelian category defined as follows (for details of the construction
we refer to [4])

- the objects of H are just the objects of modL-S,
- the morphisms of H are obtained from the morphisms of modL-S by for-

mally inverting all morphisms having a kernel and a cokernel of finite
length.

- the composition in H is induced by the composition in modL-S.

4. Coherent sheaves on a weighted projective line

The category H has an interpretation as the category of coherent sheaves on a
weighted projective line X having three weighted points of weights (p1, p2, p3). For
this reason we are to some extent using sheaf-theoretic language for concepts related
to H: In the above setting we have a natural quotient functor q : modL-S → H
which is exact. Further, the L-action on modL-S induces an L-action on H, which
we also denote in shift notation (~x,X) 7→ X(~x). Moreover, we use the notation
O = q(S) and, for reasons becoming transparent later, call this the structure sheaf.
Moreover, we call the q(S(~x) = O(~x)) the twisted structure sheaves. They will form
a nice set of ’generators’ for the category H. We have the following result, see [5]
for further details.

Theorem 2.3 (Geigle-L, ’87). The category H has the following properties:

(1) H is a Hom-finite abelian category which is noetherian, that is, any
ascending chain of subobjects becomes stationary.

(2) H satisfies Serre duality in the form

D Ext1(X,Y ) = Hom(Y,X(~ω)).

[This implies that the category H is hereditary and further that it has almost-split
sequence with Auslander-Reiten translation τ given by twist with ~ω.]

(3) The indecomposable objects from H come in two parts

H0 = {X ∈ H | length(X) <∞}
H+ = {Y ∈ H |Y has no simple subobject}.

Moreover, Hom(H0,H+) = 0. [Members of H0 will be called torsion (or finite
length) sheaves, those of H+ will be called bundles.]

(4) We have natural isomorphisms Hom(O(~x),O(~y)) = S~y−~x.
(5) There is a Z-linear form on K0(H), called rank, which is 0 exactly on the objects
of H0 and > 0 otherwise.

(6) For each line bundle L, that is, an indecomposable object of rank one, there exists
a unique ~x from L such that L is isomorphic to O(~x).

4Under the name QmodL-S this construction — in a Z-graded setting did already appear in
Dan Zacharia’s lectures.
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(7) The indecomposables of H0 decompose into a P1(k)-family of (uniserial=standard
stable) tubes with three distinguished ones having p1, p2, p3 simple objects, respec-
tively and the remaining ones containing exactly one simple.

Proof. We give a few indications concerning the proof.
ad (1): Abelianness is a general feature of the quotient category with respect

to a Serre subcategory. As is easy to see, noetherianness of modL-S is preserved
when passing to the quotient category.

ad (2): This is technically the most difficult part. On the other hand, it
is a general technique in algebraic geometry. If one deals with a graded complete
intersection S having a minimal set of homogeneous generators in degrees a1, . . . , an
and a minimal set of homogeneous relations in degrees b1, . . . , bm, then one gets
Serre duality in the form D Extn(X,Y ) = Extn−d(Y,X(ω)) where d = n −m − 1
and ω =

∑m
i=1 di−

∑n
j=1 ai. This techniques either use a Koszul complex associated

to the complete intersection or alternatively a minimal graded resolution of S. For
details we refer to the literature.

ad (3): Let X be an object in H. By noetherianness X has a largest noetherian
subobject X0 of finite length such we obtain a short exact sequence η: 0→ X0 →
X → X/X0 → 0 with X0 from H0 and X/X0 from H+. Invoking Serre duality one
now shows that η splits which yields the result.

ad (4): This is another important feature following directly from graded facto-
riality of S.

ad (5): A quick way to define the rank is the following. Let H0 denote the
full subcategory of H consisting of all objects of finite length. Then the quotient
category H/H0 is an abelian category where each object has finite length. For X
in H now define the rank of X as the length of X in H/H0. It is then easy to verify
the properties (5).

ad (6): This uses the classification of homogeneous prime elements in S. If p is a
homogeneous prime in S, then q(S/(p))(~x) is a simple object in H, and each simple
object S has this form. Here p is uniquely determined by S while ~y is not. �

Corollary 2.4. We can recover the weight triple (p1, p2, p3), hence the L-graded
algebra S from the category H.

Proof. This follows directly from part (7). �

Corollary 2.5. The companion category [L;S] of the L-graded algebra S is equiv-
alent to the full subcategory L of coh-X which is formed by all the line bundles on
X.

Proof. This is an immediate consequence of (4). �



CHAPTER 3

Link to algebras and Cohen-Macaulay modules

1. Singularities and finite dimensional algebras

Summarizing the present status, we have applied the Serre construction to the
L-graded algebra S and obtained the categoryH = coh-X which is an abelian, Hom-
fine k-linear category which is Krull-Schmidt and which has almost-split sequences.
So H is already quite close to the features of a category of finite dimensional mod-
ules. This relationship is not only a formal one, it can be made very explicit since H
also has a tilting object. (In fact it does have plenty of them!) Since H is hereditary
it is convenient to say that an object T of H is a tilting object if the following
two conditions are satisfied:

(a) T has no self-extensions, that is, Ext1
H(T, T ) = 0;

(b) T generatesH homologically, that is, wheneverX ∈ H satisfies HomH(T,X) =
0 = Ext1

H(T,X) then already X = 0.

Theorem 3.1. Assume X = X(p1, p2, p3) is the weighted projective line given by
the weight triple (p1, p2, p3). Then the object

T =
⊕

0≤~x≤~c

O(~x)

is a tilting object in coh-X whose endomorphism ring Λ = EndH(T ) is the canon-
ical algebra given by the same weight triple. (We write Λ = Λ(p1, p2, p3).) That
is, Λ is given by the quiver

◦ x1 // ◦ x1 // · · · x1 // ◦
x1

��
@@

@@
@

◦
x2

//

x1
??~~~~~

x3 ��
@@

@@
@ ◦

x2

// ◦
x2

// · · ·
x2

// ◦
x2

// ◦

◦
x3

// ◦
x3

// · · ·
x2

// ◦
x3

??~~~~~

with three arms of lengths p1, p2, p3 respectively with the single relation xp11 + xp22 +
xp33 = 0.

Proof. That T has no self-extensions uses Serre duality combined with the
formula Hom(O(~x),O(~y)) = S~y−~x. To show that T generates H homologically, the
key point is to show that for each simple object S in H at least one of the O(~x)
with ~x in the range 0 ≤ ~x ≤ ~c admits a non-zero homomorphism to S. �

Corollary 3.2. The bounded derived categories of Db(mod Λ) and Db(H) are triangle-
equivalent. �

This result allows a number of strong consequences, since the abelian category
H is hereditary, and hence the bounded derived category of H can be identified
with the repetitive category of H, as was shown in the lectures by Dieter Happel.
Recall that the repetitive category is the disjoint union∨

n∈Z
H[n] where each H[n] is a copy of H,

17
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with objects of H[n] written X[n], and where morphism are given by

Hom(X[m], Y [n]) = Extn−mH (X,Y ).

A particular consequence of this setting is

Corollary 3.3. The category mod Λ of modules over the canonical algebra Λ is
equivalent to (the additive closure of) the union of

{X ∈ H |Ext1
H(T,X) = 0} ∨ {Y [1] |Y ∈ H with HomH(T, Y ) = 0}

viewed as a full subcategory of H ∨H[1] ⊂ Db(H). �

Remark 3.4. We discuss briefly the relationship between the categories H and
mod Λ as far it is relevant for the matter of singularities.

(1) As Corollary 3.3 states, the category H contains all the information on the
category of Λ-modules (via the repetitive category of H). In particular
the representation type of H determines the representation type of Λ.

(2) The complexity of the classification problem for coh-X = H is completely
determined by the numerical invariant δ(~ω) = p̄ (1− (1/p1 + 1/p2 + 1/p3)).
Since indecomposables ofH0 are explicitly classified by means of 1-parameter
families, indexed by the projective line, the complexity is determined by
the category vect-X = H+ of vector bundles on X.
(a) If δ(~ω) > 0, then the Auslander-Reiten quiver for the indecomposable

vector bundles consists of a single component of shape Z∆̃, where ∆̃
is the extended Dynkin diagram corresponding to ∆ = [p1, p2, p3].

(2) If δ(~ω) = 0, then the classification problem for coh-X is still tame (but
complicated). The indecomposable vector bundles decompose into a
rational family (Tq)q∈Q where, in turn, each T1 is a P1(k)-family of
tubes, each one being of tubular type (p1, p2, p3). We express this by
saying that coh-X, correspondingly Λ, has tubular type.1

(3) If δ(~ω) > 0, then we deal with a wild situation. Here all AR-
components for vect-X are of type ZA∞. Moreover, there is a natu-
ral bijection between the set of all such components to the set of all
AR-components of regular modules for the path algebra of the star
[p1, p2, p3], endowed with an arbitrary orientation, see [19].

2. Shape of the category of vector bundles

For the moment our main interest is in the case δ(~ω) < 0. We illustrate the
situation by an example.

Example 3.5. For weight type (2, 3, 4) the corresponding Dynkin diagram is E7 =

[2, 3, 4]. Here the Auslander-Reiten quiver for vect-X is given by ZẼ7, and therefore
looks as follows:
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1Tubular algebras play an important role in tame representation theory. They occurred in
A. Skowroński’s and in J.A. de la Peña’s lectures.
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Note that the line bundles form two τ -orbits sitting at the border of the component.
We have marked the corresponding vertices by circles ◦ while the other vertices
are marked by fat dots •. We have 8 τ -orbits with corresponding orbit graph
the extended Dynkin diagram Ẽ7. Since the rank, introduced in Theorem 2.3, is
constant on τ -orbits it yields a function on Ẽ7 which turns out to be the unique
(normalized) additive function for this extended Dynkin graph. The rank function
on vect-X is thus determined by the following diagram with attached rank values

2

1 2 3 4 3 2 1

We thus rediscover that there are two line bundle components sitting at the border
of the AR-quiver.

More is true, also in the other cases of weight triples of Dynkin type ∆ =
[p1, p2, p3]. Namely, the category vect-X, not just its Auslander-Reiten quiver is

completely determined by the mesh category Z∆̃, since the path category of this
mesh category is equivalent to the category of indecomposable vector bundles on
X. This can be derived from the fact that coh-X has a tilting bundle T whose

endomorphism ring is the path algebra k ~̃∆ of the path algebra of an extended
Dynkin quiver of type ∆̃. For the case [2, 3, 4] we have depicted such a tilting
bundle above by framing the vertices of a section2.

Concerning the position of a suitable tilting object we can be more specific. We
have already defined the rank which is constant on τ -orbits and which is 0 on finite
length sheaves and > 0 on non-zero bundles. There is another Z-linear form with
somewhat complementary properties, the degree. The degree is > 0 on objects of
H0 and there it is also constant on τ -orbits. Moreover, it vanishes on O. Each non-
zero vector bundle X then has a well-defined slope given by µX = degX/ rkF .
The following result is due to T. Hübner (unpublished), a proof can be found in [20]

Theorem 3.6. Assume the weight triple (p1, p2, p3) with δ(~ω). Let ∆ = [p1, p2, p3]
be the corresponding Dynkin diagram. Then there is only a finite system T1, . . . , Tn
of pairwise nonisomorphic indecomposable vector bundles E with slope in the range
0 ≤ µE < −δ(~ω). Moreover, T = T1⊕· · ·Tn is a tilting object whose endomorphism
algebra is isomorphic to the path algebra kQ of a quiver Q whose underlying graph
Q is the extended Dynkin diagram ∆̃. �

If all the three weights are ≥ 2, then (as in the preceding example) Q has
bipartite orientation.

Corollary 3.7. The path algebra kQ of a quiver Q without oriented cycles is derived
equivalent to a canonical algebra if and only if the graph underlying Q is extended
Dynkin. �

3. From singularities to weights

After this digression on some representation-theoretic link of singularity theory,
we come back to our main subject.

Theorem 3.8. We assume a weight triple (p1, p2, p3) with δ = δ(~ω) different from
zero. Let R = S|Z~ω considered as a Z-graded k-algebra (with ~ω ↔ −1 for δ < 0

2The concept of a section in an Auslander-Reiten component was an important tool in the
lectures of J.A. de la Peña and A. Skowroński
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and ~ω ↔ 1 for δ > 0). Then the restriction functor res : modL-S → modZ-R,
M 7→M|Z~ω, induces an equivalence

H =
modL-S

modL
0 -S

∼−→ modZ-R

modZ
0 -R

.

Proof. We first observe that the restriction of L-graded S-modules to Z-
graded R-modules preserves finite length, and thus induces a restriction functor
for the two quotient categories. The main ingredients of the proof then are the
following two facts:

(1) For each simple object E in H its image is non-zero (and then also simple).
(2) Each finitely generated Z~ω-graded R-module M extends to a finitely gener-

ated L-graded S-module M̄ (such that the restriction of M̄ to Z~ω equals M). This
part of the proof uses left Kan-extension or, in different terminology, the graded
tensor product S ⊗R −. �

With Theorem 3.8 at hand, we have solved our problem to discover the Dynkin
diagram from the Z-graded simple surface singularity f∆.

Corollary 3.9. Let f∆ be a Z-graded simple surface singularity f∆ and R =
k[x, y, z]/(f∆). Then the quotient category modZ-R/modZ

0 -R is equivalent to the
category of coherent sheaves coh-X on the weighted projective line of weight type
(p1, p2, p3), where ∆ = [p1, p2, p3]. �

As we have seen before, the weight type of X can be recovered as the tubular
type of H, that is, by determining the τ -periods of the tubes in the AR-quiver of
H0.

4. The link to graded Cohen-Macaulay modules

We start with a definition of graded maximal Cohen-Macaulay modules3 for
graded-local algebras of dimension two (like the L-graded algebra S or the Z-graded
algebra R).

Definition 3.10. A finitely generated L-graded module M is called (maximal)
Cohen-Macaulay if

HomS(E,M) = 0 = Ext1
S(E,M)

holds for each simple L-graded S-module E. (Recall these are of the form k(~x).)

By CML-S we denote the category of all L-graded CM-modules, viewed as a full
subcategory of modL-S.

A similar definition applies to Z-graded R-modules. We remark here, that for
algebras one always has the implications (hypersurface) ⇒ (complete intersection)
⇒ (Gorenstein) ⇒ (Cohen-Macaulay) in the graded and ungraded sense. Hence
the algebra S is always graded Gorenstein. For δ(~ω) 6= 0 one can show the same
for the Z-graded algebra R. It is not so obvious for δ(~ω) > 0, while for δ(~ω) < 0 it
follows from the list of simple graded singularities, which all are hypersurfaces.

Theorem 3.11. Let (p1, p2, p3) be a weight triple.

(a) If q : modL-S → modL-S/modZ-R = coh-X denotes the natural quotient

functor, then q induces an equivalence q : CML-S
∼−→ vect-X. This equivalence

sends the indecomposable projective S(~x) to O(~x) and induces an equivalence be-

tween the category projL-S of finitely generated L-graded projective S-modules and
the full subcategory L of vect-X, consisting of all line bundles.

3Cohen-Macaulay modules played a central role in O. Iyama’s lectures. He did consider
CM-modules for arbitrary Krull-dimension. Central tools were the depth of a module and the
Auslander-Buchsbaum theorem.
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(b) If we exclude the tubular weights, then the restriction functor from L-graded
S-modules to Z-graded R-modules induces an equivalence

res : CML-S
∼−→ CMZ-R, M 7→M|Z~ω

This equivalence sends the indecomposable projective R(n) to O(−n~ω) if δ(~ω) < 0

respectively to O(n~ω) if δ(~ω) > 0 and thus induces an equivalence between projZ-R
and the τ -orbit τZO.

Proof. The first assertion (a) follows from the existence of an inverse Γ :

vect-X→ CML-S to q where Γ(E) =
⊕

~x∈L HomX(Ø(−~x), E). The point here is to
prove that Γ(M) is finitely generated over S which uses that E is a vector bundle.
The first part of (b) then follows from Theorem 3.8. The remaining assertions in
(a) and (b) then are obvious. �

The combination of Theorem 3.11 with Remark 3.4 immediately yields the
following theorem.

Theorem 3.12. Assume [p1, p2, p3] is a Dynkin diagram. With the notation intro-
duced previously the k-linear categories

vect-X, CML-S and CMZ-R

can be naturally identified. Their Auslander-Reiten quiver forms a single component
of shape Z∆̃ = {(n, v) |n ∈ Z, v ∈ ∆̃0}.

Moreover, in this component the indecomposable Z-graded projective R-modules
form a single τ -orbit lying at the boundary of the component if all weights are
≥ 2. �

As an immediate consequence we obtain the information on the shape of the
Auslander-Reiten quiver of (maximal) CM-modules over the complete simple sur-
face singularities4.

Corollary 3.13. Assume ∆ = [p1, p2, p3] is Dynkin and f∆ is the corresponding

’singularity’. Then the Auslander-Reiten quiver of R̂ = k[[x, y, z]]/(f∆) is obtained

from the extended Dynkin diagram ∆̃ by replacing each edge ◦ ◦ by a 2-cycle
◦� ◦.

For instance the Dynkin diagram E8 with corresponding singularity f∆ = z2 +
y3 + x5 yields a category CM(k[[x, y, z]]/(f∆)) with Auslander-Reiten quiver

•

��
◦ // •oo

// •oo

// •oo

// •oo

// •

OO

oo

// •oo

// •oo

We have marked by ◦ the indecomposable projective module R̂.

of the Corollary. The proof uses the completion functor ˆ : CMZ-R →
CM(R̂), M 7→

∏
n∈ZMn as studied by Auslander-Reiten in [1]. In the present set-

ting, completion preserves indecomposability and almost-split sequences; moreover
two indecomposable graded modules have the same image if and only if they belong
to the same τ -orbit of Z-graded CM-modules. Hence the image of the completion
functor is a finite component of CM(R̂). By a Brauer-Thrall type argument, it then
follows that the functor is dense. This proves the claim. �

Corollary 3.14. Let k be a field. Then the k-algebra R̂ = k[[x, y, z]]/(x2 +y3 +z5)

is a factorial domain, that is, R̂ is a domain and each non-zero element is a product
of prime elements.

4Some of the easier examples were treated in I. Reiten’s lectures.



22 3. ALGEBRAS AND COHEN-MACAULAY MODULES

Proof. Since completion preserves the rank, it follows that R̂ is the only CM-
module over R̂ having rank one. It is a well-known fact that, in the present setting,
this property implies factoriality of R̂. �

Corollary 3.15. Let Q be an extended Dynkin quiver associated with the Dynkin
diagram ∆; we fix a vertex v of Q, where ’the’ additive function for the graph
underlying Q attains value 1. Denote by P the indecomposable projective kQ-module
corresponding to the vertex v. Then the orbit algebra

A(τ−, P ) :=
⊕
n≥0

HomkQ(P, τ−nP )

with multiplication un · vm = τ−mun ◦ vm is a positively Z-graded algebra which is
isomorphic to the graded simple surface singularity k[x, y, z]/(f∆).

Proof. Using the identifications of the theorem, we may identify A(τ−, P )
with the orbit algebra of the Z-graded R-module R with regard to the grading shift
M 7→M(1), which obviously brings us back to the Z-graded algebra R. �

Remark 3.16. From a general perspective, the last result is quite remarkable. It
tells us that a study of a (graded) simple singularities is equivalent to the analysis of
the Auslander-Reiten translation for path algebras of an extended Dynkin quiver,
or alternatively for the category of coherent sheaves on a weighted projective line
whose weight triple determines the Dynkin diagram. Thus the simple singularities
can be thought of as mathematical objects capturing the homological information
on either category, there given by either Auslander-Reiten or Serre duality.

A K-theoretic shadow of this is contained in the list of simple graded singular-
ities where we have seen in Comments 1.10 that the degree of the singularity f∆

agrees with the Coxeter number h∆.



CHAPTER 4

Stable categories of vector bundles/
Cohen-Macaulay modules

1. Vector bundles as a Frobenius category

In this lecture we are dealing with recent joint work with J.A. de la Peña [18]
and D. Kussin and H. Meltzer [15], see also [14] In the last lecture we have seen
(Theorem 3.8) that for each non-tubular weight triple (p1, p2, p3) we have a com-
mutative diagram

CML-S
∼
q

//

∼= res

��

vect-X

CMZ-R
∼
q′

// vect-X

where q and q′ are equivalences induced by the natural quotient functors. Since
S and R are graded Gorenstein each of the categories CML-S and CMZ-R inher-
its an exact structure from the ambient abelian categories of finitely generated
graded modules modL-S and modZ-R, respectively, which turns the two categories
of graded CM-modules into Frobenius categories having the category of indecom-
posable graded projective modules as their indecomposable projective-injective ob-
jects. By transport of structure we thus obtain on vect-X two, usually different,
structures of Frobenius categories.

In more detail, we arrive to the following setting

(a) From the L-graded setting we obtain that vect-X is a Frobenius category
with the system L of line bundles being the indecomposable-projective
objects.

(b) In the non-tubular case we obtain from the Z-graded setting that vect-X
is a Frobenius category with the τ -orbit τZO of the structure sheaf, that
is a single τ -orbit of line bundles, being the indecomposable projective-
injective objects.

Explanations 4.1. (1) A Frobenius category is defined to be an exact cate-
gory which has sufficiently many (relative) projective and (relative) injective ob-
jects and where the projectives coincide with the injectives.

(2) The term exact category is used here in the sense of Quillen. An exact
category C, by definition, admits an embedding as a full, extension-closed subcate-
gory into an abelian category A. The exact structure on C then is induced from A
consisting of all short exact sequences in A with all their terms in C.

(3) More concretely, a sequence η : 0 → A → B → C → 0 in vect-X is exact
with regard to the exact structure (a) if and only if for each line bundle L the
sequence Hom(L, η) is exact. Serre duality then implies that it is equivalent to
request exactness of Hom(η, L) for each line bundle L. By contrast, in case (b) η
is exact if and only if Hom(τnO, η), equivalently Hom(η, τnO), is exact for each
integer n.

23
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(4) By a result, due to Happel1 [6] the associated stable categories

vect-X/[L] and vect-X/[τZO]

are triangulated. Here a notation like vect-X/[L] means the factor category of
vect-X modulo the ideal generated by L. In more detail this is the category having
the same objects as vect-X with morphisms given by the quotient Hom(X,Y ) =
Hom(X,Y )/{u : X → Y |u factors through add(L)}.

(5) The stable categories (a) vect-X/[L] and (b) vect-X/[τZO] are triangulated
categories with Serre duality induced from the Serre duality of coh-X. In particu-
lar, the categories (a) and (b) have almost-split triangles and the Auslander-Reiten
translation is induced from the Auslander-Reiten translation of coh-X.

It follows that the Auslander-Reiten quiver for (a) and (b) is obtained from the
Auslander-Reiten quiver of vect-X by deleting in case (a) all orbits of line bundles
and in case (b), assuming non-tubular type, by deleting just a single τ -orbit of line
bundles.

(6) The stable categories of vector bundles (type (a) or (b)) will always have a
tilting object. For δ(~ω) > 0 this will be a highly non-trivial matter. We are going
to return to this aspect later.

In this lecture we will mainly concentrate on the stable category vect-X/[τZO] and
hence use the abbreviation vect-X for it.

Remark 4.2. We assume a non-tubular weight triple. What is then the role of
vect-X, equivalently of CMZ-R/[projZ-R]? By old work of R. Buchweitz (1986),
see [2], revived by D. Orlov in 2005, see [21], ’this’ stable category is a mea-
sure for the complexity of the graded singularity R. It is equivalent moreover
to the triangulated category of graded singularities of R defined as DZ

sing(R) =

Db(modZ-R)/Db(projZ-R). For instance the polynomial algebra R = k[x, y] with
x and y homogeneous of positive degree, becomes graded-regular-local, yielding
CMZ-R = 0.

Because of the canonical equivalences between the categories vect-X, CMZ-R
and DZ

sing(R) it is advisable to think of all three as being incarnations of a single
triangulated category. We will later encounter further triangulated categories which
are triangle equivalent to the above, but in a non-canonical way.

2. Shape of the stable category, case δ < 0

Concerning the existence of a tilting object we start with the case δ(~ω) < 0.

Theorem 4.3 (Kajiura-Saito-Takahashi ’06). Assume a weight triple (p1, p2, p3)
such that ∆ = [p1, p2, p3] is a Dynkin diagram. Then the triangulated category

CMZ-R = vect-X has a tilting object T such that End(T ) is isomorphic to the

path algebra k~∆ of a quiver ~∆ with underlying graph ∆. In particular, we have
equivalences

CMZ-R = vect-X ∼= Db(mod k~∆).

Proof. We will give two proofs which is different from the proof in [9] and
actually is much shorter. The first proof is inspired by the proof of Theorem 3.6,
where we have shown that the direct sum T of a representative system T1, . . . , Tn
of pairwise indecomposable bundles in the slope range 0 ≤ µ(E) ≤ −δ(~ω) is tilting
in coh-X. Now observe that the structure sheaf O belongs to this system. Let’s
assume that O = T1. It is then not difficult to check that T̄ = T2 ⊕ · · ·Tn is a
tilting object in vect-X with endomorphism ring k~∆.

1This result of Happel was treated in D. Happel’s lectures.
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We next present another proof that perhaps is providing more insight in the
mechanism. By way of illustration, we restrict to the weight type (2, 3, 4), the other
cases can be dealt with in a similar fashion. The relevant facts, we are going to
use, all are present in Example 3.5. We recall that the category of indecomposable
vector bundles for this weight type is given as the mesh category kZẼ7 depicted
below:
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We have depicted the vertices corresponding to the line bundles from the τ -orbit of
O by small circles ◦ and all arrows starting or ending in such a vertex are marked
by dotted arrows. Passing to the stable category vect-X just kills the orbit τZO and
the morphisms factoring through a finite direct sum of those. On the level of mesh-
categories this means to kill the marked vertices and the adjacent arrows, yielding
the mesh category of k∆ of the Dynkin diagram ∆. It is a fundamental result
by Happel [6] that the mesh category of k∆ is equivalent to the bounded derived

category Db(mod k~∆) for any orientation ~∆ of ∆. It is further well-known that
each slice in the AR-quiver kZ∆ yields a tilting object in the triangulated category

Db(mod k~∆). In the above picture we have marked one such tilting object. �

3. The case δ = 0

Comment 4.4. What is going to happen for the tubular weight triples (3, 3, 3),
(2, 4, 4) and (2, 3, 6)? In this case Z~ω is a finite cyclic group and so restriction of
S to Z~ω does not yield a Z-graded algebra. Moreover, it can be shown that the
restriction R = S|U of S to any infinite cyclic subgroup U of L is never Z-graded
Gorenstein; in particular it will never be generated by three homogeneous elements.

The conclusion from this is that for tubular weight triples it only makes sense
to study alternatively the stable category of vector bundles T = vect-X/[L] where
one factors out all line bundles. Here, Ueda [24] that T is triangle-equivalent to
the category Db(coh-X). Ueda’s proof uses an L-graded version of a recent theorem
of D. Orlov [21]. It also possible to directly construct a tilting object in T whose
endomorphism algebra is the canonical algebra of the corresponding weight type,
see [15].

Ueda’s result (actually Orlov’s result underlying Ueda’s proof) looks paradox-
ical. Namely, we start with the category coh-X of coherent sheaves, then pass to
the subcategory vect-X of vector bundles and in the next step make the category
additionally smaller when passing to the stable category T = vect-X/[L]. This,
by Ueda’s result, is triangle-equivalent to the bounded derived category Db(coh-X)
which, being equivalent to the repetitive category

∨
n∈Z coh-X[n] looks much bigger

than the category we started with. Note, in this context, that for tubular weight
type the category coh-X has tame representation type.
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4. Case δ > 0, Arnold’s strange duality list

We are now going to discuss what happens with the restriction procedure if we
apply it to weight triples with δ(~ω) > 0. The following result is taken from [16]
and [18] where additional information is available.

Proposition 4.5. Let k be a field and assume (p1, p2, p3) is a weight triple with
δ(~ω) > 0. Let R = S|Z~ω be the Z-graded restriction of the L-graded triangle singu-
larity S the subgroup Z~ω which we identify with Z by the correspondence ~ω ↔ 1.
Then the following holds:

(a) The algebra R is always graded Gorenstein.
(b) Exactly for the weights triples of Arnold’s strange duality list the algebra

R is generated by three homogeneous elements x, y, z and then has the
form

R = k[x, y, z]/(f)

where the generators x, y, z, the relation f and their degrees is given by
the list below.

(p1, p2, p3) generators (x, y, z) deg(x, y, z) relation f deg f N

(2, 3, 7) (x3, x2, x1) (6, 14, 21) z2 + y3 + x7 42 12
(2, 3, 8) (x2

3, x2, x1x3) (6, 8, 15) z2 + x5 + xy3 30 13
(2, 3, 9) (x3

3, x2x3, x1) (6, 8, 9) y3 + xz2 + x4 24 14

(2, 4, 5) (x3, x
2
2, x1x2) (4, 10, 15) z2 + y3 + x5y 30 11

(2, 4, 6) (x2
3, x

2
2, x1x2x3) (4, 6, 11) z2 + x4y + xy3 22 12

(2, 4, 7) (x3
3, x

2
2x3, x1x2) (4, 6, 7) y3 + x3y + xz2 18 13

(2, 5, 5) (x2x3, x1, x
5
2) (4, 5, 10) z2 + y2z + x5 20 12 •

(2, 5, 6) (x2x
2
3, x1x3, x

4
2) (4, 5, 6) xz2 + y2z + x4 16 13

(3, 3, 4) (x3, x1x2, x
3
1) (3, 8, 12) z2 + y3 + x4z 24 10 •

(3, 3, 5) (x2
3, x1x2, x3x

2
1) (3, 5, 9) z2 + xy3 + x3z 18 11 •

(3, 3, 6) (x3
2, x1x2x3, x

3
2) (3, 5, 6) y3 + x3z + xz2 15 12 •

(3, 4, 4) (x2x3, x
2
1, x1x

4
2) (3, 4, 8) z2 − y2z + x4y 16 11 •

(3, 4, 5) (x2x
3
3, x

2
1x3, x1x

3
2) (3, 4, 5) x3y + xz2 + y2z 13 12

(4, 4, 4) (x1x2x3, x
4
1, x

4
2) (3, 4, 4) x4 − yz2 + y2z 12 12 •

Arnold’s strange duality list

Here, the bullet marks the cases where one has a choice for the monomial generators.
Further, N denotes the sum of the three weights, whose mathematical significance
will be revealed later.

Remark 4.6. (1) For each graded singularity f from Arnold’s list, the original
weight type can be recovered by the procedure discussed already for the weight
triples of Dynkin type: The Serre construction, when applied to the Z-graded
algebra R = k[x, y, z]/(f) yields back the category coh-X on the weighted projective
line X(p1, p2, p3), and the tubular type of coh-X just coincides with (p1, p2, p3). In
the classical context, where k = C this triple runs under the name of Dolgachev
numbers of f .

(2) For the base field k = C this list is (equivalent to) Arnold’s list of the 14
exceptional unimodular singularities.

This list, slightly extended by the so-called Gabrielov numbers, gives rise to
what is called Arnold’s strange duality which is also related to mirror symmetry.
As pointed out before, the weight triples, we are using, will in this context be called
Dolgachev numbers. On an ad-hoc bases we point out that the above list is
equipped with an involution, keeping all weight triples (p1, p2, p2) with

∑3
i=1 pi = 12

fixed and otherwise sends a weight triple (p1, p2, p3) (Dolgachev numbers) to the

conjugate triple (p′1, p
′
2, p
′
3) (Gabrielov numbers) such that

∑3
i=1 pi +

∑3
i=1 p

′
i = 24

and moreover the degrees of the relations attached to the two weight triples are
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identical. We refer to the introductory account of Ebeling [3] for the definition and
properties of Gabrielov numbers.

Our next theorem is taken from joint work with J.A. de la Peña [18]. We
point out that the research by Kajiura-Saito-Takahashi [10] is related by subject
and results; language and setting are however different. Before stating the result
we need to introduce the concept of an extended canonical algebra. By def-
inition, an extended canonical algebra Λ̄ = Λ̄(p1, p2, p3) arises from a canonical
Λ = Λ(p1, p2, p3) by attaching one new arrow (with a new vertex) to a vertex of
the quiver of Λ, keeping the relation for Λ, and not introducing any new relation.
The algebra given by the quiver

◦ x1 // ◦ x1 // · · · x1 // ◦
x1

��
@@

@@
@

◦
x2

//

x1
??~~~~~

x3 ��
@@

@@
@ ◦

x2

// ◦
x2

// · · ·
x2

// ◦
x2

// ◦ // ?

◦
x3

// ◦
x3

// · · ·
x2

// ◦
x3

??~~~~~

having three arms of lengths p1, p2, p3 respectively, and with the single relation
xp11 + xp22 + xp33 = 0 is thus an extended canonical algebra Λ̄(p1, p2, p3). (We have
marked the extension vertex by ?.) Any other attachment of a new arrow and a
new vertex would have led to a derived-equivalent algebra, which indicates already
some important feature of the extended canonical algebras.

Theorem 4.7. For any weight triple (p1, p2, p3) with δ(~ω) > 0 there exists a tilting
object T in the stable category vect-X = vect-X/[L] whose endomorphism ring is
the extended canonical algebra Λ̄(p1, p2, p3). Accordingly we have equivalences of
triangulated categories

CMZ-R = vect-X ∼= Db(mod Λ̄),

and the Grothendieck group K0(vect-X) is finitely generated free of rank
∑3
i=1 pi.

Proof. We fix a weight triple (p1, p2, p3) with δ(~ω) > 0. Let us say first that
we do not know any ’concrete’ vector bundle T in vect-X producing a tilting object
in the stable category vect-X. Our construction of such a tilting object T is thus
done by a theoretical argument by using a recent theorem of D. Orlov: actually
we need to apply the proof of Orlov’s theorem to the present situation. Since the
details are quite technical, we only describe the basic idea of the proof. It follows
from our assumption on the weight type and from the construction of R that R is
always graded Gorenstein and moreover, the so-called Gorenstein parameter equals
−1. Orlov’s theorem then states that there is an exceptional object E in vect-X
such that its right perpendicular category, that is, the triangulated subcategory
consisting of all objects X such that Hom(E[n], X) = 0 for each integer n, is
equivalent to Db(coh-X). Choosing in coh-X a tilting object T with endomorphism
algebra Λ = Λ(p1, p2, p3) it then can be shown that the direct sum T̄ = T ⊕E is a
tilting object in vect-X.

It follows that the Grothendieck group of the triangulated category vect-X
is finitely generated free. Since, moreover, the quiver of the extended canonical
algebra has N =

∑3
i=1 pi vertices, it follows that the rank of K0(vect-X) equals the

sum N of the weights. �

The theorem has interesting applications; and up to now no other method is
known to derive these assertions. We assume throughout that δ(~ω) > 0.

Corollary 4.8. Each Auslander-Reiten component in vect-X ∼= Db(mod Λ̄) has
shape A∞.
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Proof. The corresponding statement is known for the category vect-X, see [19].
By a stability argument all line bundles form AR-orbits belonging to the boundary
of ZA∞-components. It follows that after stabilization the components still have
shape ZA∞. �

Corollary 4.9. The set of Auslander-Reiten components of vect-X ∼= Db(mod Λ̄)
is in natural bijection with the set of regular Auslander-Reiten components for any
path algebra kQ of a quiver Q with underlying graph [p1, p2, p3].

Proof. For the set of AR-components for vect-X this is shown in [19]. By the
previous argument, stabilization does not change the set of AR-components. �

Remark 4.10. (1) As for the simple graded singularities the degrees of the re-
lations f from Arnold’s list have an interpretation as the period of the Coxeter
transformation for Db(mod Λ̄), equivalently as the period of the Coxeter transfor-
mation for the triangulated category vect-X. In fact the two triangulated categories
(which are equivalent) are Calabi-Yau of fractional Calabi-Yau dimension, yielding
a conceptual reason for the observed periodicity.

(2) However, the fractional Calabi-Yau property for vect-X is not true for ar-
bitrary weight triples. Weight type (2, 3, 11) already yields an example.

(2) Finally, we remark that the stable categories of vector bundles of shape
vect-X/[L] are in a certain sense much better behaved than those discussed here.
The main reason is that they have more symmetry since the Picard group L acts
on them. For instance one then has tilting objects for each weight triple, given by
an explicit construction. For details in this direction we refer to [15] and [14].
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