1
C. The Abdus Salam
T International Centre for Theoretical Physics

P

2129-2

Homological and Geometrical Methods in Representation Theory

18 January - 5 February, 2010

Degenerations of algebras

José-Antonio de la Pefia

UNAM
Meéxico

Strada Costiera | I, 34151 Trieste, ltaly - Tel.+39 040 2240 || 1; Fax +39 040 224 163 - sci_info@ictp.it



Degenerations of algebras.

José-Antonio de la Pena
UNAM, México

Advanced School and Conference on Homological
and Geometrical Methods in Representation Theory
January18- February 5, 2010.

The Abdus Salam




Degenerations of algebras.

Lecture 1. Table of contents.
José-Antonio de la Pena

e Lecture 1. Deformation theory of algebras: a geometric approach.
1.1. Basic geometric concepts.
1.2. First examples.
1.3. Degeneration of semisimple algebras.
e Lecture 2. Degeneration of algebras: a homological interpretation.
2.1 Hochschild cohomology.
2.2. Rigidity of algebras.
2.3. Examples.
e Lecture 3. Tame and wild algebras: definitions and degeneration properties.
3.1 Definitions and characterizations.
3.2. Examples.
3.3 Biserial algebras are tame.
e Lecture 4. The Tits quadratic form and the degeneration of algebras.
4.1 The tame quadratic form.
4.2 Characterizaing representation-finiteness and tameness by arithmetic
properties of the Tits form.



Degenerations of algebras.

Lecture 1. Notation.
José-Antonio de la Pena

o Algebras are associative finite dimensional k-algebras with an identity. Here
k is an algebraically closed field.

o Let A be an algebra. By mody we denote the category of finite dimensional
(= finitely generated) left A-modules.

o We assume algebras A are basic and A = kQ)/I, where Q) is a quiver (=an
oriented graph) with set of vertices ()y and set of arrows ().

o Recall: the set of vertices ()y is the set of isoclasses of simple A-modules
{1,....n}. Let S; be a simple A-module representing the i-th class. Then
there are as many arrows from i to j in @ as dimyExt}(S;, S;). If Ais ba-
sic, there is a surjective morphism v : k() — A such that the ideal kerv is
admissible, that is, (rad A)™ C kerv C (rad A)* for some m > 2.
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Lecture 1. Notation: representations.
José-Antonio de la Pena

k() the[path algeb’rd has as k-basis the oriented paths in (), including a trivial path
e, for each vertex s € ()g, with the product given by concatenation of the paths.
We shall identify A = kQ)/I with a k-category whose objects are the vertices of ()
and whose morphism space A(s, 1) is e;Aes.

A module X € mody is a frepresentation] of () with a vector space X(s) = e, X for
each vertex s € (o and a linear map X(a): X(s) — X(t) for each arrow s — t in ().

An A-module X is a k-linear functor X: A — mod,.

The dimension vector of X is dim X = (dimy.X(s))seq, € N and the support of
Xissupp X ={s€Qp: X(s) #0}.

The duality mod 4 — mod 4o defined as D = Homy(—, k), where A is the opposite
algebra of A.
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Lecture 1. Basic geometric concepts.
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We consider the affine space V' = k™ with the Zariski topology, that is, closed sets
are of the form

Z(p1y...,ps) ={v e Vipi(v)=0, forallt=1,..., s},

where the p; € k[t1,...,t,] are polynomials in n indeterminates.

Fundamental facts:

S C klty,. .., t,], then Z(9) is the zero set of S.

o Z(S)=2Z((S)) = Z(\/(S)), where
(Sy = ideal of k[ty,...,t,] generated by S
VI = (radical of I) = {p € k[t1,... t,]: p' € I for some i € N}
. Z (U Si> — N Z(S)) and Z(S - §') = Z(S) U Z(S")

il iel
o Hilbert’s basis theorem: 3py,...,ps € S with Z(S) = Z(p1, ..., ps)
o Hilbert’s Nullstellensatz: {p € klt1,...,t,]: p=0on Z(5)} = /(S)

We say that Z = Z(5) is an affine variety and k[Z] = k[ty, ..., t,]//(S) is
its coordinate ring.
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Lecture 1. Basic geometric concepts.

Examples
Let k be the field of complex numbers C. Let A2 be a two dimensional affine space over C.

The polynomials f in the ring k[x, y] can be viewed as complex valued functions on A2 by
evaluating f at the points in A%. Let S be the subset of k[x, y] containing a single element f(x, y):

flxy)=z+y—1=0.
The zero-locus of f(x, y) the set of points in A% on which this function vanishes: it is the set of
all pairs of complex numbers (x,y) such that y =1 — x, known as a line. This is the set Z(f):
Z(f) ={(z,1-2) € C’}.
Thus the subset V = Z(f) of A% is an algebraic set. The set V is not an empty set. It is irreducible,
that is, it cannot be written as the union of two proper algebraic subsets.

Let subset S of k[x, y] contain a single element g(x, y):

g(z,y) =2 +y° - 1=0.
The zero-locus of g(x, y), that is the set of points (x,y) such that x2+ y2 = 1, is a circle.
The variety defined by {6, r. 502" 4 ¥ =z*= 0} is a cone. Hence the variety

Wx, 3, 20" b =t ar By b —ﬂ}

is the intersection of a cone and a plane, therefore a conic section.
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Lecture 1. Geometric concepts: irreducibility.

An affine variety Z = Z(py, ..., ps) is reducible if Z = Z, U Zy with proper
closed subsets Z; C Z. Otherwise Z is irreducible.

o There is a finite decomposition of any affine variety Z = (] Z; into irreducible
i=1
subsets Z; C Z. If the decomposition is irredundant, we say that 7., ..., Z,
are the irreducible components of Z.

o It 7 is an irreducible variety, then the maximal length of a chain
0+ZyCZyCoChi=17
is called the dimension of Z (=: dim 7).

It Z =] Z is an irreducible decomposition
i=1

dim Z = max dim Z;.

?
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Lecture 1. Example: commuting matrices.

The fact that commuting matrices have a common eigenvector — and hence by induction
stabilize a common flag and are simultaneously triangularizable -- can be interpreted as a

result of the Nullstellensatz, as follows:
commuting matrices A,,....A, form a commutative algebra

k[A,,....A,] over the polynomial ring k[X,,....x.]
the matrices satisfy various polynomials such as their minimal polynomials, which form a
proper ideal (because they are not all zero, in which case the result is trivial); one might call
this the characteristic ideal, by analogy with the characteristic polynomial.

Define an eigenvector for a commutative algebra as a vector v such that
x(v)= A(v)x for a linear functional \: A — K. and for all x in A.

Observe that a common eigenvector, as if v is a common eigenvector, meaning A,(v) = Ay,
then the functional is defined as A(coI + c1 Ay + - - cp Ag) == o + 2 M

(treating scalars as multiples of the identity matrix A,: = I, which has eigenvalue 1 for all
vectors), and conversely an eigenvector for such a functional A is a common eigenvector.
Geometrically, the eigenvalue corresponds to the point in affine k-space with coordinates

(As ooy Ag) with respect to the basis given by A,.
Then the existence of an eigenvalue A is equivalent to the ideal generated by the A, being
non-empty.

Observe this proof generalizes the usual proof of existence of eigenvalues.
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Lecture 1. Example: varieties of modules.
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Ezample: A = kQ/I where Q: o —— Py and I = (a3)

We consider the set of representatations of vector dimension (2,2,2). They satisfy the
system of (polynomial') equations:

Tall Tal2 a1l 12\ [ Ta11Zpil T Ta122821  Lal1Xp12 + Lal12X322 -0
Ta21 Ta22 g1 TE22 Ta21LB11 T Ta22X 321  La21Lg12 T La22X 322

mod(2,2,2) C k*** x k**? = k® defined by 4 equations.

This is the intersection of 4 quadrics and dim mod, (2,2,2)=4.
But this variety is not irreducible. Observe it contains two 4 dimensional affine
spaces A%, which are irreducible components.

t 0][0 t

The map f: k > mod, (2,2,2), such that f(t)= [ ][ Z] is polynomial
0O tJj[(t O

in the coordinates, hence continuous in the Zariski topology.

Observe that the lim ., f(t) is a semisimple module.
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Lecture 1. Geometric concepts: regular map.

A map p: Y — Z between affine varieties is a morphism (= a reqular map),

if y*: k|Z] = k[Y], p— popis well-defined. In fact, u* is a k-algebra homo-
morphism.

o Any morphism u: Y — Z is continuous in the Zariski topology.
e Amapu:Y — Zisamorphism if and only if 3y, ..., g € k[t ..., t,] such
that p(y) = (1Y), (), Yy = (1, ) €Y CE™

Proposition. Let y: Y — Z be a morphism between irreducible affine varieties and

assume  is dominant (i.e. u(Y) = Z). Then for every z € Z and every irreducible
component C of p=*(Z) we have

dimC > dimY —dim 7

with equality on a dense open set of Z.
In particular, if C is an irreducible component of Z(pi,...,p;) C k", we have

dimC >n—t
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Lecture 1. Geometric concepts: variety of algebras.

e Bil(n) = { bilinear maps k" x k" — k"} with the structure of k"’

e Ass(n) = { associative bilinear maps }, it is a closed subset of Bil(n), so an
affine variety:.

e Alg(n) = { associative algebra structures on k™ which have a 1. }

Lemma. (1) Alg(n) is an open subset of Ass(n).
(2) The map Alg(n) — k™, A — 14 is a regular map.
(3) Alg(n) is an affine variety.

Proof. For a finite dimensional k-algebra A corresponding to the bilinear map m (not
necessarily with 1), denote by L', R* : A — A the left and right multiplication by
a€ A.

Then A has a 1 exactly when for some a € A with both L, and R, invertible, in
this case 1 = L;(a).

a

(1): D(a) := {m € Ass(n) : detL"det R # 0} is open in Ass(n). Then
Alg(n) = U,D(a) is open.

(2) On D(a) the map is equal to m — (L™)~!(a) which is a quotient of polyno-
mial functions on Bil(n); the denominator is det (L”*) which does not vanish on D(a).

(3): In fact Alg(n) = {(m,a) € Ass(n) x k™ : a is 1 for m}.
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Lecture 1. Geometric concepts: action of groups.
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Let G be an algebraic group.

An action of G on the affine variety Z is a morphism p: G X Z — Z satisfying:
(1) plla, z) = 2

(2) ulg, plh,2)) = p(gh, 2).
We shall write u(g, 2) =: gz.

A an algebra and g in GL(n)
A9 has multiplication: a.b=gabg-'

The general linear group GL(n) acts on Alg(n) by conjugation and the orbits are
the isomorphism classes of algebras. The orbit of A is denoted o(A) := GL(n)A.

The stabilizer Stabgy, () (A) of an algebra A is the automorphism group Aut(A).
Then

dimo(A) = dim GL(n) — dim Aut(A)
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Lecture 1. Geometric concepts: degenerations.
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Given a variety Z and a morphism p : Z — Alg(n), we say that (j(2)).cz is an
algebraic famaly.

Given two algebras A and B in Alg(n) we say that B is a degeneration of A
if there is an algebraic family (A,),cz such that A,=A for z in an open and dense

subset of Z and and A,,=B for some z, € Z.

If B is a degeneration of A then B € 5(A) the closure of the orbit of A.

Non-trivial fact: Each degeneration can be obtained along the affine line C.

B

N
\/\




Degenerations of algebras.
Lecture 1. Geometric concepts: connectedness.

Proposition. Alg(n) is connected and contains exactly one closed orbit, namely that
of the commutative algebra By = Clta, ..., t,]/(tit; : 2 <i,j <n).

Proof. Let A be any algebra in Alg(n) with a basis 1 = ay,aq,...,a, such that

aia; = ) Vijas, the 77 are called the structure constants.

s=1
For t € C we define the algebra A; with basis 1 = ay,ao,...,a, and structure
constants
ity for i, 7,5 # 1,
v5i(t) = T t;; fori,7#41,5s=1,
o TVig otherwise

We get A;=A for t # 0 and Ay is the given commutative algebra B. [
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Lecture 1. Geometric concepts: generic structures.

It is an interesting and difficult problem to determine the number of irreducible
components of Alg(n) and the generic structures of those components, that is, those
algebras which are not degenerations of other algebras.

C C

Example: for n = 3 consider the non-commutative algebra Bs = (0 C

) , then the

generic structures in Alg(3) are:

CxCxC

Cls, t]/(s? st, t?)

Alg(3) has two components, one of dimension 9, the closure of the orbit of C x C x C,

and one of dimension 7, the closure of the orbit of (% g)
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Lecture 1. Describing Alg(n).

Remarks:
Few varieties Alg(n) have been described (Gabriel, Mazzola, Happel).
Shafarevich proved in 1990 that Alg(n) has at least n —v/7n irreducible components.

One component of Alg(n) is the closure of the orbit of the semi-simple algebra C".
Mazzola showed that for n <7 this set is formed by the commutative n-dimensional
algebras. But in dimension 10 there are commutative algebras which are not degen-
erations of C".
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Lecture 1. Geometric concepts: Chevalley theorem.
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A fundamental result is the following

Theorem (Chevalley) Let ji: Y — Z be a morphism between affine varieties. Then
the function

y = dimyp " ((y)) = max {dim C: y € C irreducible component of =" (u(y))}

i@“gmiwntmuou that is, d: Y — N has {y € Y: d(y) < n} open in'Y, for
all n € N).

As illustration consider p: C* — C* with p(z,y, z) = (x,2y). Then

(o, yo,2) f xp #0, dim =1

_1 _ -l _
) = e ) {(O,y,z) if 29 = 0, dim = 2

A general morphism p: Y — Z is neither open nor closed, but p(Y') is a finite union
of locally closed subsets of Z. A finite union of locally closed subsets of a variety Z
is called a constructible subset.

Proposition. If i Y — 7 is a morphism and Y' CY a constructible subset, then
1(Y') is also constructible.
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Lecture 1. Geometric concepts: upper semicontinouos

Few consequences:
(1) The function A — dimZ(A), where Z(A) is the center of an algebra A, is
upper semicontinous. In particular, the commutative algebras form a closed set in

Alg(n).
Proof. The set Z :={(a,A) : a € Z(A)} is closed in k" x Alg(n). Consider the maps:
m: Z — Alg(n) induced by the projection and the section ¢ : Alg(n) — Z, defined
by A — (0,A). Clearly, 7'(A) = Z(A4) x {A} and dimZ(A4) = dim7~'(4) =
dimy 7 (7(0(4))). (]
(2) The function A — dim Aut(A) is upper semicontinous. In particular:
o the set {A € Alg(n) : dimo(4) < s} is closed for each s;

e the set {A € Alg(n) : dimo(A) = s} is locally closed for each s.

In particular, if B is a degeneration of A in Alg(n) then:
o dimyZ(B) > dim;Z(A);
o dim Aut(B) > dim Aut(A) (which we already knew by a dimension of orbits argu-
ment).
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Lecture 1. Geometric concepts.
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Lecture 2. Cohomology and deformations.
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Let V' be a n-dimensional k-vector space. Recall that the Zariski closed set of
associative maps in the affine space Homy,(V &y V, V).
Moreover, the associative algebra structures with 1 form an affine open subvariety
Alg(n) of the associative structures.
On Alg(n) operates the algebraic group GL(n) by transport of structure. Thus the
orbits of the points of this variety are in one to one correspondence with the isoclasses
of the n-dimensional associative k-algebras with 1.
An algebra A defines the isotropy group Aut(A) which is a closed subscheme of
GL(n).
In general, we use small greek letters (a, J...) for the points of Alg(n) and the
respective capital roman letters (A, B...) for the corresponding k-algebras.
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Lecture 2. Hochschild cohomology.
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Let a € Alg(n). We recall the construction of the standard Hochschild complex
for A.

Let C" = (C", d")icz be the complex with: C* = 0, d’, = 0 for 1 < 0, C* =V,
C* = Homy,(V®, V) for i > 0, where V% denotes the i-fold tensor product of V' over
ky ddv(z) = a(z ®v) —alv®x) for v,z eV, d:: C* — C"! with

(Ao f)(1 @ @ i) = (w1 @ fw2® -+ ® Tiga))

+ Z flor®- - ®a(r; ®xjm) @ @ Tip1)

+ (—1)”1 ([l ®- - ®@2;) @ Tig1),

for f - Oi, L1 X Ty € V®(i+1).
That is, we get a complex:

0 v Hom, (V. V) . Homy,(VE, V) _ 4 Homyg (VOH V) — > -

Then H'(A) := H'(C") is called the i-th {Hochschild cohomology pf A.
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Lecture 2. Hochschild cohomology.
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Interpretation of the Hochschild cohomology in low degrees:

The small Hoschschild cohomology groups H'(A) (0 < i < 3) have important in-
terpretations. We briefly recall some facts.

the first group H'(A) 2 DerA/Der’A, where DerA (resp. Der’A) is the set of
derivations (resp. inner derivations) of A.

For f € kerd?, there is an associative algebra A I ¥ defined on A @ A wiht
multiplication (a,b)(a’,b') = (ad’,ab’ + ba' + f(a ® a')). Nwo structures Alxy A,
Ak, A are isomorphic if and only if f and g represent the satne®lement in H2(A).

semidirect product

@ dim A=s, then for t>s we have Ht (A)=D
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Lemma. a) For given d,i € N, the function
6': Alg(n) — N, — dimH"(A)

1S upper semicontinuous.
b) If H*(A) = 0, there exists an open neighborhood U of o in Alg(n) and integers c,,

Co Such that for all 3 € U we have,
(i) dim,rfkerdg_1 = Cq,

n—1
(i) Y (—1)'dimyH(B) = ¢, and
i=0

(iii) H*(B) = 0.
Proof. Observe that dim;H"(A) = dimgkerd’, and for i > 0,

dimy H'(A) = dimgkerd!, + dimgkerd’, ' — dim,C* .

Since d': Alg(n) — Homyg(C*, C**') is a regular map, then a — dimgkerd’ is an
upper semicontinuous function by a simple subdeterminant argument. This shows

(a).
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Lecture 2. Proof (cont.)
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Assume that H"(A) = 0. The upper semicontinuity of 0" implies the existence of
an open connected neighborhood U of a in Alg(n) where 0"(7) = 0 for § € U. In
particular, for 3 € U we have

dimkkerdg_1 = —dimykerd + dim, 0"
which is a constant function in I (the left side and the additive inverse of the right
side being upper semicontinuous). Finally, observe that

n—1 n—2

) (~1)dimgH(B) = Y (~1)'dimgC* + (~1)" " dimykerd;
1=0 1=0
is a constant for 7 € . []

In particular, if B is a degeneration of A, for every n € N, we have
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Lecture 2. Tangent space.
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In algebraic geometry, the Zariski tangent space is a construction that defines a tangent

space, at a point P on an algebraic variety V . It does not use differential calculus, being based
directly on abstract algebra.

For example, suppose given a plane curve C defined by a polynomial equation
F(X,Y)=0
and take P to be the origin (0,0). When F is considered only in terms of its first-degree terms,
we get a 'linearised' equation reading
L(X)Y)=0
in which all terms X2Y? have been discarded ifa + b > 1.
w-axls We have two cases: L may be 0, or it may be the equation of a
L T line. In the first case the (Zariski) tangent space to C at (0,0) is
/ the whole plane, considered as a two-dimensional affine
space. In the second case, the tangent space is that line,
considered as affine space.

T-3X 15
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Lecture 2. Tangent spaces (geometry).
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the deriwative of f at the point x. Then the|tangent spacejof V' at x is the linear
variety T, (V') in the k" defined by the vanishing of all d,f as f(7") ranges over the
polynomials in the radical ideal Z(V') defining V.

There are more algebraic ways to define tangent spaces: let R = k[V] be the affine
algebra associated with V' and M, be the maximal ideal of R vanishing at x. Since
R/M, can be identified with & and M, is a finitely generated R-module, then then
R/M,-module M,/M? is a finite dimensional k-vector space. Then (M, /M?)* the
dual space over k may be identified with 7. (V).

For a € Alg(n) we have canonical inclusions:

[TAlg(n),a — kerd”, and TAut(A),id — kerd),. ]

Moreover, we denote Tf&lg(n),a

image of d;, is included in T4

the tangent space to the orbit of v at «, then the

g(n),a’



Degenerations of algebras.
Lecture 2. Hochschild coh. and rigidity.

C -
T
Proposition. Assume H'(A) =0 then the following holds: o

(1) the maps TAut( 0id = kerd: and Im d’ — ngg ma 0T 1somorphisms;
(2) there is a canonical inclusion

0 2
TAlg(n)aO‘/TAlg(n),a —H (A)

(3) In case H*(A) = 0, then the above inclusion is an isomorphism. Moreover, the
point a is smooth in the variety Alg(n).

Corollary. (a) If H*(A) = 0 then the orbit o(A) is open in Alg(n).

(b) There are (up to isomorphism) only finitely many algebras A with dimension n
and H*(A) = 0.

(c) If HY(A) = 0= H*(A), then o(A) is open in Alg(n) if and only 1if H*(A) = 0.
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Lecture 2. Hochschild cohomology and degenerations.
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Proposition. Let A be a n-dimensional k-algebra. If H(A) = 0, there is an open
neighborhood U of a in Alg(n) such that the dimension of the GL(n)-orbits of points
in U 1is constant (in fact, equal to n* —n + dimpH(A)). In particular, if A is a
degeneration of B, then A and B are isomorphic.

Proof. There is an open neighborhood U of a such that H'(B) = 0 and dim, H%(B) =
dimy, H°(A), for every 3 € U. Moreover, all algebras in I have smooth automorphism
groups of constant dimension n — dimyH(A). Therefore for a € Alg(n), the GL(n)-
orbit of o in Alg(n) has dimension n* — n + dimy, H°(A).

Let A be a degeneration of B, that is, & belongs to the closure of the GL(n)-orbit
of 4. Therefore U contains a point corresponding to an algebra B’ isomorphic to B.
Since the orbits of A and B’ have the same dimension (and are irreducible), they
coincide. Hence B is isomorphic to A. []
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Lecture 2. A tool for calculation.
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We recall that A is a one-point extension of B by M if

=00 %)

with the usual matrix operations.
For A = B[M| with M a B-module, Happel's long ezact sequence relates the
Hochschild cohomology groups H'(A) and H*(B) in the following way:

0— H°(A)— H(B)—Endg(M)/k— H'(A) — H'(B) — Exty(M, M) — H*(A)— - -

Many applications arise:

e Inductive calculation of dimyH*(A);

o if M is exceptional, that is Ext’y (M, M) = 0, we get H(A) = H'(B), for i > 0, and
moreover, the cohomology rings H*(A) and H*(B) are isomorphic;

e If A is representation finite with a preprojective component and H'(A) = 0, then
for all n > 1 we have H"(A) = 0.
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Lecture 2. An example.
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Let Oy = kQ/I, for X € k¥, be the algebra given by the following quiver: / \
3 a31 C¢32
and ideal [, generated by the relations ) ajpa;; and aypny; + Mgy + ey
=l
'1'he following holds:

e The algebras C) are isomorphic in Alg(16).

e dimAut(C}) = 15, hence dim o(C}) = dim GL(16) — 14 = 242

e we have C; = H|[M] for a hereditary algebra of type D, and M an indecomposabl
module with dim;End¢, (M) =1 = dimyExt, (M, M), then

H'(Cy) =0, fori+#0,2
and H°(C)) = k = H*(C)).

e The algebra C is a degeneration of C, that is, Cy = limy_.oC. In this case
Co = H|N; @ N»] and there exists an exact sequence

00— N — M — Ny, —0
o H(Cy) = HY(Cy) = H?*(Cy) = k, all others H"(Cy) =
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Lecture 2. Formal deformations.
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Let k[[T]] be the algebra of formal power series and p: k[[T]] — k be the canonical
projection. A@l deform@of a € Alg(n) is an element

& € Algyypy(n) such that Alg(n)(p)(@) = o

Two formal deformations oy and ay of a are equivalent if they are conjugate in
Algy iy (n) under some g € GLyyry(n) of the form g = E, +Tgy 4 T%gy + ..., where
for all 7, ¢g; is a n x n matrix over k.

Moreover, a deformation of « is trivial if it is equivalent to «.

An @esz’mal defor@ of a € Alg(n) is an element 7 € Algy4(n) such that
Alg(p)(r) = a.
Thus the infinitesimal deformations of o may be identified with the tangent space
T Algn) . The equivalence classes of the infinitesimal deformations of o may be iden-

tified with H2(A).

An infinitesimal deformation 7 of « is integrable if there exists a formal deformation
& such that the projection Algy iy (n) — Algyy(n) send & to 7.
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Lecture 2. Deformations as inverse of degenerations.
José-Antonio de la Penha

Let & € Algyqy(n) be a formal deformation of a € Alg(n). We can write
64:()6—|—061T+052T2—|—...

for k-linear maps «; € Homy (k™ ® k™, k™), for i > 1.

Let s € N and let J; be the canonical nilpotent s x s-Jordan block. Consider the
ring of truncated polynomials Ry = k[T']/(T*) and let ps : Algypy(n) — Algg, (n) be
the map induced by the canonical quotient. Then

A% = ps(&)(Js) =at+aJs+...+ Ods_ljj_l

s

is an algebra in Alg(n). /\/

Alg(n)
The following holds:
(1) Equivalent deformations « and /3 A

yield isomorphic algebras A% and A%, /\—/

(2) A is a degeneration of A.
For (2) consider the algebraic family By := o + a3\ Js + ... + as—1 (AJs)* ! which lies
in o(A%) for all A # 0 and By = A.
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Lecture 2. Lifting deformations.
José-Antonio de la Peina

Proposition. (a) if H*(A) = 0, every infinitesimal deformation 7 € TAlggn).o can be

lifted to a formal deformation ¢, of a.
(b) if H*(A) =0 every formal deformation is trivial.

Proof. (b): Let oy = a+ay-t+ ay- t2 + ... be a formal deformation with oy =

ag = -+ = a,; = 0and a, # 0. Then a, € kerd®> = Imd?, thus there exists
gn € C' = Homy(k", k") such that o, = du(g,) and with g = id + g, - t" we get
af =ag+alq t"TH O

The algebra A is said to be absolutely rigid if H*(A) = 0. It is said to be analytically
rigid if every formal deformation of « is trivial. Finally, A is said to be geometrically
rigid if the orbit of o in Alg(n) is open.

We have the chain of implications:

absolutely rigid = analvtically rigid = geometrically rigid.
The converse of the first implication is known to be false for positive characteristic,

while it is true if H3(A) = 0. If chark = 0, the converse of the second implication

holds.




Degenerations of algebras.
Lecture 2. Methodology of proofs.

José-Antonio de la Pena

"You want proof? I'll give you proof!"”
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Lecture 3. Tame and wild algebras.
José-Antonio de la Pena

A fundamental problem in the representation theory of algebras is the classification
of all indecomposable A-modules (up to isomorphism). We say that A is of finite
representation type if there are only finitely many indecomposable A-modules up to
isomorphism.

One of the first successes of modern representation theory was the identification by
Gabriel of the Dynkin diagrams as the underlying graphs of quivers () such that k@)
is representation-finite. But representation-infinite algebras are common.

Already in the 19*® century, Kronecker completed work of Weierstrass to classify
all indecomposable ‘pencils’ by means of infinite families of pairwise non-isomorphic
normal forms, which in modern terminology corresponds to the classification of the
indecomposable modules over the Kronecker algebra.

The first explicit recognition that infinite representation type splits in two different
classes arises in representations of groups: in 1954, Highman showed that the Klein
group has infinitely many representations in characteristic 2 and Heller and Reiner
classified them; in contrast, Krugljak showed in 1963 that solving the classification
problem of groups of type (p,p) with p > 3 implies the classification of the repre-
sentations of any group of the same characteristic, a task that was recognized as
‘wild’.
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Lecture 3. Tame and wild definitions.
José-Antonio de la Pena

Donovan and Freislich conjectured at the middle of the 1970’s that algebras split
in tame or wild types. This was finally showed by Yuri Drozd in 1980.

The algebra A is|tame|if for every number n, almost every indecomposable A-
module of dimension n is isomorphic to a module belonging to a finite number of
I-parameter families of modules.

Formally, an algebra A is tame if for every n € N there is a finite family of A — klt]-
bimodules M, ..., M;,) with the following properties:

(i) M; is finitely generated free as a right k[t]-module;
(ii) almost every indecomposable left A-module X with dim;X = n is isomorphic
to a module of the form M; ®y) Sy for some A € k.

The algebra A is|wild [if the classification of the indecomposable A-modules implies
the classification of the indecomposable modules over the associative algebra k{z,y)
in two indeterminates.

More formally, A is wild if there exists a functor I : mody<,,,~ — mody such that

e [ preserves indecomposability of modules;
o if F(X) and F(Y) are isomorphic, then X and Y are isomorphic.
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Lecture 3. The tame behavior.
José-Antonio de la Pena

The indecomposable modules over the quiver algebra A:

——
L ]
—

were classified by Weierstrass and Kronecker in the following families:

o

(preprojective representation)

| —— |
| ©

&
| ©

I —

(preinjective representation)

I’n Jn (0)
/’__\\_\ /’——\\
R,(\): E» k™ R,(c0): k™ k™
\\__/ \\__/
Jn(X) In

Let M,, be the A — k[t]-bimodule

k[¢]"

then M, k(] k[t]/(t — /\) =~ Rn(/\)

k[¢]"

Jn ()
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Lecture 3. The wild behavior.
José-Antonio de la Pena

Proposition. Let p be a prime number > 3. Assume k has characteristic p. The
group algebra A = k[Z, x Zy) is wild.
Proof. Let ¢: klu,v] = A, x — g— 1, y — h — 1, where Z, X Z, = (g) x (h). Then
A = Elu,v]/kerp = klu, v]/(uf, vP).

Moreover k[u,v]/(uP,vP) — k[u,v]/(u,v)? = k[u,v]/(u?, v, uwv? vu?) = B. Tt is
enough to show that B is wild.

Consider the B—k{z, y)-bimodule M defined as My, ,, = k(z,y)* and the structure
as B-module defined by the matrices

0 000 0 00 O
0 0 00 1 0 0 0
M = 1 0 0 0 oM = 0 0 0 0
0z y 0] 01 z 0
Check that gM is well defined and
M ®p(zy) —: modpz,) — modp

insets indecomposable modules. ]
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Lecture 3. Why wild algebras are ‘wild’?.
José-Antonio de la Peina

Proposition. Let B be any finitely generated k-algebra, then there exists a fully faith-
Jul functor F': modp — mody,,).

Proof. Let by, ..., bs be a system of generators of B. Define the k(z,y) — B-bimodule
M as Mg = B*"? and the structure of left k(x, y)-module given by the (s+2) X (s+2)-

matrices
_ - 0
v 0 1o 0

by 1

N S
| 0 0o LU,

We set F' = M®p: modg — modys ).

Check that F' is full and faithful.
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Lecture 3. Module varieties.
José-Antonio de la Pena

Let A be a n—dimensional algebra with basis 1 = ey, e, ..., e, with structure con-

stants ag;, that is, e;e; = Z ag;es.

The module variety mod A( ) is the closed subset of the affine space maty(r)™ formed
by matrices (1, = Ey, Es, ..., E,) satistying E;E; = Z as;

On mod 4(r) acts by conjugation the algebraic group GL( ) in such a way that the
orbit of a point p identifies with the isomorphism class of modules M corresponding
to pn. We write o(p) = GL(r)M. We get:

e StabgryM = Aut A(M) which is open and dense in the variety End4(M);
e dim o(p) = dim GL(r) — dim StabGL(T)M = 7% — dimyEnd s (M);
e the tangent space Tmod (")) to moda(r) at u has as subspace Ty(,),,) and

)/T(o(u) 4 1s a subspace of Extl(M, M);
< dlmkEthlél(Ma M) + dim T(o(

the quotient Tmod ey

e dim mod(r) < dim 7T

mod ,(r),u) 1)514)

= dimyExt (M, M) + dim o(p) = dim;Ext!, (M, M) 4 r* — dim;End 4(M);

o dim GL(r) — dim mod4(r) > dim;End 4(M) — dim,Ext} (M, M);
e there are only finitely many modules M (up to isomorphism ) of dimension r
satisfying Ext! (M, M) = 0.
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Lecture 3. Degenerations of modules.
José-Antonio de la Peina

Let M be a r-dimensional A module corresponding to the point p € mod (7).
The orbit o(p) =GL(r)M is locally closed. In particular, o(u) \ o(p) is formed by the
union of orbits of dimension strictly smaller than o(y).

Let X,Y € mod, be modules of dimension r. If the orbit o(y) is contained in o(z),
we say that Y is a degeneration of X.

Proposition. Let X € moda of dimension r. We have the following.

(a) Let 0 — X' — X — X" — 0 be an ezact sequence. Then X' & X" is a
degeneration of X.

(b) Consider the semisimple module gr X = @®3_,S;, obtained as direct sum of the
composition factors S; of X. Then gr X 1s a degeneration of X.

Corollary. The orbit GL(r)X s closed if and only if X is semisimple.
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Lecture 3. Indecomposable are constructible.
José-Antonio de la Peina

Examples (a) Let F' = k(T1,...,T,,) be the free algebra in m indeterminates. Let
M be a A — F-bimodule which is free as right F-module.
Then the functor M ®p — : modp — mody induces a family of regular maps

fir: modp(n) — moda(nr) for some number r € N and every n € N.
Indeed, set r = rkp M. Since M ® F'° = M?, then

M @ coker( F¥ —— Ft ) = coker( Me P22 )@ Ft ) = coker( MSMMt ).

(b) The subset ind4(r) of mod(r) is constructible.
Indeed, the set of pairs.

{(X,f): X € modu(r), f € Endyg(X) with 0 £ f # 1y and f* = 1x}.

is a locally closed subset of mod4(r) x k™. The projection 7, : mod A(r) X e —
mod(r) is a regular map with image

mod 4(r)\ind 4 (r).
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Lecture 3. Number of parameters.
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Let moda(r, s) be the set of all modules M with orbit dim o(u) = s. By upper
semicontinuity, the set mod4(r, s) is locally closed in mod4(r).

Let Y be a constructible subset of mod4(r) which is closed under the action of
GL(r), we set Y{,y = Y N'mod(r, s) which is constructible.
We define the|number of parametersjpf GL(r) on Y as

p(Y) = max,(dim Yy, — s).

Observe that:
(1) If Z is a constructible subset of ¥ meeting each orbit, then pu(Y) < dim Z.

(2) Let f: modp(t) — mod(r) be a regular map and Y be a constructible subset of
mod4(r) which is closed under the action of GL(r). Assume that Z is a constructible
subset, of modp(t) restricting to f : Z — Y such that dim f~(o(y)) < d for each

yey.
Then p(Y) > dim Z —d.
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Lecture 3. Tame and wild number of parameters..
José-Antonio de la Pena

Proposition. 1. If A is ‘ hen there is some r such that p(mod z(sr
all s.
2. If A ?Jsthen u(moda(r)) <, for all r.

Proof. (1): If A is wild we find a number r and regular maps modgcs 4~(s) —
mody4 (sr) which has as inverse image of an GL(sr)-orbit a GL(s)-orbit. Then

p(mod 4(sr)) > dim modg<y s (s) — dim GL(s) = 2s* — s* = s°.

(2): If A is tame for every n € N there is a finite family of A — k[t]-bimodules
My, ..., My with the following properties:
e M, ; is finitely generated free as a right k[t]-module;
e almost every indecomposable left A-module X with dim;X = n is isomorphic
to a module of the form M, ; @y Sy for some A € k.

Let r be a positive number and 1 < ¢;,...,7, < 7 be a sequence with Z;Zl rank M;, ;, =
S

r for some selection of 1 < j, < t(i,) for each p. Then ) M,
p=1

gy & 5 defines a con-

structible subset of mod4(r) of dimension < s < 7.
Let Z be the union of all these constructible sets for all possible sequences. Since Z
meets every orbit, we get p(moda(r)) < dim Z <. ]
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Lecture 3. Degenerations of wild algebras.
José-Antonio de la Peina

Corollary. An algebra is not simultaneously tame and wild.

Theorem. A degeneration of a wild algebra is wild.

Proof. The set {a € Alg(n) :A is wild} = U, WV, where
W, ={a € Alg(n) : u(mod4(r)) > r}.

The sets W, are closed and GL(r)-stable.
Hence if 7 € 6() and A is wild, then o € W, for some r which implies § € W, and
B is wild. L
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Lecture 3. An example.
José-Antonio de la Peina

A=k<mzy> /(2* —yay.y° — zyz, (zy)?, (yz)?)
degenerates to B =k < x,y > /(2% 4, (xy)? (yzx)?).

Indeed, a point A; in Alg(7) with basis 1,z,y, zy, yz, xyr, yry and with the multi-
plication laws given by z* = yzy, y* = zyz, (ry)* = 0 = (yz)?, satisfies:

Ay =Afort#0and 4y = B.

Since |B is tame, then A is tame.

This is the only known proof of the tameness of A
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Lecture 3. Tameness and the structure of the AR quiver .
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The following is a central fact about theistructure of the Auslander-Reiten quiveri

['4 of a tame algebra A.

Theorem Let A be a tame algebra. Then almost every indecomposable lies in a
omogeneous tubey In particular, almost every indecomposable X satisfies X ~ 7.X.

Open problem: Is it true that an algebra is of tame type if and only if almost every
indecomposable module belongs to a homogeneous tube?

Proposition. Let A be an algebra such that almost every indecomposable lies in a
Cstandard tuée) Then A is tame.

Proof. Our hvpothesis implies that almost every indecomposable X satisfies
dim,End 4(X) < dim; X| We show that this condition lmplies the tameness of A.I

—
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Indeed, assume that A is wild and let M be a A — k(u, v)-bimodule which is finitely
generated free as right k(u,v)-module and the functor M R ke(u,vy-insets indecompos-
ables. Consider the algebra B given by the quiver with rad 2 = 0:

g C@Q t2

Then there is a A — B-bimodule N such that Np is free and N ®p — : mod B —
mod A is fully faithful.

Therefore the composition FF = M @4 (N ®p —) is faithful and insets indecom-
posables. Moreover, dim,F X < m dim;X for any X € mod B if we set m =
Therefore the composition F = M ®4 (N ®p —) is faithful and insets indecom-
posables. Moreover, dim;F/'X < m dim;pX for any X € mod B if we set m =

Consider also the functor H : mod A — mod B sending X to the space X' = XX
with endomorphisms

X'(t) = [8 ng)},X'(tg)z {8 Xg”)} and X' (ts) = [8 15]

This functor insets indecomposables. For the simple A-modules X of dimension n,
we get indecomposable A-modules FH(X) with

dim, FH(X) < mdim,H(X) = 2mn
and

dimy, End(FH(X)) > dimy, Endg(HEX)) = n® + dimg Enda(X) =n®+ 1. Y
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Lecture 3. Algebras which are neither tame nor wild .
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Consider the (infinite dimensional!) algebra A := k[z,y]/(y? — 2 + x) with
char k& # 2

We claim that A is neither tame not wild.
A is not wild] if it were wild, then there is a functor

AMp @ — : modg — mod4

which insets indecomposable modules, where B is a finite dimensional wild algebra,
and Mg is free of finite rank.
Choose mq,...,m, a k-basis of M and define f : A — B"™ the morphism such that
fla) = (amy,...,ams). Then A’ = A/kerf is a finite dimensional wild algebra.

But A’ is a quotient of some algebra A” = k[x,y]/(y* — x* + z,p(x)) for some
polynomial p(x) € k[z].
[Exercise] A” is a quotient of k[x] which is representation-finite.

A is not tame:| assume otherwise, and consider the module variety mod 4(1). There
should exists an open subset U of k£ and a regular map U — mod(1).

Since A is commutative without nilpotent elements, A = k[mod(1)] C k(t). By
Liiroth theorem we have A = k(x) for a certain trascendental variable x.

This is not true for A, that is, the curve y? — 23 4+ x is not rational.
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Lecture 3. Next lecture: in 1 hour! .
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"Uh, yeah, Homework Help Line? | need to have you
exXplain the Quadratic Equation in roughly the amount
of time it takes to get a cup of coffee "
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Lecture 4. The Tits quadratic form. Module varieties.
José-Antonio de la Pena

Let A = kQ/I be a finite dimensional k-algebra and fix a finiteset R C | I(z,y)
$=yEQO
of admissible generators of I. Let 2 € N9 be a dimension vector.

The module variety mod 4(z is the closed subset, with respect to the Zariski topol-
ogy, of the affine space k¥ = [ k*¥*®) defined by the polynomial equations given

T—Y

by the entries of the matrices

! t
m, = Z Aimml e Mes, where r = E /\z'afil c Qg € R

and for each arrow z — 7, m,, is the matrix of size 2(y) x 2(z)

Mo = (Xaij)ij

where X,;; are pairwise different indeterminates. We shall identify points in the
variety mod4(z) with representations X of A with vector dimension dim X = z.
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Lecture 4. Action of groups and orbits.
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Ezample: A = kQ/I where Q: o —— Ly and I = (af3)

Tall Tal2 Tl Tp12\ [ TallZgil T Ta12T821  Tal1Tp12 + Ta127322
Ta21 Ta22 Tg21 T22 Ta21T311 T Ta22T321  Ta21T312 + Ta22T 322

mod(2,2,2) C k**? x k**? = k® defined by 4 equations.

The group G(z) = [] GL.4 (k) acts on k* by conjugation, that is, for X € k7,
i€Qo
g € G(z) and z — y, then X9(a) = g, X (a)g;*.

By restriction of this action, G(z) also acts on mod4(z). Moreover, there is a bi-
jection between the isoclasses of A-modules X with dim X = z and the G(z)-orbits
in mod(z).

Given X € mody(z), we denote by G(z)X the G(z)-orbit of X. Then
dim G(2)X = dim G(z) — dim Stabg(,) (X),
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Lecture 4. Voigt's theorem.
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Theorem Let X € moda(z).

Consider Tx(G(z)X) as a linear subspace of Tx(mod(X)). Then there exists a
natural linear monomorphism

Tx(modA(X))/Tx(G(2)X) — Ext}y(X, X). ‘
(b) Assume that X satisfies Ext% (X, X) = 0. Then the linear morphism
Tx(mod4(X))/Tx(G(2)X) — Ext}y(X, X).

18 an isomorphism.

The inclusion above is not always an isomorphism, as the following simple

shows:

Let A = k[T]/(T?). Consider the simple module S € mod4(1). Then moda(1) =
G(1)S = {S} and Ty (mod 4(1)) is trivial. On the other hand Ext} (S, S) has dimen-

sion 1.
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Lecture 4. Definition of the Tits form.
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Let A =kQ/I be a triangular algebra, that is, () has no oriented cycles.
Choose R a minimal set of generators of I, such that R C | I(i,7). We have:
i,jEQO
. dimkExth(Sz-, S;) = # arrows from i to j
e 7(i,7) =|RNI(i,7)|is independent of the choice of R
. T(Z,j) = dlmkEXti(Sz, S])

The of A is the quadratic form

qa: L% — L.
given by qa(v) = ,ZQ v(i)* = 30 o(iju(j) + .% r(i, JJu(@)u(d).
i€Qo 1—] 1,7€0
he
| 2/ \5

. PO _ 2 . . . g __
qA (371:-12; €ra, Ty, »15‘5) — E r; — X1z — Ty — T3TLyg — T3L5 + T1T4 —
i=1
1 1 1 1 1 1 17 5

(1 — 5%+ —L4) + (22 — —Lg) + = (i»3 — 5%~ —.Ls,) + —(.L4 + JJD) + 5
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Lecture 4. Tits form and the homology.
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Proposition. Assume A = kQ/I is triangular. Let = € N9, Then for any X €
moda(z).
ga(z) > dimy, Endy(X) — dimy, Ext}y (X, X).

Proof. Let X € mod4(z). The local dimension dimxmod(z) is the maximal dimen-
sion of the irreducible components of mod4(z) containing X. By Krull’s Hauptideal-
satz, we have

dimy moda(z) > Y 2(i)z(j) = Y r(i. j)z(i)z()).
i—] 1JE€Qo
Therefore, we get the following inequalities,
ga(z) > dim G(z) — dimy mod4(z) > dim G(z) — dim Tx >
> dimy, Endy(X) — dimy End), (X, X).
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Lecture 4. Tits form and tameness.
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lIn 1975, Brenner observed Icertain connections between properties of g4 and the

representation type of A. She wrote about her observations: “...is written in the
spirit of experimental science. It reports some regularities and suggests that there
should be a theory to explain them”.

Theorem. Let A = kQ/I be a triangular algebra.
o If A 1s representation-finite, then qa 1s weakly positive.
| o [ A 15 tame, then q4 18 weakly non-negative. |

Proof. In general, for v € N9 we have

dimmod 4 (v) > Zv(i)v(j) — Z r(i, j)v(i)v(j)rm and dim G(v) = Z v(i)?

i—j 1,J€Q0 1€Qo

qa(v) > dim G(v) — dimmod 4 (v)
If A is tame, then g4(v) > 0.

If A is representation-finite, mod4(v) = |J G(v)X; where X1, ..., X,, are represen-
i—1
tatives of the isoclasses of A-modules of dim = v. Hence
dimmody(v) = dimG(v)X; = dimG(v) — dim StabgX; < dimG(v) — 1 and
ga(v) > 1. ]
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Lecture 4. Strongly simply connected algebras. ¢ €
José-Antonio de la Peiia ‘T I'

A is strongly simply connected if for every convex B in A we have that
The first Hochschild cohomology H' (A)=0.

The Tits form of a strongly simply connected algebra A is weakly
nonnegative if and only if A does not contain a convex subcategory
(called a hypercritical algebra) which is a preprojective tilt of a wild
hereditary algebra of one of the following tree types

I: » . ]ﬁ,n. .
N/ \ /
-/ \- 1/ \\-—-
Iﬁ:r:. L Ili'r .
| _______
I—l—l‘—l—l—l
]:]:E::S .
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Lecture 4. pg-critical algebras.
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Proposition . Let A be a strongly simply connected algebra. Tfae:

(i) A is of polynomial growth.
(ii) A does not contain a convex subcategory which is pg-critical or

hypercritical.
(iii) The Tits form g, of A is weakly nonnegative and A does not contain a
convex subcategory which is pg-critical.

(1) e (2) e . .
21T N N
. — - — . — - WS -
I - I W -
L | - - [P —
I ¥ ~
* — - — & L]
P N, !
- \I -
| ~ ope
o -.-—e 16 families.
i
L
() . () .
| |
. .KIK‘-.‘ . _fl‘-&
P - | .\‘ Wo- | *,
. — - - — - ™ .y \1 -
2 v b "y i gt ! Y -
. L I [ QU : W, . I . — ---—® :
v I ol Wi I ok
- | - » | y »
¥ | s ¥ L
: | : |J_.-"'r
Ty | F | F
. -
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Lecture 4. Main Theorem for Tits form.
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Theorem. Let A be a strongly simply connected algebra. Then

A is tame if and only if the Tits form g, of A is weakly non-negative.
-/

Corollary 1. Let A be a strongly simply connected algebra. Then A

is tame if and only if A does not contain a convex hypercritical subcategory.

Since the quivers of hypercritical algebras have at most 10 vertices, we

obtain also the following consequence.

Corollary 2. Let A be a strongly simply connected algebra. Then A is tame if

and only if every convex subcategory of A with at most 10 objects is tame.
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Lecture 4. Biserial algebras.
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AN algebra A is said to be special bisertal if A s
isomorphic to a bound quiver algebra KQ)/1, where the bound quiver
satisfies the conditions:

() each vertex of () is a source and sink of at most two arrows,
Lh‘J for anv arrow o of () there are at most one arrow 7 and at

most one arrow  with a7 ¢ [ and ~a ¢ [.

[Proposition. Every special biserial algebra is tame.]

. .

"{( R‘i \-

: ‘n{r‘ £ i

X4 \ ’f
£ I'f-._ ﬂi& 3{1 — —
M 4"'3 \

. H“n +

\ . T rllkl" L

. \ }

\ .

NN \II'*«I ¥

. . relations 2 =0, a3 =0, vo =0 and £ =10
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Lecture 4. Degenerations of pg-critical algebras.
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An essential role in the proof of our main result will be played by the following
proposition.

Proposition. Every pg-critical algebra degenerates to a special biserial
alnahra

' '
/| /
' - ' it ' £
A L 4 SN
= —0 —m
‘f W"* l Jf \i* N
' N T I P 2 f T e b——ab |
1\ oy / h_/
' r'f M /
f |
: |
|



Degenerations of algebras.

Lecture 4. A typical result on degenerations.
José-Antonio de la Pena

Lemma Let A = KQ/I be a bound gquiver algebra whose gquiver
() contains a conver subguiver (' of the form
| = Y - — L'z

where 1., o9 are sources of () and oy and o are unigue arrows
starting at rq1 and x2, respectively. Assume that the ideal I admits a
set B of generators of the form

H = {Elcjl.r?l..... ..Ct'llﬁ'ﬂ_..r_'tgbj..... ..-’_':t'gbﬂ..-i‘]_ -E-il'r'.!.}

with certain elements by, ... . by € ey(KQ) and ¢q,...,0m € e (IN(Q))
for @y &+ =z &+ 4.

Let A = KQ/T be the bound gquiver algebra obtained from A as
follows: the quiver ) is obtained from ) by replacing the subguiver
) by the subguiver () of the form

TN

= Q

a —= i
_—

and I is the ideal of K () generated by the set

R={<*ab,...,abg.c1....0m}

Then A degenerates to A.



Degenerations of algebras.

Lecture 4. All pieces together.
José-Antonio de la Peina

Let A be the algebra given by the following quiver with all commutative relations:
® ® ®
® ® ®
Observe that the group G with two elements acts on A without fixing vertices.
Consider th@umtm

F:A— A=A/G.

We show that M is a tame or a wild algebra depending whether or not char k # 2.

Assume first that char k£ = 2 and consider the following change of variables:
xo = ap + Bo, Yo = Bo, ©1 = a1 + B1, y1 = F1. Then A is isomorphic to the algebra A’
given by the quiver with relations.

A Zo . *1 r1xg = 0 }

Yo Y1 Y1y = T1Yo




Degenerations of algebras.

Lecture 4. Deciding wildness.
José-Antonio de la Pena

A . *o . *1 1y = 0 }

Yo Y1 hnTxo = I1Yo

There is a covering A’ — A’, where A’ satisfies the commutativity relations marked
by dashed lines and the vertical product of arrows equal zero, defined by the action
of Z admiting a full convex subcategory B as follows:

o L] ] 6 8 4
N AN
AN AN
N N
o o L] v 8 10 §
AN
\ l
AN
N
® ® ® 4 ——6
N
AN
\ l/
AN
L ® [ 1———2
AN
l N
AN
N
o —— @

Since|qs(v) = —1, then B (and thus A’) is wild| Then A is also wild.




Degenerations of algebras.

Lecture 4. Deciding tameness.
José-Antonio de la Pena

Assume char k # 2, by Galois covering theory, if JA is tame then so is A.
There is an equivalence F': mod 4 — mod¢o where C' is given by:

€0 €] €9
(), Oy, O)
{ [ [
satisfying 0100 = 0 and ¢? = ¢;, for i = 0,1, 2.

C'is isomorphic to Cy (for A # 0) with € = Ae;.

Hence |C' deforms to Co‘ which is a special biserial algebra and hence tame.
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Lecture 4. Deciding tameness.
José-Antonio de la Pena




