The Abdus Salam

Homological and Geometrical Methods in Representation Theory

18 January - 5 February, 2010

Algebras of small homological dimension

Andrzej Skowronski
Nicolaus Copernicus University
Faculty of Mathematics and Computer Science
Torun
Poland

ALGEBRAS OF SMALL HOMOLOGICAL DIMENSION

Andrzej Skowroński
(ICTP, Trieste, January 2010)

Contents

1. Module category 1
2. Auslander-Reiten quiver 8
3. Homological dimensions 24
4. Hereditary algebras 31
5. Tilted algebras 41
6. Quasitilted algebras 66
7. Double tilted algebras 92
8. Generalized double tilted algebras 101
9. Generalized multicoil enlargements of concealed canonical algebras 113

1. Module Category

K a field
algebra $=$ finite dimensional K-algebra (associative, with identity)
A algebra
$\bmod A \quad$ category of finite dimensional (over K) right A-modules
ind $A \quad$ full subcategory of $\bmod A$ formed by all indecomposable modules
$A^{\text {op }}$ opposite algebra of A
$\bmod A^{\mathrm{OP}}$ category of finite dimensional (over K) left A-modules
$\bmod A \underset{D}{\stackrel{D}{\rightleftarrows}} \bmod A^{\text {op }}$
$D=\operatorname{Hom}_{K}(-, K)$ standard duality of $\bmod A$
1_{A} identity of A

$$
1_{A}=\sum_{i=1}^{n_{A}} \sum_{j=1}^{m_{A}(i)} e_{i j}
$$

$e_{i j}$ pairwise orthogonal primitive idempotents of A such that

$$
\begin{aligned}
e_{i j} A \cong e_{i l} A \text { for } & j, l \in\left\{1, \ldots, m_{A}(i)\right\}, \\
& i \in\left\{1, \ldots, n_{A}\right\} . \\
e_{i j} A \nsupseteq e_{k l} A \text { for } & i, k \in\left\{1, \ldots, n_{A}\right\} \text { with } i \neq k \\
& j \in\left\{1, \ldots, m_{A}(i)\right\} \\
& l \in\left\{1, \ldots, m_{A}(k)\right\} .
\end{aligned}
$$

canonical decomposition of 1_{A}

$$
e_{i}=e_{i 1}, i \in\left\{1, \ldots, n_{A}\right\}, \text { basic primitive }
$$ idempotents of A

$e_{A}=\sum_{i=1}^{n_{A}} e_{i}$ basic idempotent of A
A basic algebra if $e_{A}=1_{A}$
(equivalently, $m_{A}(i)=1$ for $i \in\left\{1, \ldots, n_{A}\right\}$)

In general, $A^{b}=e_{A} A e_{A}$ basic algebra of A
equivalence of categories (A and A^{b} are Morita equivalent)

- $P_{i}=e_{i} A, i \in\left\{1, \ldots, n_{A}\right\}$, complete set of pairwise nonisomorphic indecomposable projective right A-modules
- $I_{i}=D\left(A e_{i}\right), \quad i \in\left\{1, \ldots, n_{A}\right\}$, complete set of pairwise nonisomorphic indecomposable injective right A-modules
- $S_{i}=\operatorname{top}\left(P_{i}\right)=e_{i} A / e_{i} \operatorname{rad} A, i \in\left\{1, \ldots, n_{A}\right\}$, complete set of pairwise nonisomorphic simple right A-modules
- $S_{i} \cong \operatorname{soc}\left(I_{i}\right), i \in\left\{1, \ldots, n_{A}\right\}$.
$\operatorname{rad} A$ Jacobson radical of A
$\operatorname{rad} A=$ intersection of all maximal right ideals of A
$=$ intersection of all maximal left ideals of A
rad A two-sided ideal of A
$(\operatorname{rad} A)^{m}=0$ for some $m \geq 1$
$\operatorname{dim}_{K}\left(e_{i}(\operatorname{rad} A) e_{j} / e_{i}(\operatorname{rad} A)^{2} e_{j}\right)=\operatorname{dim}_{K} \operatorname{Ext}{ }_{A}^{1}\left(S_{i}, S_{j}\right)$ for $i, j \in\left\{1, \ldots, n_{A}\right\}$
Q_{A} valued quiver of A
$1,2, \ldots, n=n_{A}$ vertices of Q_{A}
there is an arrow $i \longrightarrow j$ in Q_{A} if $\operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}\left(S_{i}, S_{j}\right)$ $\neq 0$, and has the valuation
$\left(\operatorname{dim}_{\operatorname{End}_{A}\left(S_{j}\right)} \operatorname{Ext}_{A}^{1}\left(S_{i}, S_{j}\right), \operatorname{dim}_{\operatorname{End}_{A}\left(S_{i}\right)} \operatorname{Ext}_{A}^{1}\left(S_{i}, S_{j}\right)\right)$
$\operatorname{End}_{A}\left(S_{1}\right)$, End $_{A}\left(S_{2}\right), \ldots$, End $_{A}\left(S_{n}\right)$ are division K-algebras

$$
\begin{aligned}
& G_{A}=\bar{Q}_{A} \text { (underlying graph of } Q_{A} \text {) } \\
& \text { valued graph of } A
\end{aligned}
$$

$K_{0}(A)=K_{0}(\bmod A)$ Grothendieck group of A $K_{0}(A)=\mathcal{F}_{A} / \mathcal{F}_{A}^{\prime}$
\mathcal{F}_{A} free abelian group with \mathbb{Z}-basis given by the isoclasses $\{M\}$ of modules M in $\bmod A$
\mathcal{F}_{A}^{\prime} subgroup of \mathcal{F}_{A} generated by

$$
\{M\}-\{L\}-\{N\}
$$

for all exact sequences

$$
0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0
$$

in $\bmod A$
[M] the class of a module M from $\bmod A$ in $K_{0}(A)$
$K_{0}(A)$ free abelian group generated by $\left[S_{1}\right],\left[S_{2}\right], \ldots,\left[S_{n}\right]$
$S_{1}, S_{2}, \ldots, S_{n}$ complete set of pairwise nonisomorphic simple right A-modules M module in $\bmod A$
$[M]=\sum_{i=1}^{n} c_{i}(M)\left[S_{i}\right]$
$c_{i}(M)$ multiplicity of S_{i} as composition factor of M (Jordan-Hölder theorem)

Jacobson radical of $\bmod A$

A algebra over K
X, Y modules in $\bmod A$
$\operatorname{rad}_{A}(X, Y)$
$=\left\{\begin{array}{l|l}f \in \operatorname{Hom}_{A}(X, Y) & \begin{array}{c}\mathrm{id}_{X}-g f \text { invertible } \\ \text { in } \operatorname{End}_{A}(X) \text { for any } \\ g \in \operatorname{Hom}_{A}(Y, X)\end{array}\end{array}\right\}$
$=\left\{\begin{array}{l|l}f \in \operatorname{Hom}_{A}(X, Y) & \begin{array}{c}\mathrm{id}_{Y}-f g \text { invertible } \\ \text { in } \underset{A}{ } \operatorname{End}_{A}(Y) \text { for any } \\ g \in \operatorname{Hom}_{A}(X, Y)\end{array}\end{array}\right\}$

Jacobson radical of $\operatorname{Hom}_{A}(X, Y)$

$\operatorname{rad}_{A}(X, Y)$ subspace of $\operatorname{Hom}_{A}(X, Y)$ formed by all nonisomorphisms
$\operatorname{rad}_{A}(X, X)=\operatorname{rad} E_{A d}(X)$ Jacobson radical of $\mathrm{End}_{A}(X)$

Lemma (Bautista). Let X and Y be indecomposable modules in $\bmod A$ and $f \in \operatorname{Hom}_{A}(X, Y)$. Then $f \in \operatorname{rad}_{A}(X, Y) \backslash \operatorname{rad}_{A}^{2}(X, Y)$ if and only if f is an irreducible homomorphism
(f is neither section nor retraction and, for any factorization in $\bmod A$

g is a section or h is a retraction)
$\operatorname{rad} A \quad$ ideal of the category $\bmod A$
$\operatorname{rad}^{m} A m$-th power of $\operatorname{rad} A, m \geq 1$
$\operatorname{rad}_{A}^{\infty}=\bigcap_{m=1}^{\infty} \operatorname{rad}_{A}^{m}$
infinite (Jacobson) radical of $\bmod A$
A is of finite representation type if ind A admits only a finite number of modules (up to isomorphism)

Theorem (Auslander). An algebra A is of finite representation type if and only if $\mathrm{rad}_{A}^{\infty}=0$. (\Rightarrow Harada-Sai Iemma)

Theorem (Coelho-Marcos-Merklen-Skowroński). Let A be an algebra of infinite representation type. Then $\left(\operatorname{rad}_{A}^{\infty}\right)^{2} \neq 0$.

2. Auslander-Reiten quiver

A finite dimensional K-algebra over a field K
Z module in ind A
End $_{A}(Z)$ local K-algebra

$$
\begin{aligned}
F_{Z}= & \operatorname{End}_{A}(Z) / \operatorname{rad}^{\operatorname{End}} A(Z) \\
= & \operatorname{End}_{A}(Z) / \operatorname{rad}_{A}(Z, Z) \\
& \operatorname{division~} K \text {-algebra }^{\text {and }}
\end{aligned}
$$

X, Y modules in ind A

$$
\operatorname{irr}_{A}(X, Y)=\operatorname{rad}_{A}(X, Y) / \operatorname{rad}_{A}^{2}(X, Y)
$$

the space of irreducible homomorphisms from X to Y
$\operatorname{irr}_{A}(X, Y)$ is an $F_{Y}-F_{X}$-bimodule $\left(h+\operatorname{rad}_{A}(Y, Y)\right)\left(f+\operatorname{rad}_{A}^{2}(X, Y)\right)=h f+\operatorname{rad}_{A}^{2}(X, Y)$ $\left(f+\operatorname{rad}_{A}^{2}(X, Y)\right)\left(g+\operatorname{rad}_{A}(X, X)\right)=f g+\operatorname{rad}_{A}^{2}(X, Y)$ for $f \in \operatorname{rad}_{A}(X, Y), g \in \operatorname{End}_{A}(X), h \in \operatorname{End}_{A}(Y)$
$d_{X Y}=\operatorname{dim}_{F_{Y}} \operatorname{irr}_{A}(X, Y)$
$d_{X Y}^{\prime}=\operatorname{dim}_{F_{X}} \operatorname{irr}_{A}(X, Y)$

Γ_{A} Auslander Reiten quiver of A

valued translation quiver defined as follows:

- The vertices of Γ_{A} are the isoclasses $\{X\}$ of modules X in ind A
- For two vertices $\{X\}$ and $\{Y\}$, there is an arrow $\{X\} \longrightarrow\{Y\}$ provided $\operatorname{irr}_{A}(X, Y) \neq$ 0 . Then we have in Γ_{A} the valued arrow

$$
\{X\} \xrightarrow{\left(d_{X Y}, d_{X Y}^{\prime}\right)}\{Y\}
$$

- τ_{A} translation of Γ_{A} defined on each nonprojective vertex $\{X\}$ of Γ_{A} by

$$
\tau_{A}\{X\}=\left\{\tau_{A} X\right\}=\{D \operatorname{Tr} X\}
$$

- τ_{A}^{-1} translation of Γ_{A} defined on each noninjective vertex $\{X\}$ of Γ_{A} by

$$
\tau_{A}^{-1}\{X\}=\left\{\tau_{A}^{-1} X\right\}=\{\operatorname{Tr} D X\}
$$

Tr the transpose operator
D the standard duality

We identify a vertex $\{X\}$ of Γ_{A} with the indecomposable module X and write
$X \xrightarrow{\left(d_{X Y}, d_{X Y}^{\prime}\right)} Y$ instead of $\{X\} \xrightarrow{\left(d_{X Y}, d_{X Y}^{\prime}\right)}\{Y\}$
and $X \longrightarrow Y$ instead of $X \xrightarrow{(1,1)} Y$
X, Y modules in ind A (vertices of Γ_{A})
$d_{X Y}=$ multiplicity of Y in the codomain of a minimal left almost split homomorphism in $\bmod A$ with the domain X

$$
X \xrightarrow{f} M=Y^{d_{X Y}} \oplus M^{\prime}
$$

M^{\prime} without direct summand isomorphic to Y
$d_{X Y}^{\prime}=$ multiplicity of X in the domain of a minimal right almost split homomorphism in $\bmod A$ with the codomain Y

$$
N^{\prime} \oplus X^{d_{X Y}^{\prime}}=N \xrightarrow{g} Y
$$

N^{\prime} without direct summand isomorphic to X

- X noninjective then there is in $\bmod A$ an almost split sequence (Auslander-Reiten sequence)

$$
0 \longrightarrow X \xrightarrow{f} M \xrightarrow{f^{\prime}} \tau_{A}^{-1} X \longrightarrow 0
$$

f a minimal left almost split homomorphism, f^{\prime} a minimal right almost split homomorphism

- Y nonprojective, then there is in $\bmod A$ an almost split sequence (Auslander-Reiten sequence)

$$
0 \longrightarrow \tau_{A} Y \xrightarrow{g^{\prime}} N \xrightarrow{g} Y \longrightarrow 0
$$

g a minimal right almost split homomorphism, g^{\prime} a minimal left almost split homomorphism

- P indecomposable projective, then the embedding

$$
\operatorname{rad} P \longleftrightarrow P
$$

is a minimal right almost split homomorphism in mod A

- I indecomposable injective, then the canonical epimorphism

$$
I \longrightarrow I / \operatorname{soc} I
$$

is a minimal left almost split homomorphism in $\bmod A$

Assume $X \xrightarrow{\left(d_{X Y}, d_{X Y}^{\prime}\right)} Y$ is an arrow in Γ_{A}

- X noninjective, then Γ_{A} admits a valued arrow

$$
\left.Y \xrightarrow{\left(d_{Y \tau_{A}^{-1}}, d_{Y \tau_{A}^{\prime}}^{-1} X\right.}\right) \tau_{A}^{-1} X
$$

with $d_{Y \tau_{A}^{-1} X}=d_{X Y}^{\prime}$ and $d_{Y \tau_{A}^{-1} X}^{\prime}=d_{X Y}$, so we have the arrows

$$
X \xrightarrow{\left(d_{X Y}, d_{X Y}^{\prime}\right)} Y \xrightarrow{\left(d_{X Y}^{\prime}, d_{X Y}\right)} \tau_{A}^{-1} X
$$

- Y nonprojective, then Γ_{A} admits a valued arrow

$$
\tau_{A} Y \xrightarrow{\left(d_{\tau_{A} Y X}, d_{\tau_{A} Y X}^{\prime}\right)} X
$$

with $d_{\tau_{A} Y X}=d_{X Y}^{\prime}$ and $d_{\tau_{A} Y X}^{\prime}=d_{X Y}$, so we have the arrows

$$
\tau_{A} Y \xrightarrow{\left(d_{X Y}^{\prime}, d_{X Y}\right)} X \xrightarrow{\left(d_{X Y}, d_{X Y}^{\prime}\right)} Y
$$

- X simple projective, then Y is projective
- Y simple injective, then X is injective
- For each nonprojective indecomposable module Y in $\bmod A$, the quiver Γ_{A} admits a valued mesh

$$
\begin{aligned}
& \xrightarrow{\left(d_{V_{1} Y}^{\prime}, d_{V_{1} Y}\right)}\left\{\begin{array}{l}
\left\{V_{1}\right\} \\
\left\{V_{2}\right\}
\end{array} \rightarrow\left(d_{V_{1} Y}, d_{V_{1} Y}^{\prime}\right)\right. \\
& \tau_{A}\{Y\}=\left\{\tau_{A} Y\right\}\left(d_{V_{2} Y}^{\prime}, d_{V_{2} Y}\right) \quad:\left(d_{V_{2} Y}, d_{V_{2} Y}^{\prime}\right)\{Y\} \\
& \left(d_{V_{r} Y}^{\prime}, d_{V_{r} Y}\right) \longrightarrow\left\{\dot{V}_{r}\right\}-\left(d_{V_{r} Y}, d_{V_{r} Y}^{\prime}\right)
\end{aligned}
$$

such that there is in $\bmod A$ an almost split sequence

$$
0 \longrightarrow \tau_{A} Y \longrightarrow \bigoplus_{i=1}^{r} V_{i}^{d_{V_{i} Y}^{\prime}} \longrightarrow Y \longrightarrow 0
$$

- For each noninjective indecomposable module X in $\bmod A$, the quiver Γ_{A} admits a valued mesh

$$
\begin{aligned}
& \left(d_{X U_{1}}, d_{X U_{1}}^{\prime}\right), \begin{array}{l}
\left\{U_{1}\right\} \\
\left\{U_{2}\right\}
\end{array} \xrightarrow{\left(d_{X U_{1}}^{\prime}, d_{X U_{1}}\right)} \\
& \{X\}\left(d_{X U_{2}}, d_{X U_{2}}^{\prime}\right) . \quad\left(d_{X U_{2}}^{\prime}, d_{X U_{2}}^{2}\left\{\tau_{A}^{-1} X\right\}=\tau_{A}^{-1}\{X\}\right. \\
& \left(d_{X U_{s}}, d_{X U_{s}}^{\prime}\right) \stackrel{\left.\dot{U}_{s}\right\}}{ }-\left(d_{X U_{s}}^{\prime}, d_{X U_{s}}\right)
\end{aligned}
$$

such that there is in $\bmod A$ an almost split sequence

$$
0 \longrightarrow X \longrightarrow \bigoplus_{j=1}^{s} U_{j}^{d_{X U_{j}}} \longrightarrow \tau_{A}^{-1} X \longrightarrow 0
$$

- For each nonsimple projective indecomposable module P in $\bmod A$, the quiver Γ_{A} admits a valued subquiver

$$
\begin{aligned}
& \left\{R_{1}\right\} \\
& \left\{R_{2}\right\} \xrightarrow{\left(d_{R_{1} P}, d_{R_{1} P}^{\prime}\right)} \\
& \quad\left(d_{R_{2} P}, d_{R_{2} P}^{\prime}\right) \\
& \left\{\begin{array}{l}
\text { a }
\end{array}\right) \\
& \left\{\left(d_{R_{t} P}, d_{R_{t} P}^{\prime}\right)\right.
\end{aligned}
$$

such that

$$
\operatorname{rad} P \cong \bigoplus_{i=1}^{t} R_{i}^{d_{R_{i} P}^{\prime}}
$$

- For each nonsimple injective indecomposable module I in $\bmod A$, the quiver Γ_{A} admits a valued subquiver

such that

$$
I / \operatorname{soc} I \cong \bigoplus_{j=1}^{m} T_{j}^{d_{I T_{j}}}
$$

- Assume A is an algebra of finite representation type and $X \xrightarrow{\left(d_{X Y}, d_{X Y}^{\prime}\right)} Y$ is an arrow of Γ_{A}. Then

$$
d_{X Y}=1 \text { or } d_{X Y}^{\prime}=1
$$

- Assume A is an algebra over an algebraically closed field K and $X \xrightarrow{\left(d_{X Y}, d_{X Y}^{\prime}\right)} Y$ is an arrow of Γ_{A}. Then

$$
d_{X Y}=d_{X Y}^{\prime}
$$

In particular, $d_{X Y}=d_{X Y}^{\prime}=1$ if A is of finite representation type.

In representation theory of finite dimensional algebras over an algebraically closed field K, instead of a valued arrow

$$
X \xrightarrow{(m, m)} Y
$$

of an Auslander-Reiten quiver Γ_{A}, usually one writes a multiple arrow

$$
X \xrightarrow{\vdots} Y
$$

consisting of m arrows from X to Y.

Component of $\Gamma_{A}=$ connected component of the quiver Γ_{A}

Shapes of components of Γ_{A} give important information on A and $\bmod A$
Δ locally finite valued quiver without loops and multiple arrows
Δ_{0} set of vertices of Δ
Δ_{1} set of arrows of Δ
$d, d^{\prime}: \Delta_{1} \rightarrow \Delta_{0}$ the valuation maps

$$
x \xrightarrow{\left(d_{x y}, d_{x y}^{\prime}\right)} y
$$

$\mathbb{Z} \Delta$ valued translation quiver
$(\mathbb{Z} \Delta)_{0}=\mathbb{Z} \times \Delta_{0}=\left\{(i, x) \mid i \in \mathbb{Z}, x \in \Delta_{0}\right\}$ set of vertices of $\mathbb{Z} \Delta$.
$(\mathbb{Z} \Delta)_{1}$ set of arrows of $\mathbb{Z} \Delta$ consists of the valued arrows
$(i, x) \xrightarrow{\left(d_{x y}, d_{x y}^{\prime}\right)}(i, y), \quad(i+1, y) \xrightarrow{\left(d_{x y}^{\prime}, d_{x y}\right)}(i, x)$,
$i \in \mathbb{Z}$, for all arrows $x \xrightarrow{\left(d_{x y}, d_{x y}^{\prime}\right)} y$ in Δ_{1}.
The translation $\tau: \mathbb{Z} \Delta_{0} \rightarrow \mathbb{Z} \Delta_{0}$ is defined by

$$
\tau(i, x)=(i+1, x) \text { for all } i \in \mathbb{Z}, x \in \Delta_{0} .
$$

$\mathbb{Z} \Delta$ stable valued translation quiver

For a subset I of $\mathbb{Z}, I \Delta$ is the full translation subquiver of $\mathbb{Z} \Delta$ given by the set of vertices $(I \Delta)_{0}=I \times \Delta_{0}$.

In particular, we have the valued translation subquivers $\mathbb{N} \Delta$ and $(-\mathbb{N}) \Delta$ of $\mathbb{Z} \Delta$.

Examples

$$
\Delta: \quad 1 \xrightarrow{(1,2)} 2 \stackrel{(4,3)}{ } 3
$$

$\mathbb{Z} \Delta$ of the form

$\mathbb{N} \Delta$ of the form

$(-\mathbb{N}) \Delta$ of the form

$$
\mathbb{A}_{\infty}: \quad 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots
$$

$\mathbb{Z} \mathbb{A}_{\infty}$ is the translation quiver

For $r \geq 1$, we may consider the translation quiver

$$
\mathbb{Z} \mathbb{A}_{\infty} /\left(\tau^{r}\right)
$$

obtained from $\mathbb{Z A}_{\infty}$ by identifying each vertex x with $\tau^{r} x$ and each arrow $x \rightarrow y$ with $\tau^{r} x \rightarrow$ $\tau^{r} y$.
$\mathbb{Z} \mathbb{A}_{\infty} /\left(\tau^{r}\right)$ stable tube of rank r.
All vertices of $\mathbb{Z} \mathbb{A}_{\infty} /\left(\tau^{r}\right)$ are τ-periodic of period r

A stable tube of rank 3 is of the form

A algebra

\mathscr{C} component of Γ_{A} is regular if \mathscr{C} contains neither a projective module nor an injective module (equivalently, τ_{A} and τ_{A}^{-1} are defined on all vertices of \mathscr{C})

Theorem (Liu, Zhang). Let A be an algebra and \mathscr{C} be a regular component of Γ_{A}. The following equivalences hold.
(1) \mathscr{C} contains an oriented cycle if and only if \mathscr{C} is a stable tube $\mathbb{Z} \mathbb{A}_{\infty} /\left(\tau^{r}\right)$, for some $r \geq 1$.
(2) \mathscr{C} is acyclic if and only if \mathscr{C} is of the form $\mathbb{Z} \Delta$ for a connected, locally finite, acyclic, valued quiver Δ.

A component \mathscr{C} of Γ_{A} is postprojective (preprojective) if \mathscr{C} is acyclic and each module in \mathscr{C} is of the form $\tau_{A}^{-m} P$ for a projective module P in \mathscr{C} and some $m \geq 0$.

A component \mathscr{C} of Γ_{A} is preinjective if \mathscr{C} is acyclic and each module in \mathscr{C} is of the form $\tau_{A}^{m} I$ for an injective module I in \mathscr{C} and some $m \geq 0$.
A finite dimensional K-algebra over a field K \mathscr{C}, \mathscr{D} components of Γ_{A}
We write $\operatorname{Hom}_{A}(\mathscr{C}, \mathscr{D})=0$ if $\operatorname{Hom}_{A}(X, Y)=$ 0 for all modules X in \mathscr{C} and Y in \mathscr{D}
\mathscr{C} and \mathscr{D} are orthogonal if $\operatorname{Hom}_{A}(\mathscr{C}, \mathscr{D})=0$ and $\operatorname{Hom}_{A}(\mathscr{D}, \mathscr{C})=0$

In general, if $\mathscr{C} \neq \mathscr{D}$, then $\operatorname{Hom}_{A}(X, Y)=$ $\operatorname{rad}_{A}^{\infty}(X, Y)$ for all modules X in \mathscr{C} and Y in \mathscr{D}.

A component \mathscr{C} of Γ_{A} is called generalized standard if $\operatorname{rad}_{A}^{\infty}(X, Y)=0$ for all modules X and Y in \mathscr{C}.

- \mathscr{C} postprojective or preinjective component of Γ_{A}, then \mathscr{C} is generalized standard
- A of finite representation type, \mathscr{C} component of Γ_{A}, then \mathscr{C} is generalized standard
- \mathscr{C} is generalized standard component of Γ_{A}, X and Y modules in \mathscr{C}, then every nonzero homomorphism $f \in \operatorname{rad}_{A}(X, Y)$ is a sum of compositions of irreducible homomorphisms between indecomposable modules from \mathscr{C}.

A component \mathscr{C} of Γ_{A} is called almost periodic if all but finitely many τ_{A}-orbits in \mathscr{C} are periodic.

Theorem (Skowroński). Let A be an algebra and \mathscr{C} be an almost periodic component of Γ_{A}. Then, for each natural number $d \geq 1$, \mathscr{C} contains at most finitely many modules of dimension d.

Theorem (Skowroński). Let A be an algebra and \mathscr{C} be a generalized standard component of Γ_{A}. Then \mathscr{C} is almost periodic.

Theorem (Skowroński). Let A be an algebra. Then all but finitely many generalized standard components of Γ_{A} are stable tubes.
\mathscr{C} regular, generalized standard component of Γ_{A}, then

- \mathscr{C} a stable tube, or
- $\mathscr{C}=\mathbb{Z} \Delta$, for a connected, finite, acyclic, valued quiver Δ.

A prominent role is played by the following
Lemma (Skowroński). Let A be a finite dimensional K-algebra and n be the rank of $K_{0}(A)$. Assume

$$
M=M_{1} \oplus \cdots \oplus M_{r}
$$

is a module in $\bmod A$ such that

- M_{1}, \ldots, M_{r} are pairwise nonisomorphic and indecomposable
- $\operatorname{Hom}_{A}\left(M, \tau_{A} M\right)=0$.

Then $r \leq n$.
A finite dimensional K-algebra
\mathscr{C} component of Γ_{A}
$\operatorname{ann}_{A} \mathscr{C}=\bigcap_{X \in \mathscr{C}} \operatorname{ann}_{A} X$ annihilator of \mathscr{C}
$\operatorname{ann}_{A}(X)=\{a \in A \mid X a=0\}$ annihilator of A-module X
\mathscr{C} a faithful component of Γ_{A} if ann ${ }_{A} \mathscr{C}=0$
In general, \mathscr{C} is a faithful component of $\Gamma_{A / \text { ann }_{A} \mathscr{C}}$
\mathscr{C} faithful $\Rightarrow \Gamma_{A}$ is sincere (for any indecomposable projective A-module P there exists a module X in \mathscr{C} with $\left.\operatorname{Hom}_{A}(P, X) \neq 0\right)$

3. Homological dimensions

A finite dimensional K-algebra over a field K M a module $\mathrm{in} \bmod A$
$\mathrm{pd}_{A} M$ projective dimension of M in $\bmod A$ $\mathrm{pd}_{A} M=m \in \mathbb{N}$ if there exists a projective resolution
$0 \rightarrow P_{m} \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$
of M in $\bmod A$ and M has no projective resolution in $\bmod A$ of length $<m$.
$\mathrm{pd}_{A} M=\infty$ if M does not admit a finite projective resolution in $\bmod A$
$\operatorname{id}_{A} M$ injective dimension of M in $\bmod A$ $\operatorname{id}_{A} M=m \in \mathbb{N}$ if there exists an injective resolution

$$
0 \rightarrow M \rightarrow I_{0} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{m-1} \rightarrow I_{m} \rightarrow 0
$$

of M in $\bmod A$ and M has no injective resolution in $\bmod A$ of length $<m$.
$\operatorname{id}_{A} M=\infty$ if M does not admit a finite injective resolution in $\bmod A$

- $\operatorname{pd}_{A} M=m \in \mathbb{N}$ if and only if $\operatorname{Ext}_{A}^{m+1}(M,-)$ $=0$ and $\operatorname{Ext}_{A}^{m}(M,-) \neq 0$.
- $\operatorname{pd}_{A} M=\infty$ if and only if $E x t_{A}^{n}(M,-) \neq 0$ for all $n \in \mathbb{N}$.
- $\mathrm{id}_{A} M=m \in \mathbb{N}$ if and only if $\mathrm{Ext}_{A}^{m+1}(-, M)$
$=0$ and $\mathrm{Ext}_{A}^{m}(-, M) \neq 0$.
- $\operatorname{id}_{A} M=\infty$ if and only if $\operatorname{Ext}_{A}^{n}(-, M) \neq 0$ for all $n \in \mathbb{N}$.

Moreover, we have the following useful facts

- $\mathrm{pd}_{A} M \leq 1$ if and only if $\operatorname{Hom}_{A}\left(D\left({ }_{A} A\right), \tau_{A} M\right)=0$.
- $\operatorname{id}_{A} M \leq 1$ if and only if $\operatorname{Hom}_{A}\left(\tau_{A}^{-1} M, A_{A}\right)=0$.

For modules M and N in $\bmod A$, we have

- If $\mathrm{pd}_{A} M \leq 1$, then

$$
\operatorname{Ext}_{A}^{1}(M, N) \cong D \operatorname{Hom}_{A}\left(N, \tau_{A} M\right)
$$

as K-vector spaces.

- If $\operatorname{id}_{A} M \leq 1$, then

$$
\operatorname{Ext}_{A}^{1}(M, N) \cong D \operatorname{Hom}_{A}\left(\tau_{A}^{-1} N, M\right)
$$

as K-vector spaces.
For a faithful module M in $\bmod A$, we have

- If $\operatorname{Hom}_{A}\left(M, \tau_{A} M\right)=0$, then $\operatorname{pd}_{A} M \leq 1$.
- If $\operatorname{Hom}_{A}\left(\tau_{A}^{-1} M, M\right)=0$, then $\operatorname{id}_{A} M \leq 1$.
r.gl. $\operatorname{dim} A=\max \left\{\operatorname{pd}_{A} M \mid M\right.$ modules in $\left.\bmod A\right\}$ right global dimension of A
I. gl. $\operatorname{dim} A=\max \left\{\operatorname{pd}_{A^{\circ}} N \mid N\right.$ modules in $\left.\bmod A^{\mathrm{Op}}\right\}$ left global dimension of A

$$
\bmod A \underset{D}{\stackrel{D}{\rightleftarrows}} \bmod A^{\mathrm{op}}
$$

D standard duality of $\bmod A$

$$
\begin{aligned}
& \mathrm{pd}_{A} M=\mathrm{id}_{A} \mathrm{op} D(M) \\
& \mathrm{id}_{A} M=\mathrm{pd}_{A} \text { op } D(M)
\end{aligned}
$$

for all modules M in $\bmod A$

Hence,
l. gl. $\operatorname{dim} A=\max \left\{\operatorname{id}_{A} M \mid M\right.$ modules $\left.\operatorname{in} \bmod A\right\}$
r.gl. $\operatorname{dim} A=\max \left\{\operatorname{id}_{A^{\circ}} N \mid N\right.$ modules in $\left.\bmod A^{\mathrm{op}}\right\}$

Theorem (Auslander). A finite dimensional K-algebra over a field K. Then
r.gl. $\operatorname{dim}=\left\{\operatorname{pd}_{A} S \mid S\right.$ simple right A-modules $\}$.

Hence

- r.gl. $\operatorname{dim} A$ minimal $m \in \mathbb{N} \cup\{\infty\}$ such that $\mathrm{Ext}_{A}^{m+1}(M, N)=0$ for all modules M, N in $\bmod A$
- r.gl. $\operatorname{dim} A=\max \left\{\begin{array}{l|l}\operatorname{id}_{A} M & \begin{array}{l}M \text { injective mo- } \\ \text { dules in } \bmod A\end{array}\end{array}\right\}$ $=\mathrm{I} . \mathrm{gl} . \operatorname{dim} A$
gl. $\operatorname{dim} A=$ r.gl. $\operatorname{dim} A=\mathrm{l} . \mathrm{gl} . \operatorname{dim} A$
global dimension of A
- A algebra with acyclic valued quiver Q_{A}, then $\mathrm{gl} . \operatorname{dim} A \leq \infty$
(gl. $\operatorname{dim} A \leq$ length of longest path in Q_{A})

Theorem (Skowroński-Smalø-Zacharia).

 Let A be a finite dimensional K-algebra with $\mathrm{gl} . \operatorname{dim} A=\infty$. Then there exists an indecomposable module M in $\bmod A$ such that$$
\mathrm{pd}_{A} M=\infty \text { and } \operatorname{id}_{A} M=\infty
$$

A finite dimensional K-algebra
gl. $\operatorname{dim} A<\infty$
$\langle-,-\rangle_{A}: K_{0}(A) \times K_{0}(A) \longrightarrow \mathbb{Z}$
Euler nonsymmetric \mathbb{Z}-bilinear form

$$
\langle[M],[N]\rangle_{A}=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim}_{K} \operatorname{Ext}_{A}^{i}(M, N)
$$

for modules M, N in $\bmod A$
$q_{A}: K_{0}(A) \longrightarrow \mathbb{Z}$

Euler quadratic form

$$
q_{A}([M])=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim}_{K} \operatorname{Ext}_{A}^{i}(M, M)
$$

for a module M in $\bmod A$

Semisimple algebras

A finite dimensional K-algebra over a field K M a module in $\bmod A$ is semisimple if M is a direct sum of simple right A-modules.

- M semisimple if and only if M rad $A=0$

Theorem. A finite dimensional K-algebra. The following conditions are equivalent:
(1) A_{A} is semisimple.
(2) Every module in $\bmod A$ is semisimple.
(3) $\operatorname{rad} A=0$.
(4) Every module in $\bmod A^{\mathrm{OD}}$ is semisimple.
(5) ${ }_{A} A$ is semisimple.
A semisimple algebra if A_{A} and ${ }_{A} A$ are semisimple modules

Theorem (Wadderburn). A finite dimensional K-algebra over a field K. The following conditions are equivalent:
(1) A is a semisimple algebra.
(2) $\mathrm{gl} \cdot \operatorname{dim} A=0$.
(3) There exist positive integers n_{1}, \ldots, n_{r} and division K-algebras F_{1}, \ldots, F_{r} such that

$$
A \cong M_{n_{1}}\left(F_{1}\right) \times \cdots \times M_{n_{1}}\left(F_{1}\right) .
$$

Observe that

- A is a semisimple algebra if and only if the Auslander-Reiten quiver Γ_{A} consists of the isolated vertices

$$
\left\{\begin{array}{llll}
\left\{S_{1}\right\} & \left\{S_{2}\right\} & \ldots & \left\{S_{r}\right\}
\end{array}\right.
$$

corresponding to a complete set S_{1}, S_{2}, \ldots, S_{r} of pairwise nonisomorphic simple (equivalently, indecomposable) modules in $\bmod A$.

4. Hereditary algebras

A finite dimensional K-algebra over a field K
A is right hereditary if any right ideal of A is a projective right A-module
A is left hereditary if any left ideal of A is a projective left A-module

Theorem. Let A be a finite dimensional K algebra over a field K. The following conditions are equivalent:
(1) A is right hereditary.
(2) Every right A-submodule of a projective module in $\bmod A$ is projective.
(3) The radical rad P of any indecomposable projective module P in $\bmod A$ is projective.
(4) gl. $\operatorname{dim} A \leq 1$.
(5) The socle factor $I /$ soc I of any indecomposable injective module I in $\bmod A$ is injective.
(6) Every factor module of an injective module in $\bmod A$ is injective.
(7) A is left hereditary.
A is hereditary if A is left and right hereditary

Examples. K a field

(1) Q finite acyclic quiver
(arrows with trivial valuation)
$A=K Q$ the path algebra of Q over K
A finite dimensional hereditary K-algebra $Q_{A}=Q$
(2) F, G finite dimensional division K-algebras ${ }_{F} M_{G} F$ - G-bimodule K acts centrally on ${ }_{F} M_{G}$ $\operatorname{dim}_{K}\left(F_{F} M_{G}\right)<\infty$
$A=\left[\begin{array}{cc}F & 0 \\ F M_{G} & G\end{array}\right]=\left\{\left[\begin{array}{cc}f & 0 \\ m & g\end{array}\right] ; \begin{array}{c}f \in F, g \in G, \\ m \in{ }_{F} M_{G}\end{array}\right\}$
finite dimensional hereditary K-algebra
Q_{A} the valued quiver

$$
2 \xrightarrow{\left(\operatorname{dim}_{F}\left({ }_{F} M_{G}\right), \operatorname{dim}_{G}\left({ }_{F} M_{G}\right)\right)} 1
$$

For example,

$$
\left[\begin{array}{ll}
\mathbb{R} & 0 \\
\mathbb{C} & \mathbb{C}
\end{array}\right],\left[\begin{array}{ll}
\mathbb{R} & 0 \\
\mathbb{C} & \mathbb{R}
\end{array}\right],\left[\begin{array}{cc}
\mathbb{R} & 0 \\
\mathbb{H} & \mathbb{H}
\end{array}\right],\left[\begin{array}{ll}
\mathbb{R} & 0 \\
\mathbb{H} & \mathbb{R}
\end{array}\right]
$$

\mathbb{R} real numbers, \mathbb{C} complex numbers, \mathbb{H} quaternions, are hereditary \mathbb{R}-algebras
(3) $F_{1}, F_{2}, \ldots, F_{n}$ family of finite dimensional division K-algebras
${ }_{i} M_{j} F_{i}$ - F_{j}-bimodules, $i, j \in\{1, \ldots, n\}$
K acts centrally on ${ }_{i} M_{j}, \operatorname{dim}_{K}\left({ }_{i} M_{j}\right)<\infty$
Consider the valued quiver Q :
$1,2, \ldots, n$ vertices of Q
There is an arrow $j \rightarrow i$ in $Q \Longleftrightarrow{ }_{i} M_{j} \neq 0$ Then we have the valued arrow $j \xrightarrow{\left(d_{i j}, d_{i j}^{\prime}\right)} i$ $d_{i j}=\operatorname{dim}_{F_{i}}\left({ }_{i} M_{j}\right), \quad d_{i j}^{\prime}=\operatorname{dim}_{F_{j}}\left(i M_{j}\right)$
Assume that the valued quiver Q is acyclic

$$
F=\prod_{i=1}^{n} F_{i}, \quad M=\bigoplus_{i, j=1}^{n}{ }_{i} M_{j},
$$

M is an F - F-bimodule, $\operatorname{dim}_{K} M<\infty$

$$
\begin{aligned}
& A=T_{F}(M)=\bigoplus_{n=0}^{\infty} M^{(n)} \text { of } M \text { tensor algebra } F \\
& \\
& \quad M^{(0)}=F, \quad M^{(1)}=M, \\
& M^{(n)}=M \otimes_{F} \cdots \otimes_{F} M \text { n-times, for } n \geq 2
\end{aligned}
$$

Q acyclic $\Rightarrow M^{(r)}=0$ for large r
A finite dimensional hereditary K-algebra
$Q_{A}=Q$

Theorem. Let A be an indecomposable finite dimensional hereditary K-algebra over a field K. The following conditions are equivalent:
(1) The Euler form q_{A} is positive definite.
(2) The valued graph G_{A} of A is one of the following Dynkin graphs
$\mathbb{A}_{m}: \bullet \bullet \bullet \cdots — \bullet \bullet(m$ vertices $), m \geq 1$
$\mathbb{B}_{m}: \bullet{ }^{(1,2)}$ ————— $(m$ vertices $), m \geq 2$
$\mathbb{C}_{m}:{ }^{(2,1)} \bullet \ldots$ • \quad (m vertices) $m \geq 3$
\mathbb{D}_{m} ••————— $(m$ vertices $), m \geq 4$
$\mathbb{E}_{6}: \bullet \bullet \bullet \bullet \bullet \bullet$
$\mathbb{E}_{7}: \bullet \ldots \bullet \bullet \bullet \bullet \bullet \bullet$
$\mathbb{E}_{8}: \bullet \bullet \ldots \bullet \bullet \ldots \ldots \bullet \bullet$
$\mathbb{F}_{4}: \bullet$ (1,2 . \bullet
$\mathbb{G}_{2}:(1,3)$

Theorem. Let A be an indecomposable finite dimensional hereditary K-algebra over a field K. The following conditions are equivalent:
(1) The Euler form q_{A} is positive semidefinite but not positive definite.
(2) The valued graph G_{A} of A is one of the Euclidean graphs
$\tilde{\mathbb{A}}_{11}:\left({ }^{(1,4)}\right.$ •
$\tilde{\mathbb{A}}_{12}:\left({ }^{(2,2)}\right.$ •

$$
\begin{aligned}
& \tilde{\mathbb{B}}_{m}:(1,2) \quad \cdots \quad(2,1) \cdot(m+1 \text { vertices }), \\
& \widetilde{\mathbb{C}}_{m}:(2,1) \quad \cdots \quad(1,2) \cdot\left(\begin{array}{c}
m+1 \\
m \geq 2
\end{array}\right. \\
& \widetilde{\mathbb{B C}}_{m}:(1,2) \cdot \ldots \quad\left(\begin{array}{c}
(1,2) \cdot\left(\begin{array}{c}
(m+1 \\
m \\
m
\end{array} \geq 2\right.
\end{array}\right.
\end{aligned}
$$

$\widetilde{\mathbb{F}}_{41}: \bullet \bullet \bullet \bullet \stackrel{(1,2)}{ } \bullet$
$\widetilde{\mathbb{F}}_{42}: \bullet \bullet \bullet \bullet(2,1) \bullet \bullet$
$\widetilde{\mathbb{G}}_{21}: \bullet \bullet \stackrel{(1,3)}{ }$
$\widetilde{\mathbb{G}}_{22}: \bullet-(3,1)$
A hereditary K-algebra

- A is of Dynkin type if G_{A} is a Dynkin graph
- A is of Euclidean type if G_{A} is an Euclidean graph
- A is of wild type if G_{A} is neither a Dynkin nor Euclidean graph
- A wild type, then there exists an indecomposable module M in $\bmod A$ such that
$q_{A}([M])=\operatorname{dim}_{K} \operatorname{End}_{A}(M)-\operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}(M, M)<0$

Theorem. Let A be an indecomposable finite dimensional hereditary K-algebra over a field K, and $Q=Q_{A}$ the valued quiver of A. Then the Auslander-Reiten quiver Γ_{A} has the following shape

- $\mathcal{P}(A)$ is the postprojective component containing all indecomposable projective A modules
- $Q(A)$ is the preinjective component containing all indecomposable injective A-modules
- $\mathcal{R}(A)$ is the family of all regular components

Moreover

(1) If A is of Dynkin type, then $\mathcal{P}(A)=\mathcal{Q}(A)$ is finite and $\mathcal{R}(A)$ is empty.
(2) If A is of Euclidean type, then $\mathcal{P}(A) \cong$ $(-\mathbb{N}) Q^{\mathrm{OD}}, \mathcal{Q}(A) \cong \mathbb{N} Q^{\mathrm{OD}}$ and $\mathcal{R}(A)$ is an infinite family of stable tubes, all but finitely many of them of rank one.
(3) If A is of wild type, then $\mathcal{P}(A) \cong(-\mathbb{N}) Q^{\mathrm{Op}}$, $\mathcal{Q}(A) \cong \mathbb{N} Q^{\mathrm{OP}}$, and $\mathcal{R}(A)$ is an infinite family of components of type $\mathbb{Z A}_{\infty}$.

A indecomposable hereditary not of Dynkin type, then

- $\operatorname{Hom}_{A}(\mathcal{P}(A), \mathcal{R}(A)) \neq 0$, $\operatorname{Hom}_{A}(\mathcal{R}(A), \mathcal{P}(A))=0$,
- $\operatorname{Hom}_{A}(\mathcal{R}(A), \mathcal{Q}(A)) \neq 0$, $\operatorname{Hom}_{A}(\mathcal{Q}(A), \mathcal{R}(A))=0$,
- $\operatorname{Hom}_{A}(\mathcal{P}(A), \mathcal{Q}(A)) \neq 0$, $\operatorname{Hom}_{A}(\mathcal{Q}(A), \mathcal{P}(A))=0$,

A hereditary of Euclidean type, then $\mathcal{R}(A)$ is an infinite family $\left(\mathcal{T}_{\lambda}^{A}\right)_{\lambda \in \Lambda}$ of pairwise orthogonal generalized standard stable tubes separating $\mathcal{P}(A)$ form $\mathcal{Q}(A)$: for any homomorphism $f: X \rightarrow Y$ with X in $\mathcal{P}(A)$ and Y in $Q(A)$ there exists a module Z in $\mathcal{R}(A)$ and a factorization

A hereditary of Euclidean type, then

$$
\left(\operatorname{rad}_{A}^{\infty}\right)^{3}=0
$$

A hereditary of wild type, then $\left(\operatorname{rad}_{A}^{\infty}\right)^{m} \neq 0$ for all $m \geq 1$

5. Tilted algebras

A finite dimensional K-algebra over a field K

A module T in $\bmod A$ is a tilting module if the following conditions are satisfied:
(T1) $\mathrm{pd}_{A} T \leq 1$;
(T2) $\operatorname{Ext}_{A}^{1}(T, T)=0$;
(T3) T is a direct sum of n pairwise nonisomorphic indecomposable modules, where $n=$ rank of $K_{0}(A)$.
(Brenner-Butler, Happel-Ringel, Bongartz)
$B=\operatorname{End}_{A}(T)$ tilted algebra of A

We have the torsion pairs

$$
(\mathcal{F}(T), \mathcal{T}(T)) \text { in } \bmod A
$$

with torsion-free part

$$
\begin{aligned}
\mathcal{F}(T) & =\{X \in \bmod A \mid \operatorname{Hom}(T, X)=0\} \\
& =\operatorname{Cogen} \tau_{A} T
\end{aligned}
$$

torsion part

$$
\begin{aligned}
\mathcal{T}(T) & =\left\{X \in \bmod A \mid \operatorname{Ext}_{A}^{1}(T, X)=0\right\} \\
& =\operatorname{Gen} T
\end{aligned}
$$

and

$$
(\mathcal{Y}(T), \mathcal{X}(T)) \text { in } \bmod B
$$

with torsion-free part

$$
\begin{aligned}
\mathcal{Y}(T) & =\left\{Y \in \bmod B \mid \operatorname{Tor}_{1}^{B}(T, Y)=0\right\} \\
& =\operatorname{Gen} \tau_{B}^{-1} D\left({ }_{B} T\right)
\end{aligned}
$$

torsion part

$$
\begin{aligned}
\mathcal{X}(T) & =\left\{Y \in \bmod B \mid Y \otimes_{B} T=0\right\} \\
& =\operatorname{Cogen} D\left({ }_{B} T\right)
\end{aligned}
$$

Theorem (Brenner-Butler). Let A be a finite dimensional K-algebra over a field K, T a tilting module in $\bmod A$, and $B=\operatorname{End}_{A}(T)$. Then
(1) $B_{B} T$ is a tilting module in $\bmod B^{\circ p}$ and there is a canonical isomorphism of K algebras $A \rightarrow$ End $_{B}{ }^{\circ}\left(B_{B} T\right)^{\mathrm{OP}}$.
(2) The functors $\operatorname{Hom}_{A}(T,-): \bmod A \rightarrow \bmod B$ and $-\otimes_{B} T: \bmod B \rightarrow \bmod A$ induce mutually inverse equivalences

$$
\mathcal{T}(T) \xrightarrow{\sim} \mathcal{Y}(T)
$$

(3) The functors $\operatorname{Ext}{ }_{A}^{1}(T,-): \bmod A \rightarrow \bmod B$ and $\operatorname{Tor}_{1}^{B}(T,-): \bmod B \rightarrow \bmod A$ induce mutually inverse equivalences

$$
\mathcal{F}(T) \xrightarrow{\sim} \mathcal{X}(T)
$$

$\operatorname{inj} A \subseteq \mathcal{T}(T), \operatorname{proj} B \subseteq \mathcal{Y}(T)$,
A finite dimensional K-algebra, T a tilting module in $\bmod A$, and $B=\mathrm{End}_{A}(T)$. Then

- |gl. $\operatorname{dim} A-\mathrm{gl} . \operatorname{dim} B \mid \leq 1$.
- There is a canonical isomorphism $f: K_{0}(A) \rightarrow K_{0}(B)$ of Grothendieck groups such that

$$
f([M])=\left[\operatorname{Hom}_{A}(T, M)\right]-\left[\operatorname{Ext}_{A}^{1}(T, M)\right]
$$

for any module M in $\bmod A$.
Moreover, if gl. $\operatorname{dim} A<\infty$, then

$$
\langle[M],[N]\rangle_{A}=\langle f([M]), f([N])\rangle_{B}
$$

for all modules M, N in $\bmod A$.

- If gl. $\operatorname{dim} A<\infty$ then the Euler forms q_{A} of A and q_{B} of B are \mathbb{Z}-equivalent.
A hereditary finite dimensional K-algebra
T tilting module in $\bmod A$
$B=\operatorname{End}_{A}(T)$ tilted algebra (of type G_{A} (valued graph of A))

Then

- gl. $\operatorname{dim} B \leq 2$;
- For every indecomposable module Y in $\bmod B$, we have $\mathrm{pd}_{B} Y \leq 1$ or $\operatorname{id}_{B} Y \leq 1$;
- The torsion pair $(\mathcal{Y}(T), \mathcal{X}(T))$ in $\bmod B$ is splitting: every module from ind B belongs to $\mathcal{Y}(T)$ or $\mathcal{X}(T)$.

Moreover, the images $\operatorname{Hom}_{A}(T, I)$ of the indecomposable injective modules I in $\bmod A$ via the functor $\operatorname{Hom}_{A}(T,-): \bmod A \rightarrow \bmod B$ belong to one component \mathscr{C}_{T} of Γ_{B}, and form a faithful section $\Delta_{T} \cong Q_{A}^{\mathrm{op}}$ of \mathscr{C}

\mathscr{C}_{T} connecting component of Γ_{B} determined by T (connects the torsion-free part with the torsion part of Γ_{B} : every predecessor of a module $\operatorname{Hom}_{A}(T, I)$ from Δ_{T} in ind B lies in $\mathcal{Y}(T)$ and every successor of a module $\tau_{B}^{-1} \operatorname{Hom}_{A}(T, I)$ in ind B lies in $\left.\mathcal{X}(T)\right)$
Δ_{T} section: acyclic, convex in \mathscr{C}, and intersects each τ_{Λ}-orbit of \mathscr{C} exactly once
Δ_{T} faithful: the direct sum of all modules lying on Δ is a faithful B-module (has zero annihilator in B)

\mathscr{C}_{T} faithful generalized standard compo-

 nent of Γ_{A} with a section Δ_{T}Theorem (Ringel). Let A be a hereditary algebra, T a tilting module in $\bmod A, B=$ End $_{A}(T)$ and \mathscr{C}_{T} the connecting component of Γ_{B} determined by T. Then
(1) \mathscr{C}_{T} contains a projective B-module if and only if T admits a preinjective indecomposable direct summand.
(2) \mathscr{C}_{T} contains an injective B-module if and only if T admits a postprojective indecomposable direct summand.
(3) \mathscr{C}_{T} is regular if and only if T is regular (belongs to add $\mathcal{R}(A)$).

Theorem (Ringel). Let A be a hereditary algebra. Then there is a regular tilting module in $\bmod A$ if and only A is of wild type and $K_{0}(A)$ is of rank ≥ 3.

Handy criterion for a tilted algebra

Theorem (Liu, Skowroński). Let B be a finite dimensional K-algebra over a field K. Then B is a tilted algebra if and only if Γ_{B} admits a component \mathscr{C} with a faithful section Δ such that $\operatorname{Hom}_{B}\left(X, \tau_{B} Y\right)=0$ for all modules X, Y from Δ.

Moreover, in this case, if T^{*} is the direct sum of all modules lying on Δ, then

- T^{*} is a tilting module in $\bmod B$.
- $A=\operatorname{End}_{B}\left(T^{*}\right)$ is a hereditary K-algebra of type Δ^{OP}.
- $T=D\left({ }_{A} T^{*}\right)$ is a tilting module in $\bmod A$.
- $B \cong \operatorname{End}_{A}(T)$.

Theorem (Liu, Skowroński). Let B be a finite dimensional K-algebra over a field K. Then B is a tilted algebra if and only if Γ_{B} admits a faithful generalized standard component \mathscr{C} with a section Δ.

Example. Let $B=K Q / I$ where Q is the quiver

$$
1 \stackrel{\sigma}{\longleftarrow} 2 \stackrel{\gamma}{\longleftarrow} 3 \stackrel{\beta}{\longleftarrow} 4 \stackrel{\alpha}{\longleftarrow} 5
$$

and I is the ideal of $K Q$ generated by $\alpha \beta \gamma \sigma$
Γ_{B} is of the form
$S_{1}=P_{1}=K 0000 \quad 0 K 000=S_{2} \quad 00 K 00=S_{3} \quad 00 K 00=S_{4} \quad 0000 K=S_{5}=I_{5}$

Δ faithful section of $\mathscr{C}=\Gamma_{B}$
$T_{1}^{*}=S_{2}, \quad T_{2}^{*}=0 K K 00, \quad T_{3}^{*}=0 K K K 0$,
$T_{4}^{*}=P_{5}, \quad T_{5}^{*}=P_{4}$
$T^{*}=T_{1}^{*} \oplus T_{2}^{*} \oplus T_{3}^{*} \oplus T_{4}^{*} \oplus T_{5}^{*}$,
T^{*} faithful tilting B-module,
$\operatorname{Hom}_{B}\left(T^{*}, \tau_{B} T^{*}\right)=0$
$A=\operatorname{End}_{B}\left(T^{*}\right)$ hereditary K-algebra $K \Delta^{\mathrm{OP}}$, where $\Delta^{0 D}$ is of the form

$$
1-2-3
$$

$T=D\left({ }_{A} T^{*}\right)$ tilting module in $\bmod A$

$$
\begin{aligned}
T= & T_{1} \oplus T_{2} \oplus T_{3} \oplus T_{4} \oplus T_{5} \\
& T_{i}=D\left(T_{i}^{*}\right) \text { for } i \in\{1,2,3,4,5\}
\end{aligned}
$$

$$
T_{1}=000_{K}^{0} \quad T_{2}=K K K_{K}^{K} \quad T_{3}=0 K K_{K}^{K}
$$

$$
T_{4}=00 K_{K}^{K} \quad T_{5}=000_{0}^{K}
$$

「A
$\operatorname{Ext}_{A}^{1}(T, T) \cong D \operatorname{Hom}_{A}\left(T, \tau_{A} T\right)=0$
$\operatorname{End}_{A}(T) \cong B=K Q / I$
A indecomposable hereditary finite dimensional K-algebra
T tilting module in $\bmod A$
$B=\operatorname{End}_{A}(T)$

- A of Dynkin type
$\Rightarrow A$ of finite representation type
$\Rightarrow B$ of finite representation type
- B of finite representation type
$\Rightarrow \Gamma_{B}=\mathscr{C}_{T}$ and finite
$\Rightarrow \mathscr{C}_{T}$ contains all indecomposable projective modules and all indecomposable injective modules
$\Rightarrow T$ has a postprojective and a preinjective direct summand
- A of Euclidean type, T has a postprojective and a preinjective direct summand $\Rightarrow B$ is of finite representation type

Concealed algebras

A indecomposable hereditary of infinite representation type
T postprojective tilting module in $\bmod A$, $T \in \operatorname{add} \mathcal{P}(A)$
$B=\operatorname{End}_{A}(T)$ concealed algebra of type G_{A}

- $\mathcal{P}(B)=\operatorname{Hom}_{A}(T, \mathcal{P}(A) \cap \mathcal{T}(T))$ postprojective component of Γ_{B} containing all indecomposable projective B-modules
- $\mathcal{Q}(B)=\mathscr{C}_{T}=\operatorname{Hom}_{A}(T, \mathcal{Q}(A)) \cup \mathcal{X}(T)$ preinjective component of Γ_{B} containing all indecomposable injective B-modules
- $\mathcal{R}(B)=\operatorname{Hom}_{A}(T, \mathcal{R}(A))$ family of all regular components of Γ_{B}
- A of Euclidean type $\Rightarrow \mathcal{R}(B)$ infinite family of pairwise orthogonal generalized standard stable tubes
- A of wild type $\Rightarrow \mathcal{R}(B)$ infinite family of components of type $\mathbb{Z A}_{\infty}$
T preinjective tilting module in $\bmod A$, $T \in \operatorname{add} \mathcal{Q}(A)$ $B=\operatorname{End}_{A}(T)$

- $\mathcal{P}(B)=\mathscr{C}_{T}=\mathcal{Y}(T) \cup \operatorname{Ext}_{A}^{1}(T, \mathcal{P}(A))$ postprojective component of Γ_{B} containing all indecomposable projective B-modules
- $\mathcal{Q}(B)=\operatorname{Ext}_{A}^{1}(T, \mathcal{Q}(A) \cap \mathcal{F}(T))$ preinjective component of Γ_{B} containing all indecomposable injective B-modules
- $\mathcal{R}(B)=\operatorname{Ext}_{A}^{1}(T, \mathcal{R}(A))$ family of all regular components of Γ_{B}
- A of Euclidean type $\Rightarrow \mathcal{R}(B)$ infinite family of pairwise orthogonal generalized standard stable tubes
- A of wild type $\Rightarrow \mathcal{R}(B)$ infinite family of components of type $\mathbb{Z} \mathbb{A}_{\infty}$
$B \cong \operatorname{End}_{A}(T)$ for a postprojective tilting A module $T \Longleftrightarrow B \cong \operatorname{End}_{A}\left(T^{\prime}\right)$ for a preinjective tilting A-module T^{\prime}

Representation-infinite tilted algebras of Euclidean type

A indecomposable hereditary of Euclidean type
T tilting module in $\bmod A$ without preinjective direct summands
$B=\operatorname{End}_{A}(T)$
$T=T^{p p} \oplus T^{r g}, T^{p p} \in \operatorname{add} \mathcal{P}(A), T^{r g} \in \operatorname{add} \mathcal{R}(A)$
$\Rightarrow T^{p p} \neq 0$,
$C=\operatorname{End}_{A}\left(T^{p p}\right)$ concealed algebra of Euclidean type
C factor algebra of B

- $\mathcal{P}(B)=\operatorname{Hom}_{A}(T, \mathcal{T}(T) \cap \mathcal{P}(A))=$ $\operatorname{Hom}_{A}\left(T^{p p}, \mathcal{T}(T) \cap \mathcal{P}(A)\right)=\mathcal{P}(C)$ postprojective component of Γ_{B} containing all indecomposable projective C-modules
- $\mathcal{Q}(B)=\mathscr{C}_{T}=\operatorname{Hom}_{A}(T, \mathcal{Q}(A)) \cup \mathcal{X}(T)$ preinjective component of Γ_{B} containing all indecomposable injective B-modules
- $\mathcal{T}^{B}=\operatorname{Hom}_{A}(T, \mathcal{R}(A) \cap \mathcal{T}(T))$ infinite family of pairwise orthogonal generalized standard ray tubes
- \mathcal{T}^{B} contains a projective module $T^{r g} \neq 0$
T tilting module in $\bmod A$ without postprojective direct summands
$B=\operatorname{End}_{A}(T)$
$T=T^{r g} \oplus T^{p i}, T^{r g} \in \operatorname{add} \mathcal{R}(A), T^{p i} \in \operatorname{add} \mathcal{Q}(A)$
$\Rightarrow T^{p i} \neq 0$,
$C=\operatorname{End}_{A}\left(T^{p i}\right)$ concealed algebra of Euclidean type
C factor algebra of B

- $\mathcal{P}(B)=\mathscr{C}_{T}=\mathcal{Y}(T) \cup E x t{ }_{A}^{1}(T, \mathcal{P}(A))$ postprojective component of Γ_{B} containing all indecomposable projective B-modules
- $\mathcal{Q}(B)=\operatorname{Ext}_{A}^{1}(T, \mathcal{F}(T) \cap \mathcal{Q}(A))=$ $\operatorname{Ext}_{A}^{1}\left(T^{p i}, \mathcal{F}(T) \cap \mathcal{Q}(A)\right)=\mathcal{Q}(C)$ preinjective component of Γ_{B} containing all indecomposable injective C-modules
- $\mathcal{T}^{B}=\operatorname{Ext}_{A}^{1}(T, \mathcal{R}(A) \cap \mathcal{F}(T))$ infinite family of pairwise orthogonal generalized standard coray tubes
- \mathcal{T}^{B} contains an injective module $T^{r g} \neq 0$

Almost concealed algebras of wild type

A indecomposable hereditary of wild type
T tilting module in $\bmod A$
$T=T^{p p} \oplus T^{r g} \oplus T^{p i}$,
$T^{p p} \in \operatorname{add} \mathcal{P}(A), T^{r g} \in \operatorname{add} \mathcal{R}(A), T^{p i} \in \operatorname{add} \mathcal{Q}(A)$
$B=\operatorname{End}_{A}(T)$
B almost concealed if $T^{p p}=0$ or $T^{p i}=0$

The cases

- $T=T^{p p}$
- $T=T^{p i}$
were considered above
It remains to consider the cases
- $T=T^{r g}$
- $T=T^{p p} \oplus T^{r g}, T^{p p} \neq 0, T^{r g} \neq 0$
- $T=T^{r g} \oplus T^{p i}, T^{r g} \neq 0, T^{p i} \neq 0$
$T=T^{r g}$ regular tilting module, $B=$ End $_{A}(T)$

- \mathscr{C}_{T} regular connecting component
- $\mathcal{Y} \Gamma_{B}=\operatorname{Hom}_{A}(T, \mathcal{T}(T) \cap \mathcal{R}(A))$ contains all indecomposable projective B-modules and consist of
- one postprojective component $\mathcal{P}(B)=$ $\mathcal{P}(C)$, for a wild concealed factor algebra C of B
- an infinite family of components obtained from components of type $\mathbb{Z} \mathbb{A}_{\infty}$ by ray insertions, containing at least one projective B-module
- $\mathcal{X} \Gamma_{B}=\operatorname{Ext}_{A}^{1}(T, \mathcal{F}(T) \cap \mathcal{R}(A))$ contains all indecomposable injective B-modules and consist of
- one preinjective component $\mathcal{Q}(B)=$ $\mathcal{Q}\left(C^{\prime}\right)$, for a wild concealed factor algebra C^{\prime} of B
- an infinite family of components obtained from components of type $\mathbb{Z} \mathbb{A}_{\infty}$ by coray insertions, containing at least one injective B-module
$T=T^{p p} \oplus T^{r g}, T^{p p} \neq 0, T^{r g} \neq 0$
Γ_{B} is of the form

- \mathscr{C}_{T} connecting component containing at least one injective module and no projective modules
- $\mathcal{Y} \Gamma_{B}=\operatorname{Hom}_{A}(T, \mathcal{T}(T) \cap(\mathcal{P}(A) \cup \mathcal{R}(A)))$ contains all indecomposable projective B modules and consist of
- one postprojective component $\mathcal{P}(B)=$ $\mathcal{P}(C)$, for a wild concealed factor algebra C of B
- an infinite family of components obtained from components of type $\mathbb{Z} \mathbb{A}_{\infty}$ by ray insertions, containing at least one projective B-module
- $\mathcal{X} \Gamma_{B}=\operatorname{Ext}{ }_{A}^{1}(T, \mathcal{F}(T) \cap \mathcal{R}(A))$ consists of preinjective components and components obtained from stable tubes or components of type $\mathbb{Z A}_{\infty}$ by coray insertions

$$
T=T^{r g} \oplus T^{p i}, T^{r g} \neq 0, T^{p i} \neq 0
$$

Γ_{B} of the form

- \mathscr{C}_{T} connecting component containing at least one projective module and no injective modules
- $\mathcal{Y} \Gamma_{B}=\operatorname{Hom}_{A}(T, \mathcal{T}(T) \cap(\mathcal{R}(A) \cup \mathcal{Q}(A)))$ consists of preprojective components and components obtained from stable tubes or components of type \mathbb{Z}_{∞} by ray insertions
- $\mathcal{X} \Gamma_{B}=\operatorname{Ext}_{A}^{1}(T, \mathcal{F}(T) \cap(\mathcal{R}(A) \cup \mathcal{Q}(A)))$ contains all indecomposable injective B modules and consist of
- one preinjective component $\mathcal{Q}(B)=$ $\mathcal{Q}\left(C^{\prime}\right)$, for a wild concealed factor algebra C^{\prime} of B
- an infinite family of components obtained from components of type $\mathbb{Z} \mathbb{A}_{\infty}$ by coray insertions, containing at least one injective B-module

Tilted algebras of wild type - general

 caseA indecomposable hereditary algebra of wild type
T tilting module in $\bmod A$
$B=\operatorname{End}_{A}(T)$
Γ_{B} is of the form

where

- \mathscr{C}_{T} connecting component of Γ_{B} determinend by T, possibly $\mathscr{C}_{T}=\Gamma_{B}$ (if B is of finite representation type)
- For each $i \in\{1, \ldots, m\}, \Delta_{l}^{(i)}$ connected valued subquiver of $\Delta_{T_{i}}$ of Euclidean or wild type, $\mathscr{D}_{l}^{(i)}=\mathbb{N} \Delta_{l}^{(i)}$ full translation subquiver of \mathscr{C}_{T} closed under predecessors
- For each $j \in\{1, \ldots, n\}, \Delta_{r}^{(j)}$ connected valued subquiver of Δ_{T} of Euclidean or wild type, $\mathscr{D}_{r}^{(j)}=(-\mathbb{N}) \Delta_{r}^{(j)}$ full translation subquiver of \mathscr{C}_{T} closed under successors
- For each $i \in\{1, \ldots, m\}$, there exists a tilted algebra

$$
B_{l}^{(i)}=\operatorname{End}_{A_{l}^{(i)}}\left(T_{l}^{(i)}\right)
$$

where $A_{l}^{(i)}$ is a hereditary algebra of type $\Delta_{l}^{(i)}$ and $T_{l}^{(i)}$ is a tilting module in $\bmod A_{l}^{(i)}$ without preinjective direct summands such that

- $B_{l}^{(i)}$ is a factor algebra of B
$-\mathscr{D}_{l}^{(i)}=\mathcal{Y}\left(T_{l}^{(i)}\right) \cap \mathscr{C}_{T_{l}^{(i)}}$
- $\mathcal{Y} \Gamma_{B_{l}^{(i)}}$ family of all connected components of $\Gamma_{B_{l}^{(i)}}$ contained entirely in the torsion-free part $\mathcal{Y}\left(T_{l}^{(i)}\right)$ of $\bmod B_{l}^{(i)}$
- For each $j \in\{1, \ldots, n\}$, there exists a tilted algebra

$$
B_{r}^{(j)}=\operatorname{End}_{A_{r}^{(j)}}\left(T_{r}^{(j)}\right)
$$

where $A_{r}^{(j)}$ is a hereditary algebra of type $\Delta_{r}^{(j)}$ and $T_{r}^{(j)}$ is a tilting module in $\bmod A_{r}^{(j)}$ without postprojective direct summands such that
$-B_{r}^{(j)}$ is a factor algebra of B
$-\mathscr{D}_{r}^{(j)}=\mathcal{X}\left(T_{r}^{(j)}\right) \cap \mathscr{C}_{T_{r}^{(j)}}$

- $\mathcal{X} \Gamma_{B_{r}^{(j)}}$ family of all connected components of $\Gamma_{B_{r}^{(j)}}$ contained entirely in the torsion part $\mathcal{X}\left(T_{r}^{(j)}\right)$ of $\bmod B_{r}^{(j)}$
- All but finitely many modules of \mathscr{C}_{T} are in

$$
\mathscr{D}_{l}^{(1)} \cup \cdots \cup \mathscr{D}_{l}^{(m)} \cup \mathscr{D}_{r}^{(1)} \cup \cdots \cup \mathscr{D}_{r}^{(n)}
$$

We know from the facts described before that

- For each $i \in\{1, \ldots, m\}$, the translation quiver $\mathcal{Y} \Gamma_{B_{l}^{(i)}}$ consists of
- one postprojective component $\mathcal{P}\left(B_{l}^{(i)}\right)$
- an infinite family of pairwise orthogonal generalized standard ray tubes, if $\Delta_{l}^{(i)}$ is an Euclidean quiver, or an infinite family of components obtained from components of type $\mathbb{Z A}_{\infty}$ by ray insertions, if $\Delta_{l}^{(i)}$ is a wild quiver
- For each $j \in\{1, \ldots, n\}$, the translation quiver $\mathcal{X} \Gamma_{B_{r}^{(j)}}$ consists of
- one preinjective component $\mathcal{Q}\left(B_{r}^{(j)}\right)$
- an infinite family of pairwise orthogonal generalized standard coray tubes, if $\Delta_{r}^{(j)}$ is an Euclidean quiver, or an infinite family of components obtained from components of type \mathbb{Z}_{∞} by coray insertions, if $\Delta_{r}^{(j)}$ is a wild quiver

Acyclic generalized standard AuslanderReiten components

Theorem (Skowroński). Let A be a finite dimensional K-algebra over a field K, \mathscr{C} a component of Γ_{A} and $B=A / \operatorname{ann}_{A} \mathscr{C}$.
(1) \mathscr{C} is generalized standard, acyclic, without projective modules if and only if B is a tilted algebra of the form End $H(T)$, where H is a hereditary algebra, T is a tilting module in mod H without preinjective direct summands, and \mathscr{C} is the connecting component \mathscr{C}_{T} of Γ_{B} determined by T.
(2) \mathscr{C} is generalized standard, acyclic, without injective modules if and only if B is a tilted algebra of the form End $H^{(T)}$, where H is a hereditary algebra, T is a tilting module in mod H without postprojective direct summands, and \mathscr{C} is the connecting component \mathscr{C}_{T} of Γ_{B} determined by T.
(3) \mathscr{C} is generalized standard, acyclic, regular if and only if B is a tilted algebra of the form $\operatorname{End}_{H}(T)$, where H is a hereditary algebra, T is a regular tilting module in $\bmod H$, and \mathscr{C} is the connecting component \mathscr{C}_{T} of Γ_{B} determined by T.

In general, an arbitrary acyclic generalized standard component \mathscr{C} of Γ_{A} is a glueing of

- torsion-free parts $\mathcal{Y}\left(T_{l}^{(i)}\right) \cap \mathscr{C}_{T_{l}^{(i)}}$ of the connecting components $\mathscr{C}_{T_{l}^{(i)}}$ of tilted algebras $B_{l}^{(i)}=$ End $_{A_{l}^{(i)}}\left(T_{l}^{(i)}\right)$ of hereditary algebras $A_{l}^{(i)}$ by tilting $A_{l}^{(i)}$-modules $T_{l}^{(i)}$ without preinjective direct summands
- torsion parts $\mathcal{X}\left(T_{r}^{(j)}\right) \cap \mathscr{C}_{T_{r}^{(j)}}$ of the connecting components $\mathscr{C}_{T_{r}^{(j)}}$ of tilted algebras $B_{r}^{(j)}=$ End $_{A_{r}^{(j)}}\left(T_{r}^{(j)}\right)$ of hereditary algebras $A_{r}^{(j)}$ by tilting $A_{r}^{(j)}$-modules $T_{r}^{(j)}$ without postprojective direct summands
along a finite acyclic part in the middle of \mathscr{C} (and usually \mathscr{C} does not admit a section)

6. Quasitilted algebras

Abelian K-category \mathscr{H} over a field K is said to be hereditary if, for all objects X and Y of \mathscr{H}, the following conditions are satisfied

- $\mathrm{Ext}_{\mathscr{H}}^{2}(X, Y)=0$
- $\operatorname{Hom}_{\mathscr{H}}(X, Y)$ and $\mathrm{Ext}_{\mathscr{H}}^{1}(X, Y)$ are finite dimensional K-vector spaces

An object T of a hereditary abelian K-category \mathscr{H} is said a tilting object if the following conditions are satisfied

- $\operatorname{Ext}_{\mathscr{H}}^{1}(T, T)=0$
- For an object X of $\mathscr{H}, \operatorname{Hom}_{\mathscr{H}}(T, X)=0$ and $\operatorname{Ext}_{\mathscr{H}}^{1}(T, X)=0$ force $X=0$
- T direct sum of pairwise nonisomorphic indecomposable objects of \mathscr{H}
A finite dimensional hereditary K-algebra. Then
- $\mathscr{H}=\bmod A$ hereditary abelian K-category
- A module T in $\bmod A$ is a tilting object of $\bmod A$ if and only if T is a tilting module

A quasitilted algebra is an algebra of the form End $\left.\mathscr{H}^{(} T\right)$, where T is a tilting object of an abelian hereditary K-category \mathscr{H}.

A finite dimensional K-algebra over a field K

A path in ind A is a sequence of homomorphisms

$$
M_{0} \xrightarrow{f_{1}} M_{1} \xrightarrow{f_{2}} M_{2} \longrightarrow \ldots \longrightarrow M_{t-1} \xrightarrow{f_{t}} M_{t}
$$

in ind A with $f_{1}, f_{2}, \ldots, f_{t}$ nonzero and nonisomorphisms
M_{0} predecessor of M_{t} in ind A
M_{t} successor of M_{0} in ind A
Every module M in ind A is its own (trivial) predecessor and successor
\mathcal{L}_{A} full subcategory of ind A formed by all modules X such that $\operatorname{pd}_{A} Y \leq 1$ for every predecessor Y of X in ind A
\mathcal{R}_{A} full subcategory of ind A formed by all modules X in ind A such that id $_{A} Y \leq 1$ for every successor Y of X in ind A
\mathcal{L}_{A} closed under predecessors in ind A
\mathcal{R}_{A} closed under successors in ind A

Theorem (Happel-Reiten-Smalø). Let B be a finite dimensional K-algebra. The following conditions are equivalent:
(1) B is a quasitilted algebra.
(2) gl. $\operatorname{dim} B \leq 2$ and every module X in ind B satisfies $\operatorname{pd}_{B} X \leq 1$ or $\operatorname{id}_{B} X \leq 1$.
(3) \mathcal{L}_{B} contains all indecomposable projective B-modules.
(4) \mathcal{R}_{B} contains all indecomposable injective B-modules.

Theorem (Happel-Reiten-Smalø). Let B be a quasitilted K-algebra. Then
(1) The quiver Q_{B} of B is acyclic.
(2) ind $B=\mathcal{L}_{B} \cup \mathcal{R}_{B}$.
(3) If B is of finite representation type, then B is a tilted algebra.

Theorem (Skowroński). Let B be an indecomposable finite dimensional K-algebra. The following conditions are equivalent:
(1) B is a tilted algebra.
(2) gl. $\operatorname{dim} B \leq 2$, ind $B=\mathcal{L}_{B} \cup \mathcal{R}_{B}$ and $\mathcal{L}_{B} \cap \mathcal{R}_{B}$ contains a directing module.

A module M in ind B is directing if M does not lie on an oriented cycle in ind B.

Theorem (Coelho-Skowroński). Let B be a quasitilted but not tilted algebra. Then every component of Γ_{B} is semiregular.

A component \mathscr{C} of Γ_{B} is semiregular if \mathscr{C} does not contain simultaneously a projective module and an injective module.

Canonical algebras

Special case: K a field

$m \geq 2$ natural number
$\mathrm{p}=\left(p_{1}, \ldots, p_{m}\right) m$-tuple of natural numbers
$\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) m$-tuple of pairwise different elements of $\mathbb{P}_{1}(K)=K \cup\{\infty\}$, normalised such that $\lambda_{1}=\infty, \lambda_{2}=0, \lambda_{3}=1$

$$
\circ \stackrel{\alpha_{12}}{\leftarrow} \circ \stackrel{\alpha_{13}}{\leftarrow} \ldots \stackrel{\alpha_{1 p_{1}-1}^{\leftrightarrows}}{\leftrightarrows} \circ
$$

$C(\mathbf{p}, \underline{\lambda})$ defined as follows.
For $m=2, C(\mathbf{p}, \underline{\lambda})=K \Delta(\mathbf{p})$ path algebra of $\Delta(\mathrm{p})$
For $m \geq 3, C(\mathbf{p}, \underline{\lambda})=K \Delta(\mathbf{p}) / I(\mathbf{p}, \underline{\lambda})$ $I(\mathbf{p}, \underline{\lambda})$ ideal of $K \Delta(\mathbf{p})$ generated by $\alpha_{j p_{j}} \ldots \alpha_{j 2} \alpha_{j 1}+$ $\alpha_{1 p_{1} \ldots \alpha_{12} \alpha_{11}}+\lambda_{j} \alpha_{2 p_{2}} \ldots \alpha_{22} \alpha_{21}$ for $j \in\{3, \ldots, m\}$
$C(\mathbf{p}, \underline{\lambda})$ canonical algebra of type ($\mathbf{p}, \underline{\lambda}$)
p weight sequence, $\underline{\lambda}$ parameter sequence
For K algebraically closed, these are all canonical algebras (up to isomorphism) 70

General case (version of Crawley-Boevey)

Let F and G be finite dimensional division algebras over a field $K,{ }_{F} M_{G}$ an F - G-bimodule with $\left(\operatorname{dim}_{F} M\right)\left(\operatorname{dim} M_{G}\right)=4, K$ acting centrally on ${ }_{F} M_{G}$.

Denote

$$
\chi=\sqrt{\frac{\operatorname{dim}_{F} M}{\operatorname{dim} M_{G}}}
$$

hence $\chi=\frac{1}{2}, 1$, or 2 .

An M-triple is a triple $\left({ }_{F} N, \varphi, N_{G}^{\prime}\right)$, where ${ }_{F} N$ is a finite dimensional nonzero left F-module, N_{G}^{\prime} a finite dimensional nonzero right G-module, and $\varphi:{ }_{F} N \otimes_{\mathbb{Z}} N_{G}^{\prime} \rightarrow{ }_{F} M_{G}$ an F-G-homomorphism such that

- $\frac{\operatorname{dim}_{F} N}{\operatorname{dim} N_{G}^{\prime}}=\chi$,
- whenever ${ }_{F} X$ and X_{G}^{\prime} are nonzero submodules of ${ }_{F} N$ and N_{G}^{\prime}, respectively, with $\varphi\left(X \otimes_{\mathbb{Z}} X^{\prime}\right)=0$, then $\frac{\operatorname{dim}_{F} X}{\operatorname{dim}_{F} N}+\frac{\operatorname{dim} X_{G}^{\prime}}{\operatorname{dim} N_{G}^{\prime}}<1$.

Two M-triples $\left(N_{1}, \varphi_{1}, N_{1}^{\prime}\right)$ and $\left(N_{2}, \varphi_{2}, N_{2}^{\prime}\right)$ are said to be congruent if there are isomorphisms of modules $\Theta:{ }_{F}\left(N_{1}\right) \rightarrow{ }_{F}\left(N_{2}\right)$ and $\Theta^{\prime}:\left(N_{1}^{\prime}\right)_{G} \rightarrow\left(N_{2}^{\prime}\right)_{G}$ such that the following diagram is commutative

The middle D of an M-triple (${ }_{F} N, \varphi, N_{G}^{\prime}$) is defined to be the set of pairs $\left(d, d^{\prime}\right)$, where d is an endomorphism of F^{N} and d^{\prime} is an endomorphism of N_{G}^{\prime} such that $\varphi(d \otimes 1)=\varphi(1 \otimes$ d^{\prime}). Then D is a division K-algebra under componentwise addition and multiplication, N is an F - D-bimodule, N^{\prime} a D - G-bimodule, and φ induces an F-G-homomorphism $\varphi:{ }_{F} N \otimes_{D} N_{G}^{\prime} \rightarrow{ }_{F} M_{G}$.

Let $r \geq 0$ and $n_{1}, \ldots, n_{r} \geq 2$ be integers.
A canonical algebra \wedge of type $\left(n_{1}, \ldots, n_{r}\right)$ over a field K is an algebra isomorphic to a matrix algebra of the form

$n_{1}-1$	[$N_{1} \cdots N_{1}$	$N_{2} \cdots N_{2}$	\cdots	$N_{r} \ldots N_{r}$	M
	0	$\begin{array}{ccc} D_{1} & \cdots & D_{1} \\ & \ddots & \vdots \\ 0 & & D_{1} \end{array}$	0	\ldots	0	N_{1}^{\prime} \vdots N_{1}^{\prime}
$n_{2}-1\{$	0	0	$\begin{array}{ccc} \hline D_{2} & \cdots & D_{2} \\ & \ddots & \vdots \\ 0 & & D_{2} \\ \hline \end{array}$.	0	N_{2}^{\prime} \vdots N_{2}^{\prime}
$n_{r}-1$ \{	0	0	0	\ldots	$\begin{array}{ccc} \hline D_{r} & \cdots & D_{r} \\ & \ddots & \vdots \\ 0 & & D_{r} \end{array}$	N_{r}^{\prime} \vdots N_{r}^{\prime}
	0	0	0	0	0	${ }_{r}$

where F and G are finite dimensional division algebras over $K, M={ }_{F} M_{G}$ an F - G-bimodule with $\left(\operatorname{dim}_{F} M\right)\left(\operatorname{dim} M_{G}\right)=4$ and K acting centrally on ${ }_{F} M_{G}$, $\left(N_{1}, \varphi_{1}, N_{1}^{\prime}\right), \ldots,\left(N_{r}, \varphi_{r}, N_{r}^{\prime}\right)$ are mutually noncongruent M-triples with the middles D_{1}, \ldots, D_{r}, and the multiplication given by the actions of division algebras on bimodules and the appropriate homomorphisms $\varphi_{1}, \ldots, \varphi_{r}$.

The valued quiver Q_{Λ} of a canonical algebra Λ of type (n_{1}, \ldots, n_{r}) is of the form

$$
\begin{gathered}
\left(a_{1}, b_{1}\right) \\
(1,1) \leftarrow(1,2) \leftarrow \cdots \leftarrow\left(1, n_{1}-1\right)\left(c_{1}, d_{1}\right) \\
\left(a_{r}, b_{r}\right) \\
(r, 1) \leftarrow(r, 2) \leftarrow \cdots \leftarrow\left(r, n_{r}-1\right)^{\left(a_{r}, d_{r}\right)}(2,1) \leftarrow(2,2) \leftarrow \cdots \leftarrow\left(2, n_{2}-1\right)^{\left(c_{2}, d_{2}\right)} \omega \\
a_{i}=\operatorname{dim}_{F} N_{i}, \quad b_{i}=\operatorname{dim}\left(N_{i}\right)_{F_{i}}, \\
c_{i}=\operatorname{dim}_{F_{i}} N_{i}^{\prime}, \quad d_{i}=\operatorname{dim}\left(N_{i}^{\prime}\right)_{G}
\end{gathered}
$$

for $i \in\{1, \ldots, r\}$
\wedge canonical algebra $\Rightarrow \operatorname{gl} . \operatorname{dim} \wedge \leq 2$ Hence the Euler form q_{Λ} of \wedge is defined
\wedge canonical algebra \Rightarrow

- q_{\wedge} positive semidefinite of corank one or two, or
- q_{\wedge} is indefinite

Theorem. Let \wedge be a canonical algebra over a field K. The following conditions are equivalent:
(1) q_{\wedge} is positive semidefinite of corank one.
(2) Q_{\wedge} is of one of the following forms

$\bullet(1,3) \bullet(3,1)$
$\bullet \stackrel{(3,1)}{(1,3)}$ -

Theorem. Let \wedge be a canonical algebra over a field K. The following conditions are equivalent:
(1) q_{\wedge} is positive semidefinite of corank two.
(2) Q_{\wedge} is of one of the following forms

$\bullet \stackrel{(3,1)}{ } \bullet \quad \bullet(1,3)$

\wedge canonical algebra over a field K
\wedge canonical algebra of Euclidean type:
q_{Λ} is positive semidefinite of corank one

\wedge canonical algebra of tubular type:
 q_{Λ} is positive semidefinite of corank two

\wedge canonical algebra of wild type:
q_{\wedge} is indefinite
Q_{Λ}^{*} the valued quiver obtained from the valued quiver Q_{\wedge} of \wedge by removing the unique source and the arrows attached to it

- \wedge canonical algebra of Euclidean type if and only if Q_{Λ}^{*} is a Dynkin valued quiver
- \wedge canonical algebra of tubular type if and only if Q_{Λ}^{*} is a Euclidean valued quiver

Theorem (Ringel). Let \wedge be a canonical algebra of type (n_{1}, \ldots, n_{r}) over a field K. Then the general shape of the AuslanderReiten quiver Γ_{\wedge} of \wedge is as follows

- \mathcal{P}^{\wedge} is a family of components containing a unique postprojective component $\mathcal{P}(\wedge)$ and all indecomposable projective Λ-modules.
- \mathcal{Q}^{\wedge} is a family of components containing a unique preinjective component $\mathcal{Q}(\wedge)$ and all indecomposable injective \wedge-modules.
- \mathcal{T}^{\wedge} is an infinite family of faithful pairwise orthogonal generalized standard stable tubes, having stable tubes of ranks n_{1}, \ldots, n_{r} and the remaining tubes of rank one.
- \mathcal{T}^{\wedge} separates \mathcal{P}^{\wedge} from \mathcal{Q}^{\wedge}.
- $\mathrm{pd}_{\wedge} X \leq 1$ for all modules X in $\mathcal{P}^{\wedge} \cup \mathcal{T}^{\wedge}$.
- id \wedge, $Y \leq 1$ for all modules Y in $\mathcal{T}^{\wedge} \cup \mathcal{Q}^{\wedge}$.
- gl. $\operatorname{dim} \wedge \leq 2$.

Let \wedge be a canonical algebra of type (n_{1}, \ldots, n_{r}) T tilting module in add \mathcal{P}^{\wedge}

$C=\operatorname{End}_{\wedge}(T)$ concealed canonical algebra of type \wedge

The general shape of Γ_{C} is a as follows

- $\mathcal{P}^{C}=\operatorname{Hom}_{\wedge}\left(T, \mathcal{T}(T) \cap \mathcal{P}^{\wedge}\right) \cup E x t{ }_{\wedge}^{1}(T, \mathcal{F}(T))$ is a family of components containing a unique postprojective component $\mathcal{P}(C)$ and all indecomposable projective C-modules.
- $\mathcal{Q}^{C}=\operatorname{Hom}_{\wedge}\left(T, \mathcal{Q}^{\wedge}\right)$ is a family of components containing a unique preinjective component $\mathcal{Q}(C)$ and all indecomposable injective C-modules.
- $\mathcal{T}^{C}=\operatorname{Hom}_{\wedge}\left(T, \mathcal{T}^{\wedge}\right)$ is an infinite family of faithful pairwise orthogonal generalized standard stable tubes, having stable tubes of ranks n_{1}, \ldots, n_{r} and the remaining tubes of rank one.
- \mathcal{T}^{C} separates \mathcal{P}^{C} from \mathcal{Q}^{C}.
- $\mathrm{pd}_{C} X \leq 1$ for all modules X in $\mathcal{P}^{C} \cup \mathcal{T}^{C}$.
- id $_{C} Y \leq 1$ for all modules Y in $\mathcal{T}^{C} \cup \mathcal{Q}^{C}$.
- gl. $\operatorname{dim} C \leq 2$.
$C \cong \operatorname{End}_{\wedge}(T), T$ tilting module in add \mathcal{P}^{\wedge}, if and only if $C \cong \operatorname{End}_{\wedge}\left(T^{\prime}\right), T^{\prime}$ tilting module in add \mathcal{Q}^{\wedge}.
\wedge canonical algebra
T tilting module in $\operatorname{add}\left(\mathcal{P}^{\wedge} \cup \mathcal{T}^{\wedge}\right)$

$B=\operatorname{End}_{\wedge}(T)$ almost concealed canonical algebra of type \wedge

The general shape of Γ_{B} is as follows

- $\mathcal{P}^{B}=\mathcal{P}^{C}$ for a concealed canonical factor algebra C of B.
- \mathcal{Q}^{B} a family of components containing a unique preinjective component $\mathcal{Q}(B)$ and all indecomposable injective B-modules.
- \mathcal{T}^{B} an infinite family of pairwise orthogonal generalized standard ray tubes, separating \mathcal{P}^{B} from \mathcal{Q}^{B}.
- $\operatorname{pd}_{B} X \leq 1$ for all modules X in $\mathcal{P}^{B} \cup \mathcal{T}^{B}$.
- id ${ }_{B} Y \leq 1$ for all modules Y in \mathcal{T}^{B}.
- gl. $\operatorname{dim} B \leq 2$.
\wedge canonical algebra
T tilting module in $\operatorname{add}\left(\mathcal{T}^{\wedge} \cup \mathcal{Q}^{\wedge}\right)$
$B=\operatorname{End}_{\wedge}(T)$
The general shape of Γ_{B} is as follows

- \mathcal{P}^{B} a family of components containing a unique postprojective component $\mathcal{P}(B)$ and all indecomposable projective B-modules.
- $\mathcal{Q}^{B}=\mathcal{Q}^{C}$ for a concealed canonical factor algebra C of B.
- \mathcal{T}^{B} an infinite family of pairwise orthogonal generalized standard coray tubes, separating \mathcal{P}^{B} from \mathcal{Q}^{B}.
- $\operatorname{pd}_{B} X \leq 1$ for all modules X in \mathcal{P}^{B}.
- id $_{B} Y \leq 1$ for all modules Y in $\mathcal{T}^{B} \cup \mathcal{Q}^{B}$.
- gl. $\operatorname{dim} B \leq 2$.
$B \cong \operatorname{End}_{\wedge}(T), T$ tilting module in $\operatorname{add}\left(\mathcal{T}^{\wedge} \cup\right.$ \mathcal{Q}^{\wedge}), if and only if $B^{\mathrm{op}} \cong \operatorname{End}_{\wedge}\left(T^{\prime}\right), T^{\prime}$ tilting module in $\operatorname{add}\left(\mathcal{P}^{\wedge} \cup \mathcal{T}^{\wedge}\right)$ ($B^{\text {op }}$ almost concealed canonical algebra)

Almost concealed canonical algebras of Euclidean type

Theorem. (1) The class of concealed canonical algebras of Euclidean type coincides with the class of concealed algebras of Euclidean type.
(2) The class of almost concealed canonical algebras of Euclidean types coincides with the class of tilted algebras of the form End $_{H}(T)$, where H is a hereditary algebra of a Euclidean type and T is a tilting H-module without preinjective direct summands.
(3) The class of the opposite algebras of almost concealed canonical algebras of Euclidean types coincides with the class of tilted algebras of the form End $H^{(T)}$, where H is a hereditary algebra of a Euclidean type and T is a tilting H-module without postprojective direct summands.
(4) An algebra A is a representation-infinite tilted algebra of a Euclidean type if and only if A is isomorphic to B or B^{Op}, for an almost concealed canonical algebra B of a Euclidean type.

Tubular algebra $=$ almost concealed canonical algebra of tubular type

Theorem. Let B be a tubular algebra. Then the Auslander-Reiten quiver Γ_{B} of B is of the form

where \mathcal{P}^{B} is a postprojective component with a Euclidean section, \mathcal{Q}^{B} is a preinjective component with a Euclidean section, \mathcal{T}_{0}^{B} is an infinite family of pairwise orthogonal generalized standard ray tubes containing at least one indecomposable projective B-module, \mathcal{T}_{∞}^{B} is an infinite family of pairwise orthogonal generalized standard coray tubes containing at least one indecomposable injective B-module, and each \mathcal{T}_{q}^{B}, for $q \in \mathbb{Q}^{+}$(the set of positive rational numbers) is an infinite family of pairwise orthogonal faithful generalized standard stable tubes.

Quasitilted algebra of canonical type - an algebra A of the form $\operatorname{End}_{\mathscr{H}}(T)$, where T is a tilting object in an abelian hereditary K category \mathscr{H} whose derived category $D^{b}(\mathscr{H})$ of \mathscr{H} is equivalent, as a triangulated category, to the derived category $D^{b}(\bmod \wedge)$ of the module category $\bmod \wedge$ of a canonical algebra \wedge over K.

Theorem (Happel-Reiten). Let A be a finite dimensional quasitilted K-algebra over a field K. Then A is either a tilted algebra or a quasitilted algebra of canonical type.

Theorem (Lenzing-Skowroński). Let A be a finite dimensional K-algebra over a field K. The following conditions are equivalent:
(1) A is a representation-infinite quasitilted algebra of canonical type.
(2) Γ_{A} admits a separating family \mathcal{T}^{A} of pairwise orthogonal generalized standard semiregular (ray or coray) tubes.

- $\operatorname{Hom}_{A}\left(\mathcal{T}^{A}, \mathcal{P}^{A}\right)=0, \operatorname{Hom}_{A}\left(\mathcal{Q}^{A}, \mathcal{T}^{A}\right)=0$, $\operatorname{Hom}_{A}\left(\mathcal{Q}^{A}, \mathcal{P}^{A}\right)=0$
- every homomorphism $f: X \rightarrow Y$ with X in \mathcal{P}^{A} and Y in \mathcal{Q}^{A} factorizes through a module Z from $\operatorname{add} \mathcal{T}^{A}$

Moreover, A admits factor algebras A_{l} (left part of A) and A_{r} (right part of A) such that

- A_{l} is almost concealed of canonical type and $\mathcal{P}^{A}=\mathcal{P}^{A_{l}}$
- A_{r}^{OP} is almost concealed of canonical type and $\mathcal{Q}^{A}=\mathcal{Q}^{A_{r}}$

Example. Let $A=K Q / I$ where Q is the quiver

and I is the ideal of $K Q$ generated by the elements
$\alpha_{2} \alpha_{1}+\beta_{3} \beta_{2} \beta_{1}+\gamma_{3} \gamma_{2} \gamma_{1}, \alpha_{2} \sigma, \xi \gamma_{1}, \delta \gamma_{2}, \nu \varrho$
Then A is a quasitilted algebra of canonical type
$A_{l}=K Q^{(l)} / I^{(l)}$ tubular algebra of type $(3,3,3)$
$Q^{(l)}$ obtained from Q by removing the vertices $5,6,7,8,9$ and the arrows $\xi, \eta, \delta, \varrho, \nu$
$I^{(l)}$ ideal of $K Q^{(l)}$ generated by

$$
\alpha_{2} \alpha_{1}+\beta_{3} \beta_{2} \beta_{1}+\gamma_{3} \gamma_{2} \gamma_{1}, \quad \alpha_{2} \sigma
$$

$A_{r}=K Q^{(r)} / I^{(r)}$ almost concealed canonical algebra of wild type $(2,3,8)$
$Q^{(r)}$ obtained from Q by removing the vertex 4 and the arrow σ
$I^{(r)}$ ideal of $K Q^{(r)}$ generated by

$$
\begin{gathered}
\alpha_{2} \alpha_{1}+\beta_{3} \beta_{2} \beta_{1}+\gamma_{3} \gamma_{2} \gamma_{1}, \quad \xi \gamma_{1}, \quad \delta \gamma_{2}, \quad \nu \varrho \\
\Gamma_{A}=\mathcal{P}^{A} \vee \mathcal{T}^{A} \vee \mathcal{Q}^{A} \\
\mathcal{P}^{A}=\mathcal{P}^{A_{l}}, \quad \mathcal{Q}^{A}=\mathcal{Q}^{A_{r}}
\end{gathered}
$$

\mathcal{T}^{A} semiregular family of tubes separating \mathcal{P}^{A} from \mathcal{Q}^{A}
\mathcal{T}^{A} consists of a stable tube \mathcal{T}_{1}^{A} of rank 3

(identifying along the dashed lines)
consisting of indecomposable modules over the canonical algebra $C=K \Delta / J$, where Δ is the full subquiver of Q given by the vertices $0, \omega,(1,1),(2,1),(2,2),(3,1),(3,2)$ and J is the ideal of $K \Delta$ generated by $\alpha_{2} \alpha_{1}+\beta_{3} \beta_{2} \beta_{1}+\gamma_{3} \gamma_{2} \gamma_{1}$

a coray tube \mathcal{T}_{0}^{A} of the form

(identifying along the dashed lines)
obtained from the stable tube \mathcal{T}_{0}^{C} of Γ_{C} of rank 2, with $S_{(1,1)}$ and N on the mouth, by one coray insertion

a ray tube \mathcal{T}_{2}^{A} of the form

(identifying along the dashed lines)
obtained from the stable tube \mathcal{T}_{2}^{C} of rank 3 , with $S_{(3,1)}, S_{(3,2)}$ and R on the mouth, by 5 ray insertions

and the infinite family of stable tubes of rank 1 , consisting of indecomposable C-modules

7. Double tilted algebras

Theorem (Happel-Reiten-Smalø). Let A be a finite dimensional K-algebra such that each indecomposable X in mod A satisfies $\operatorname{pd}_{A} X \leq 1$ or id $A_{A} X \leq 1$. Then gl. $\operatorname{dim} A \leq 3$.

Following Coelho and Lanzilotta a finite dimenisional K-algebra A is said to be

- shod (small homological dimension) if every indecomposable module X in $\bmod A$ satisfies $\mathrm{pd}_{A} X \leq 1$ or $\operatorname{id}_{A} X \leq 1$.
- strict shod if A is shod and $\mathrm{gl} . \operatorname{dim} A=3$.

Theorem (Coelho-Lanzilotta). Let A be a finite dimensional K-algebra over a field K. The following conditions are equivalent:
(1) A is a shod algebra.
(2) ind $A=\mathcal{L}_{A} \cup \mathcal{R}_{A}$.
(3) There exists a splitting torsion pair $(\mathcal{Y}, \mathcal{X})$ in $\bmod A$ such that $\operatorname{pd}_{A} Y \leq 1$, for each module $Y \in \mathcal{Y}$ (torsion-free part), and $\mathrm{id}_{A} X \leq 1$, for each module $X \in \mathcal{X}$ (torsion part).

Theorem. Let A be a shod algebra. The following conditions are equivalent:
(1) A is a strict shod algebra.
(2) $\mathcal{L}_{A} \backslash \mathcal{R}_{A}$ contains an indecomposable injective A-module.
(3) $\mathcal{R}_{A} \backslash \mathcal{L}_{A}$ contains an indecomposable projective A-module.

Example. $A=K Q / I, Q$ the quiver

$$
1 \stackrel{\alpha}{\longleftarrow} 2 \stackrel{\beta}{\longleftarrow} 3 \stackrel{\gamma}{\longleftarrow} 4 \stackrel{\sigma}{\longleftarrow} 5
$$

I ideal of $K Q$ generated by $\beta \alpha$ and $\gamma \beta$. The Auslander-Reiten quiver Γ_{A} is of the form

minimal projective resolution of S_{4}, so $\mathrm{pd}_{A} S_{4}=3$.

A strict shod algebra

A finite dimensional K-algebra over a field K \mathscr{C} a component of Γ_{A}.

A full translation subquiver Δ of \mathscr{C} is said to be a double section of \mathscr{C} if the following conditions are satisfied:
(a1) Δ is acyclic.
(a2) Δ is convex in \mathscr{C}.
(a3) For each τ_{A}-orbit \mathcal{O} in \mathscr{C}, we have $1 \leq|\Delta \cap \mathcal{O}| \leq 2$.
(a4) If \mathcal{O} is a τ_{A}-orbit \mathcal{O} in \mathscr{C} and $|\Delta \cap \mathcal{O}|=2$ then $\Delta \cap \mathcal{O}=\left\{X, \tau_{A} X\right\}$, for some module $X \in \mathscr{C}$, and there exist sectional paths $I \rightarrow \cdots \rightarrow \tau_{A} X$ and $X \rightarrow \cdots \rightarrow P$ in \mathscr{C} with I injective and P projective.

A double section Δ in \mathscr{C} with $|\Delta \cap \mathcal{O}|=2$, for some τ_{A}-orbit \mathcal{O} in \mathscr{C}, is said to be a strict double section of \mathscr{C}.

A path $X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{m}$, with $m \geq 2$, in an Auslander-Reiten quiver Γ_{A} is said to be almost sectional if there exists exactly one index $i \in\{2, \ldots, m\}$ such that $X_{i-2} \cong \tau_{A} X_{i}$.

For a double section Δ of \mathscr{C}, we define the full subquivers of Δ :
$\Delta_{l}^{\prime}=\left\{\begin{array}{r}\text { there is an almost sectional } \\ X \in \Delta ; \text { path } X \rightarrow \cdots \rightarrow P \text { with } P \\ \text { projective }\end{array}\right\}$,
$\Delta_{r}^{\prime}=\left\{X \in \Delta \begin{array}{c}\text { there is an almost sectional } \\ \text { path } I \rightarrow \cdots \rightarrow X \text { with } I \text { in- } \\ \text { jective }\end{array}\right\}$,
$\Delta_{l}=\left(\Delta \backslash \Delta_{r}^{\prime}\right) \cup \tau_{A} \Delta_{r}^{\prime}$, left part of Δ,
$\Delta_{r}=\left(\Delta \backslash \Delta_{l}^{\prime}\right) \cup \tau_{A}^{-1} \Delta_{l}^{\prime}$, right part of Δ.
Δ is a section if and only if $\Delta_{l}=\Delta=\Delta_{r}$

An indecomposable finite dimensional K-algebra B is said to be a double tilted algebra if the following conditions are satisfied:
(1) Γ_{B} admits a component \mathscr{C} with a faithful double section Δ.
(2) There exists a tilted quotient algebra $B^{(l)}$ of B (not necessarily indecomposable) such that Δ_{l} is a disjoint union of sections of the connecting components of the indecomposable parts of $B^{(l)}$ and the category of all predecessors of Δ_{l} in ind B coincides with the category of all predecessors of Δ_{l} in ind $B^{(l)}$.
(3) There exists a tilted quotient algebra $B^{(r)}$ of B (not necessarily indecomposable) such that Δ_{r} is a disjoint union of sections of the connecting components of the indecomposable parts of $B^{(r)}$, and the category of all successors of Δ_{r} in ind B coincides with the category of all successors of Δ_{r} in ind $B^{(r)}$.
B is a strict double tilted algebra if the double section Δ is strict
$B^{(l)}$ left tilted algebra of B
$B^{(r)}$ right tilted algebra of B
B is a tilted algebra if and only if $B=B^{(l)}=$ $B^{(r)}$

Theorem (Reiten-Skowroński). An indecomposable finite dimensional K-algebra A is a double tilted algebra if and only if the quiver Γ_{A} contains a component \mathscr{C} with a faithful double section Δ such that $\operatorname{Hom}_{A}\left(U, \tau_{A} V\right)=$ 0 , for all modules $U \in \Delta_{r}$ and $V \in \Delta_{l}$.

Theorem (Reiten-Skowroński). Let A be an indecomposable finite dimensional K-algebra. The following conditions are equivalent:
(1) A is a strict shod algebra.
(2) A is a strict double tilted algebra.
(3) Γ_{A} admits a component \mathscr{C} with a faithful strict double section Δ such that $\operatorname{Hom}_{A}\left(U, \tau_{A} V\right)=0$, for all modules $U \in$ Δ_{r} and $V \in \Delta_{l}$.

Corollary. An indecomposable finite dimensional K-algebra A is a shod algebra if and only if A is one of the following

- a tilted algebra,
- a strict double tilted algebra,
- a quasitilted algebra of canonical algebra.

Example. $A=K Q / I, Q$ the quiver

$$
1 \stackrel{\alpha}{\longleftarrow} 2 \stackrel{\beta}{\longleftarrow} 3 \stackrel{\gamma}{\longleftarrow} 4 \stackrel{\sigma}{\longleftarrow} 5
$$

I ideal of $K Q$ generated by $\beta \alpha$ and $\gamma \beta$
Γ_{A} is of the form

Δ faithful double section of $\mathscr{C}=\Gamma_{A}$
$\Delta_{l}^{\prime}=\left\{P_{2}, S_{2}\right\}$
$\Delta_{r}^{\prime}=\left\{S_{3}, P_{4}, P_{5}\right\}$
$\Delta_{l}=\left(\Delta \backslash \Delta_{r}^{\prime}\right) \cup \tau_{A} \Delta_{r}^{\prime}=\left\{P_{2}, S_{2}, P_{3}\right\}$
$\Delta_{r}=\left(\Delta \backslash \Delta_{l}^{\prime}\right) \cup \tau_{A}^{-1} \Delta_{l}^{\prime}=\left\{P_{3}, S_{3}, P_{4}, P_{5}\right\}$
$A^{(l)}$ left tilted algebra of A is hereditary of Dynkin type \mathbb{A}_{3}
$A^{(r)}$ right tilted algebra of A is hereditary of Dynkin type \mathbb{A}_{4}
B strict double tilted algebra
Γ_{B} admits a unique component $\mathscr{C}=\mathscr{C}_{B}$ with a faithful double section Δ

Moreover,

$$
\Gamma_{B}=\mathcal{Y} \Gamma_{B^{(l)}} \cup \mathscr{C}_{B} \cup \mathcal{X} \Gamma_{B^{(r)}},
$$

where

- $\mathcal{Y} \Gamma_{B^{(l)}}$ is the disjoint union of all components of $\Gamma_{B^{(l)}}$ contained entirely in the torsion-free part $\mathcal{Y}\left(T^{(l)}\right)$ of $\bmod B^{(l)}$, determined by a tilting module $T^{(l)}$ over a hereditary algebra $A^{(l)}$ of type Δ_{l} such that $B^{(l)} \cong \operatorname{End}_{A^{(l)}}\left(T^{(l)}\right)$.
- $\mathcal{X} \Gamma_{B^{(r)}}$ is the disjoint union of all components of $\Gamma_{B^{(r)}}$ contained entirely in the torsion part $\mathcal{X}\left(T^{(r)}\right)$ of $\bmod B^{(r)}$, determined by a tilting module $T^{(r)}$ over a hereditary algebra $A^{(r)}$ of type Δ_{r} such that $B^{(r)} \cong \operatorname{End}_{A^{(r)}}\left(T^{(r)}\right)$.

\mathscr{C}_{B} connecting component of Γ_{B}

- $\operatorname{Hom}_{B}\left(\mathscr{C}_{B}, \mathcal{Y} \Gamma_{B^{(l)}}\right)=0, \operatorname{Hom}_{B}\left(\mathcal{X} \Gamma_{B^{(r)}}, \mathscr{C}_{B}\right)$ $=0, \operatorname{Hom}_{B}\left(\mathcal{X} \Gamma_{B^{(r)}}, \mathcal{Y} \Gamma_{B^{(l)}}\right)=0$.
- \mathscr{C}_{B} is generalized standard, contains at least one projective module and at least one injective module.

Theorem (Skowroński). Let A be an indecomposable finite dimensional K-algebra. The following conditions are equivalent:
(1) A is a double tilted algebra.
(2) ind $A=\mathcal{L}_{A} \cup \mathcal{R}_{A}$ and $\mathcal{L}_{A} \cap\left(\mathcal{R}_{A} \cup \tau_{A} \mathcal{R}_{A}\right)$ contains a directing module.
(3) ind $A=\mathcal{L}_{A} \cup \mathcal{R}_{A}$ and $\left(\mathcal{L}_{A} \cup \tau_{A}^{-1} \mathcal{L}_{A}\right) \cap \mathcal{R}_{A}$ contains a directing module.

8. Generalized double tilted algebras

A finite dimensional K-algebra
Σ full translation subquiver of Γ_{A} is said to be almost acyclic if all but finitely many modules of Σ do not lie on oriented cycles in Γ_{A}
\mathscr{C} component of Γ_{A}
A full translation subquiver Δ of \mathscr{C} is said to be a multisection of \mathscr{C} if the following conditions are satisfied:
(1) Δ is almost acyclic.
(2) Δ is convex.
(3) For each τ_{A}-orbit \mathcal{O} in \mathscr{C}, we have $1 \leq|\Delta \cap \mathcal{O}|<\infty$.
(4) $|\Delta \cap \mathcal{O}|=1$, for all but finitely many τ_{A}-orbits \mathcal{O} in \mathscr{C}.
(5) No proper full convex subquiver of Δ satisfies the conditions (1)-(4).

For a multisection Δ of a component \mathscr{C} of Γ_{A} we define the following full subquivers of \mathscr{C} :
$\Delta_{l}^{\prime}=\left\{\begin{array}{c}\text { there is a nonsectional path } \\ X \in \Delta ; \cdots \rightarrow P \text { with } P \text { projec- }\end{array}\right\}$,
$\Delta_{r}^{\prime}=\left\{X \in \Delta ; \begin{array}{l}\text { there is a nonsectional path } \\ I \rightarrow \cdots \rightarrow X \text { with } I \text { injective }\end{array}\right\}$,
$\Delta_{l}^{\prime \prime}=\left\{X \in \Delta_{l}^{\prime} ; \tau_{A}^{-1} X \notin \Delta_{l}^{\prime}\right\}$,
$\Delta_{r}^{\prime \prime}=\left\{X \in \Delta_{r}^{\prime} ; \tau_{A} X \notin \Delta_{r}^{\prime}\right\}$,
$\Delta_{l}=\left(\Delta \backslash \Delta_{r}^{\prime}\right) \cup \tau_{A} \Delta_{r}^{\prime \prime}$
$\Delta_{r}=\left(\Delta \backslash \Delta_{l}^{\prime}\right) \cup \tau_{A}^{-1} \Delta_{l}^{\prime \prime}$
$\Delta_{c}=\Delta_{l}^{\prime} \cap \Delta_{r}^{\prime}$,
left part of Δ,
right part of Δ,
core of Δ.

Theorem (Reiten-Skowroński). Let A be a finite dimensional K-algebra. A component \mathscr{C} of Γ_{A} is almost acyclic if and only if \mathscr{C} admits a multisection.

Theorem (Reiten-Skowroński). Let A be a finite dimensional K-algebra, \mathscr{C} a component of Γ_{A} and Δ a multisection of \mathscr{C}. Then
(1) Every cycle of \mathscr{C} lies in Δ_{c}.
(2) Δ_{c} is finite.
(3) Every indecomposable module X in \mathscr{C} is in Δ_{c}, or a predecessor of Δ_{l} or a successor of Δ_{r} in \mathscr{C}.
(4) Δ is faithful if and only if \mathscr{C} is faith $h^{1} f^{2} 1$.
Δ multisection of a component of Γ_{A} $w(\Delta) \in \mathbb{N} \cup\{\infty\}$ width of Δ (numerical invariant of Δ)
Take a path p in Δ. Then a subpath q of p $M \rightarrow Z^{(1)} \rightarrow \tau_{A}^{-1} M \rightarrow Z^{(2)} \rightarrow \tau_{A}^{-2} M \rightarrow \ldots \rightarrow Z^{(n)} \rightarrow \tau_{A}^{-n} M$
is called a hook path of length n (if $n \geq 1$), and q is a maximal hook subpath of p if q is not contained in any hook subpath of p of larger length.
We associate to the path p a sequence of maximal hook subpaths of p as follows (if there are hook subpaths of p):

- Start with a maximal hook subpath $M \rightarrow Z^{(1)} \rightarrow \tau_{A}^{-1} M \rightarrow Z^{(2)} \rightarrow \tau_{A}^{-2} M \rightarrow \ldots \rightarrow Z^{(n)} \rightarrow \tau_{A}^{-n} M$ of p, where M is the first module on p which is a source of hook subpath of p.
- Then take a maximal hook subpath of p with the source at the first possible successor of $\tau_{A}^{-n} M$ on p.
- Continue the process.
$i(p)=$ the sum of lengths of these hook subpaths of p
Then $i(p)=0$ if and only if the path p is sectional
$w(\Delta)=$ maximum of $i(p)+1$ for all paths p in Δ

103
$w(\Delta) \in(\mathbb{N} \backslash\{0\}) \cup\{\infty\}$

A multisection Δ of \mathscr{C} with $w(\Delta)=n$ is called n-section.

Observe that

- $w(\Delta)<\infty$ if and only if Δ is acyclic.
- Δ is a 1 -section if and only if Δ is a section.
- Δ is a 2-section if and only if Δ is a strict double section.

Proposition. Let A be an algebra, \mathscr{C} a component of Γ_{A} and Δ, Σ are multisections of \mathscr{C}. Then

$$
\Delta_{c}=\Sigma_{c} \text { and } w(\Delta)=w(\Sigma)
$$

Hence the core and the width of a multisection of an almost acyclic component \mathscr{C} of Γ_{A} are invariants of \mathscr{C}.

Every finite component of Γ_{A} is trivially almost acyclic, and hence admits a multisection.

An indecomposable finite dimensional K-algebra B is said to be a generalised double tilted algebra if the following conditions are satisfied:
(1) Γ_{B} admits a component \mathscr{C} with a faithful multisection \triangle.
(2) There exists a tilted quotient algebra $B^{(l)}$ of B (not necessarily indecomposable) such that Δ_{l} is a disjoint union of sections of the connecting components of the indecomposable parts of $B^{(l)}$ and the category of all predecessors of Δ_{l} in ind B coincides with the category of all predecessors of Δ_{l} in ind $B^{(l)}$.
(3) There exists a tilted quotient algebra $B^{(r)}$ of B (not necessarily indecomposable) such that Δ_{r} is a disjoint union of sections of the connecting components of the indecomposable parts of $B^{(r)}$, and the category of all successors of Δ_{r} in ind B coincides with the category of all successors of Δ_{r} in ind $B^{(r)}$.
B is said to be an n-double tilted algebra if Γ_{B} admits a component \mathscr{C} with a faithful n-section Δ and the conditions (2) and (3) hold.

Observe that every indecomposable algebra of finite representation type is a generalized double tilted algebra.

Theorem (Reiten-Skowroński). Let B be an n-double tilted algebra. Then

$$
\text { gl. } \operatorname{dim} B \leq n+1 .
$$

Theorem (Reiten-Skowroński). Let A be an indecomposable finite dimensional K-algebra. The following conditions are equivalent:
(1) A is a generalized double tilted algebra.
(2) Γ_{A} admits a component \mathscr{C} with a faithful multisection Δ such that $\operatorname{Hom}_{A}\left(U, \tau_{A} V\right)=$ 0 , for all modules $U \in \Delta_{r}$ and $V \in \Delta_{l}$.
(3) Γ_{A} admits a faithful generalized standard almost cyclic component.

Corollary. Let A be an indecomposable finite dimensional K-algebra. The following equivalences hold:
(1) A is an n-double tilted algebra, for some $n \geq 2$, if and only if Γ_{A} contains a faithful generalized standard almost cyclic component \mathscr{C} with a nonsectional path from an injective module to a projective module.
(2) A is an n-double tilted algebra, for some $n \geq 3$, if and only if Γ_{A} contains a faithful generalized standard component \mathscr{C} with a multisection Δ such that $\Delta_{c} \neq \emptyset$.

A an algebra

\mathscr{C} component of Γ_{A}
$\mathcal{L}_{\mathscr{C}}$ the set of all modules X in \mathscr{C} such that $\operatorname{pd}_{A} Y \leq 1$ for any predecessor Y of X in \mathscr{C}.
$\mathcal{R}_{\mathscr{C}}$ the set of all modules X in \mathscr{C} such that $\mathrm{id}_{A} Y \leq 1$ for any successor Y of X in \mathscr{C}.

Observe that, if Δ is a multisection of \mathscr{C}, then

$$
\Delta_{c} \subseteq \mathscr{C} \backslash\left(\mathcal{L}_{\mathscr{C}} \cup \mathcal{R}_{\mathscr{C}}\right)
$$

Theorem (Reiten-Skowroński). Let A be an indecomposable finite dimensional K-algebra, \mathscr{C} a faithful component of Γ_{A} with a multisection Δ, and \mathscr{C} is not semiregular (contains both a projective module and an injective module). Then the following conditions are equivalent:
(1) \mathscr{C} is generalized standard.
(2) $\mathscr{C}=\mathcal{L}_{\mathscr{C}} \cup \Delta_{c} \cup \mathcal{R}_{\mathscr{C}}$.

Example. $A=K Q / I, Q$ the quiver

$$
1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \stackrel{\gamma}{\leftarrow} 4 \stackrel{\sigma}{\leftarrow} 5 \stackrel{\delta}{\leftarrow} 6 \stackrel{\varepsilon}{\leftarrow} 7 \stackrel{\eta}{\leftarrow} 8
$$

I ideal of $K Q$ generated by $\sigma \gamma, \delta \sigma$ and $\varepsilon \delta$. Then Γ_{A} is of the form

$\Delta^{(1)}=\mathcal{X} \cup\left\{P_{4}, M, I_{6}\right\} \quad \Delta^{(2)}=\mathcal{X} \cup\left\{P_{4}, M, S_{8}\right\}$
$\Delta^{(3)}=\mathcal{X} \cup\left\{S_{2}, M, I_{6}\right\} \quad \Delta^{(4)}=\mathcal{X} \cup\left\{S_{2}, M, S_{8}\right\}$
$\Delta^{(5)}=\mathcal{X} \cup\left\{S_{2}, I_{2}, I_{6}\right\} \quad \Delta^{(6)}=\mathcal{X} \cup\left\{S_{2}, I_{2}, S_{8}\right\}$
$\Delta^{(7)}=\mathcal{X} \cup\left\{S_{1}, I_{2}, P_{7}\right\} \quad \Delta^{(8)}=\mathcal{X} \cup\left\{S_{1}, I_{2}, S_{8}\right\}$ where $\mathcal{X}=\left\{I_{3}, S_{4}, P_{5}, S_{5}, P_{6}, S_{6}, P_{7}\right\}$, are all multisections of $\mathscr{C}=\Gamma_{A}$. Moreover, $w\left(\Delta^{(i)}\right)=3$ and $\Delta_{c}^{(i)}=\left\{S_{5}\right\}$ for $i \in\{1, \ldots, 8\}$ gl. $\operatorname{dim} A=4=w\left(\Delta^{(i)}\right)+1$
$0 \rightarrow P_{3} \rightarrow P_{4} \rightarrow P_{5} \rightarrow P_{6} \oplus P_{8} \rightarrow P_{7} \rightarrow S_{7} \rightarrow 0$ minimal projective resolution of S_{7} in $\bmod A$, so $\mathrm{pd}_{A} S_{7}=4$
$B n$-tilted algebra, $n \geq 2$
Γ_{B} admits a unique component $\mathscr{C}=\mathscr{C}_{B}$ with a faithful n-section Δ
\mathscr{C}_{B} connecting component of Γ_{B}
Γ_{B} is of the form

- $\mathcal{Y} \Gamma_{B^{(l)}}$ is the disjoint union of all components of $\Gamma_{B^{(l)}}$ contained entirely in the torsion-free part $\mathcal{Y}\left(T^{(l)}\right)$ of $\bmod B^{(l)}$, determined by a tilting module $T^{(l)}$ over a hereditary algebra $A^{(l)}$ of type Δ_{l} with $B^{(l)} \cong \mathrm{End}_{A^{(l)}} T^{(l)}$.
- $\mathcal{X} \Gamma_{B^{(r)}}$ is the disjoint union of all components of $\Gamma_{B^{(r)}}$ contained entirely in the torsion part $\mathcal{X}\left(T^{(r)}\right)$ of $\bmod B^{(r)}$, determined by a tilting module $T^{(r)}$ over a hereditary algebra $A^{(r)}$ of type Δ_{r} with $B^{(r)} \cong \operatorname{End}_{A^{(r)}} T^{(r)}$.
- $\operatorname{Hom}_{B}\left(\mathscr{C}_{B}, \mathcal{Y} \Gamma_{B^{(l)}}\right)=0, \operatorname{Hom}_{B}\left(\mathcal{X} \Gamma_{B^{(r)}}, \mathscr{C}_{B}\right)$ $=0, \operatorname{Hom}_{B}\left(\mathcal{X} \Gamma_{B^{(r)}}, \mathcal{Y} \Gamma_{B^{(l)}}\right)=0$.
- \mathscr{C}_{B} is generalized standard, contains at least one projective module and at least one injective module.

Theorem (Skowroński). Let B be an indecomposable basic finite dimensional K-algebra over a field K. The following conditions are equivalent:
(1) B is either a generalized double tilted algebra or a quasitilted algebra.
(2) ind $B \backslash\left(\mathcal{L}_{B} \cup \mathcal{R}_{B}\right)$ is finite.
(3) There is a finite set \mathcal{X} of modules in ind B such that every path in ind B from an injective module to a projective module consists entirely of modules from \mathcal{X}.

Open problem. Let B be an indecomposable basic finite dimensional K-algebra over a field K such that, for all but finitely many modules X in ind B, we have $\operatorname{pd}_{B} X \leq 1$ or $\operatorname{id}_{B} X \leq 1$. Is then B a generalized double tilted algebra or a quasitilted algebra?

Confirmed only in special cases

Theorem (Skowroński). Let A be a finite dimensional K-algebra over a field K. The following conditions are equivalent:
(1) A is a generalized double tilted algebra and Γ_{A} admits a connecting component \mathscr{C}_{A} containing all indecomposable projective modules.
(2) $\operatorname{rad}_{A}^{\infty}\left(-, A_{A}\right)=0$.
(3) id $_{A} X \leq 1$ for all but finitely many (up to isomorphism) modules X in ind A.
$\mathscr{C}_{A} \cap \mathcal{Y}\left(T^{(l)}\right)=\mathcal{Y}\left(T^{(l)}\right)$ finite $\left(\mathcal{Y} \Gamma_{A^{(l)}}\right.$ empty)

Theorem (Skowroński). Let A be a finite dimensional K-algebra over a field K. The following conditions are equivalent:
(1) A is a generalized double tilted algebra and Γ_{A} admits a connecting component \mathscr{C}_{A} containing all indecomposable injective modules.
(2) $\operatorname{rad}_{A}^{\infty}\left(D\left({ }_{A} A\right),-\right)=0$.
(3) $\operatorname{pd}_{A} X \leq 1$ for all but finitely many (up to isomorphism) modules X in ind A.
$\mathscr{C}_{A} \cap \mathcal{X}\left(T^{(r)}\right)=\mathcal{X}\left(T^{(r)}\right)$ finite $\left(\mathcal{X} \Gamma_{A^{(r)}}\right.$ empty)

9. Generalized multicoil enlargements of concealed canonical algebras

A finite dimensional K-algebra over a field K
A family $\mathscr{C}=\left(\mathscr{C}_{i}\right)_{i \in I}$ of components of Γ_{A} is called separating in $\bmod A$ if the modules in ind A split into three disjoint classes \mathcal{P}^{A}, $\mathscr{C}^{A}=\mathscr{C}$ and \mathcal{Q}^{A} such that

- \mathscr{C}^{A} is a sincere family of pairwise orthogonal generalized standard components
- $\operatorname{Hom}_{A}\left(\mathscr{C}^{A}, \mathcal{P}^{A}\right)=0, \operatorname{Hom}_{A}\left(\mathcal{Q}^{A}, \mathscr{C}^{A}\right)=0$, $\operatorname{Hom}_{A}\left(\mathcal{Q}^{A}, \mathcal{P}^{A}\right)=0$.
- any homomorphism from \mathcal{P}^{A} to \mathcal{Q}^{A} factors through add \mathscr{C}^{A}.

Then we say that \mathscr{C}^{A} separates \mathcal{P}^{A} from \mathcal{Q}^{A}. Moreover, then \mathcal{P}^{A} and \mathcal{Q}^{A} are uniquely determined in ind A by \mathscr{C}^{A}.

We write $\Gamma_{A}=\mathcal{P}^{A} \vee \mathscr{C}^{A} \vee \mathcal{Q}^{A}$

Theorem (Lenzing-Peña). An indecomposable finite dimensional K-algebra over a field K is a concealed canonical algebra if and only if Γ_{A} admits a separating family \mathcal{T}^{A} of stable tubes.

Theorem (Lenzing-Skowroński). An indecomposable finite dimensional K-algebra over a field K is a quasitilted algebra of canonical type if and only if Γ_{A} admits a separating family \mathcal{T}^{A} of semiregular tubes (ray or coray tubes).

Theorem (Reiten-Skowroński). An indecomposable finite dimensional K-algebra over a field K is a generalized double tilted algebra if and only if Γ_{A} admits a separating almost acyclic component \mathscr{C}.
A finite dimensional K-algebra
\mathscr{C} component of Γ_{A}
\mathscr{C} is said to be almost cyclic if all but finitely many modules of \mathscr{C} lie on oriented cycles of \mathscr{C}.
\mathscr{C} is said to be coherent if the following two conditions are satisfied:

- For each projective module P in \mathscr{C} there is an infinite sectional path

$$
P=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{i} \rightarrow X_{i+1} \rightarrow \ldots
$$

in \mathscr{C}

- For each injective module I in \mathscr{C} there is an infinite sectional path

$$
\cdots \rightarrow Y_{i+1} \rightarrow Y_{i} \rightarrow \cdots \rightarrow Y_{2} \rightarrow Y_{1}=I
$$

in \mathscr{C}.
Every stable tube (more generally, every semiregular tube) of Γ_{A} is an almost cyclic and coherent component

Theorem (Malicki-Skowroński). Let A be a finite dimensional K-algebra and \mathscr{C} be a component of Γ_{A}. Then \mathscr{C} is almost cyclic and coherent if and only if \mathscr{C} is a generalized multicoil (obtained from a finite family of stable tubes by a sequence of admissible operations).

For a finite family of C_{1}, \ldots, C_{m} of concealed canonical algebras and $C=C_{1} \times \cdots \times C_{m}$ one defines a generalized multicoil enlargement B of C by iterated application of admissible operations (ad 1)-(ad 5) and their dual operations (ad $\left.1^{*}\right)-\left(\operatorname{ad} 5^{*}\right)$.

Theorem (Malicki-Skowroński). Let A be a finite dimensional K-algebra over a field K. The following statements are equivalent:
(1) Γ_{A} admits a separating family of almost cyclic coherent components.
(2) A is a generalized multicoil enlargement of a product C of concealed canonical $K-$ algebras.

Theorem (Malicki-Skowroński). Let A be a finite dimensional K-algebra over a field K with a separating family \mathscr{C}^{A} of almost cyclic coherent components in Γ_{A}, and $\Gamma_{A}=\mathcal{P}^{A} \vee \mathscr{C}^{A} \vee \mathcal{Q}^{A}$. Then
(1) There is a unique factor algebra A_{l} of A which is a (not necesarily indecomposable) quasitilted algebra of canonical type with a separating family $\mathcal{T}^{A_{l}}$ of coray tubes such that $\Gamma_{A_{l}}=\mathcal{P}^{A_{l}} \vee \mathcal{T}^{A_{l}} \vee \mathcal{Q}^{A_{l}}$ and $\mathcal{P}^{A}=\mathcal{P}^{A_{l}}$.
(2) There is a unique factor algebra A_{r} of A which is a (not necesarily indecomposable) quasitilted algebra of canonical type with a separating family $\mathcal{T}^{A_{r}}$ of ray tubes such that $\Gamma_{A_{r}}=\mathcal{P}^{A_{r}} \vee \mathcal{T}^{A_{r}} \vee \mathcal{Q}^{A_{r}}$ and $\mathcal{Q}^{A}=\mathcal{Q}^{A_{r}}$.

A_{l} left quasitilted algebra of A

A_{r} right quasitilted algebra of A

- Every component of Γ_{A} not in \mathscr{C}^{A} lies entirely in \mathcal{P}^{A} or lies entirely in \mathcal{Q}^{A}
- Every component of Γ_{A} contained in \mathcal{P}^{A} is either postprojective, a stable tube $\mathbb{Z} \mathbb{A}_{\infty} /\left(\tau^{r}\right)$, for some $r \geq 1$, of the form $\mathbb{Z} \mathbb{A}_{\infty}$, or can be obtained from a stable tube or a component of type $\mathbb{Z A}_{\infty}$ by a finite number of ray insertions.
- Every component of Γ_{A} contained in \mathcal{Q}^{A} is either preinjective, a stable tube $\mathbb{Z} \mathbb{A}_{\infty} /\left(\tau^{r}\right)$, for some $r \geq 1$, of the form $\mathbb{Z} \mathbb{A}_{\infty}$, or can be obtained from a stable tube or a component of type \mathbb{Z}_{∞} by a finite number of coray insertions.

Theorem (Malicki-Skowroński). Let A be a finite dimensional K-algebra over a field K with a separating family \mathscr{C}^{A} of almost cyclic coherent components in Γ_{A}, and $\Gamma_{A}=\mathcal{P}^{A} \vee \mathscr{C}^{A} \vee \mathcal{Q}^{A}$. Then the following statements hold:
(1) $\operatorname{pd}_{A} X \leq 1$ for any module X in \mathcal{P}^{A}.
(2) $\operatorname{id}_{A} Y \leq 1$ for any module Y in \mathcal{Q}^{A}.
(3) $\operatorname{pd}_{A} Z \leq 2$ and $\mathrm{id}_{A} Z \leq 2$ for any module Z in \mathscr{C}^{A}.
(4) gl. $\operatorname{dim} A \leq 3$.

One-point extensions and coextensions of algebras

A finite dimensional K-algebra over a field K F finite dimensional division K-algebra $M={ }_{F} M_{A} F$ - A-bimodule M_{A} module in $\bmod A$
K acts centrally on ${ }_{F} M_{G}$
(hence $\operatorname{dim}_{K}{ }_{F} M=\operatorname{dim}_{K} M_{A}$)
One-point extension of A by M is the matrix K-algebra of the form
$A[M]=\left[\begin{array}{cc}A & 0 \\ F M_{A} & F\end{array}\right]=\left\{\left[\begin{array}{cc}a & 0 \\ m & f\end{array}\right] ; \begin{array}{c}f \in F, a \in A, \\ m \in M\end{array}\right\}$
with the usual addition and multiplication. Then the valued quiver $Q_{A[M]}$ of $A[M]$ contains the valued quiver Q_{A} of A as a convex subquiver, and there is an additional (extension) vertex which is a source. We may identify the category $\bmod A[M]$ with the category whose objects are triples (V, X, φ), where $X \in$ $\bmod A, V \in \bmod F$, and $\varphi: V_{F} \rightarrow \operatorname{Hom}_{A}(M, X)_{F}$ is an F-linear map. A morphism $h:(V, X, \varphi) \rightarrow$ (W, Y, ψ) is given by a pair (f, g), where f : $V \rightarrow W$ is F-linear, $g: X \rightarrow Y$ is a morphism in $\bmod A$ and $\psi f=\operatorname{Hom}_{A}(M, g) \varphi$. Then the new indecomposable projective $A[M]$-module P is given by the triple (F, M, \bullet), where • : $F_{F} \rightarrow \operatorname{Hom}_{A}(M, M)_{F}$ assigns to the identity element of F the identity morphism of M.

An important class of such one-point extensions occurs in the following situation. Let \wedge be a finite dimensional K-algebra, P an indecomposable projective \wedge-module, $\wedge \wedge=P \oplus Q$, and assume that $\operatorname{Hom}_{\wedge}(P, Q \oplus \operatorname{rad} P)=0$. Since P is indecomposable projective, $S=$ $P / \operatorname{rad} P$ is a simple \wedge-module and hence End $\wedge(S)$ is a division K-algebra. Moreover, the canonical homomorphism of algebras $\operatorname{End}_{\wedge}(P) \rightarrow$ End $_{\wedge}(S)$ is an isomorphism. Then we obtain isomorphisms of algebras

$$
\wedge \cong \operatorname{End}_{\wedge}\left(\Lambda_{\wedge}\right) \cong\left[\begin{array}{cc}
A & 0 \\
F M_{A} & F
\end{array}\right]=A[M],
$$

where $F=\operatorname{End}_{\wedge}(P), A=\operatorname{End}_{\wedge}(Q)$, and $M=$ ${ }_{F} M_{A}=\operatorname{Hom}_{\wedge}(Q, P) \cong \operatorname{rad} P$. Clearly K acts centrally on ${ }_{F} M_{A}$.

Dually, one-point coextension of A by M is the matrix K-algebra of the form
$[M] A=\left[\begin{array}{cc}F & 0 \\ D\left({ }_{F} M_{A}\right) & A\end{array}\right]=\left\{\begin{array}{cc}\left.\left[\begin{array}{cc}f & 0 \\ x & a\end{array}\right] ; \begin{array}{c}f \in F, a \in A, \\ x \in D(M)\end{array}\right\}, ~\end{array}\right.$
where $D(M)=\operatorname{Hom}_{K}\left(F_{A}, K\right)$ is an $A-F-$ bimodule.

For a finite dimensional division K-algebra F and $r \geq 1$ natural number, $T_{r}(F)$ the $r \times r$ lower triangular matrix algebra

$$
\left[\begin{array}{cccccc}
F & 0 & 0 & \ldots & 0 & 0 \\
F & F & 0 & \ldots & 0 & 0 \\
F & F & F & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
F & F & F & \ldots & F & 0 \\
F & F & F & \ldots & F & F
\end{array}\right]
$$

A finite dimensional K-algebra
Γ a component of Γ_{A}
X a module in Γ
$\mathcal{S}(X)$ the support of the functor $\left.\operatorname{Hom}_{A}(X,-)\right|_{\Gamma}$ is the K-linear category defined as follows \mathcal{H}_{X} the full subcategory of ind A consisting of the indecomposable modules M in Γ such that $\operatorname{Hom}_{A}(X, M) \neq 0$,
\mathcal{I}_{X} the ideal of \mathcal{H}_{X} consisting of homomorphisms $f: M \rightarrow N$ (with M, N in \mathcal{H}_{X}) such that $\operatorname{Hom}_{A}(X, f)=0$. $\mathcal{S}(X)=\mathcal{H}_{X} / \mathcal{I}_{X}$ the quotient category

Admissible operations

A finite dimensional K-algebra over a field K
Γ a family of pairwise orthogonal generalized standard infinite components of Γ_{A}
X indecomposable module in Γ

Assume X is a brick: $F=F_{X}=\operatorname{End}_{A}(X)$ is a division K-algebra
$X={ }_{F} X_{A}$ is an F - A-bimodule, K acts centrally on X

For X with $\mathcal{S}(X)$ of certain shape, called the pivot, five admissible operations (ad 1)-(ad 5) and their duals (ad $\left.1^{*}\right)-\left(a d 5^{*}\right)$ are defined, modifying
A to a new algebra A^{\prime}
$\Gamma=(\Gamma, \tau)$ to a new translation quiver $\left(\Gamma^{\prime}, \tau^{\prime}\right)$
(ad 1) Assume $\mathcal{S}(X)$ consists of an infinite sectional path starting at X :

$$
X=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots
$$

In this case, we let $t \geq 1$ be a positive integer, $D=T_{t}(F)$ and $Y_{1}, Y_{2}, \ldots, Y_{t}$ denote the indecomposable injective D-modules with $Y=Y_{1}$ the unique indecomposable projective-injective D-module. We define the modified algebra A^{\prime} of A to be the one-point extension

$$
A^{\prime}=(A \times D)[X \oplus Y]
$$

and the modified translation quiver Γ^{\prime} of Γ to be obtained by inserting in Γ the rectangle consisting of the modules $Z_{i j}=\left(F, X_{i} \oplus Y_{j},\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ for $i \geq 0,1 \leq j \leq t$, and $X_{i}^{\prime}=\left(F, X_{i}, 1\right)$ for $i \geq 0$ as follows:

The translation τ^{\prime} of Γ^{\prime} is defined as follows: $\tau^{\prime} Z_{i j}=Z_{i-1, j-1}$ if $i \geq 1, j \geq 2, \tau^{\prime} Z_{i 1}=X_{i-1}$ if $i \geq 1, \tau^{\prime} Z_{0 j}=Y_{j-1}$ if $j \geq 2, Z_{01}$ is projective, $\tau^{\prime} X_{0}^{\prime}=Y_{t}, \tau^{\prime} X_{i}^{\prime}=Z_{i-1, t}$ if $i \geq 1, \tau^{\prime}\left(\tau^{-1} X_{i}\right)=$ X_{i}^{\prime} provided X_{i} is not an injective A-module, otherwise X_{i}^{\prime} is injective in Γ^{\prime}. For the remaining vertices of $\Gamma^{\prime}, \tau^{\prime}$ coincides with the translation of Γ, or Γ_{D}, respectively.

If $t=0$ we define the modified algebra A^{\prime} to be the one-point extension $A^{\prime}=A[X]$ and the modified translation quiver Γ^{\prime} to be the translation quiver obtained from Γ by inserting only the sectional path consisting of the vertices $X_{i}^{\prime}, i \geq 0$.

The nonnegative integer t is such that the number of infinite sectional paths parallel to $X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots$ in the inserted rectangle equals $t+1$. We call t the parameter of the operation.

In case Γ is a stable tube, it is clear that any module on the mouth of Γ satisfies the condition for being a pivot for the above operation.
(ad 2) Suppose that $\mathcal{S}(X)$ admits two sectional paths starting at X, one infinite and the other finite with at least one arrow:
$Y_{t} \leftarrow \cdots \leftarrow Y_{2} \leftarrow Y_{1} \leftarrow X=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots$
where $t \geq 1$. In particular, X is necessarily injective. We define the modified algebra A^{\prime} of A to be the one-point extension $A^{\prime}=$ $A[X]$ and the modified translation quiver Γ^{\prime} of Γ to be obtained by inserting in Γ the rectangle consisting of the modules $Z_{i j}=$ $\left(F, X_{i} \oplus Y_{j},\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ for $i \geq 1,1 \leq j \leq t$, and $X_{i}^{\prime}=\left(F, X_{i}, 1\right)$ for $i \geq 1$ as follows:

The translation τ^{\prime} of Γ^{\prime} is defined as follows: X_{0}^{\prime} is projective-injective, $\tau^{\prime} Z_{i j}=Z_{i-1, j-1}$ if $i \geq 2, j \geq 2, \tau^{\prime} Z_{i 1}=X_{i-1}$ if $i \geq 1, \tau^{\prime} Z_{1 j}=$ Y_{j-1} if $j \geq 2, \tau^{\prime} X_{i}^{\prime}=Z_{i-1, t}$ if $i \geq 2, \tau^{\prime} X_{1}^{\prime}=$ $Y_{t}, \tau^{\prime}\left(\tau^{-1} X_{i}\right)=X_{i}^{\prime}$ provided X_{i} is not an injective A-module, otherwise X_{i}^{\prime} is injective in Γ^{\prime}. For the remaining vertices of $\Gamma^{\prime}, \tau^{\prime}$ coincides with the translation τ of Γ.

The integer $t \geq 1$ is such that the number of infinite sectional paths parallel to $X_{0} \rightarrow X_{1} \rightarrow$ $X_{2} \rightarrow \cdots$ in the inserted rectangle equals $t+$ 1. We call t the parameter of the operation.
(ad 3) Assume $\mathcal{S}(X)$ is the mesh-category of two parallel sectional paths:

where $t \geq 2$. In particular, X_{t-1} is necessarily injective. Moreover, we consider the translation quiver $\bar{\Gamma}$ of Γ obtained by deleting the arrows $Y_{i} \rightarrow \tau_{A}^{-1} Y_{i-1}$. We assume that the union $\hat{\Gamma}$ of connected components of $\bar{\Gamma}$ containing the vertices $\tau_{A}^{-1} Y_{i-1}, 2 \leq i \leq t$, is a finite translation quiver. Then $\bar{\Gamma}$ is a disjoint union of $\hat{\Gamma}$ and a cofinite full translation subquiver Γ^{*}, containing the pivot X. We define the modified algebra A^{\prime} of A to be the one-point extension $A^{\prime}=A[X]$ and the modified translation quiver Γ^{\prime} of Γ to be obtained from Γ^{*} by inserting the rectangle consisting of the modules $Z_{i j}=\left(F, X_{i} \oplus Y_{j},\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ for $i \geq 1,1 \leq j \leq t$, and $X_{i}^{\prime}=\left(F, X_{i}, 1\right)$ for $i \geq 1$ as follows:

if t is odd, while

if t is even.

The translation τ^{\prime} of Γ^{\prime} is defined as follows:
X_{0}^{\prime} is projective, $\tau^{\prime} Z_{i j}=Z_{i-1, j-1}$ if $i \geq 2$, $2 \leq j \leq t, \tau^{\prime} Z_{i 1}=X_{i-1}$ if $i \geq 1, \tau^{\prime} X_{i}^{\prime}=Y_{i}$ if $1 \leq i \leq t, \tau^{\prime} X_{i}^{\prime}=Z_{i-1, t}$ if $i \geq t+1, \tau^{\prime} Y_{j}=$ X_{j-2}^{\prime} if $2 \leq j \leq t, \tau^{\prime}\left(\tau^{-1} X_{i}\right)=X_{i}^{\prime}$, if $i \geq t$ provided X_{i} is not injective in Γ, otherwise X_{i}^{\prime} is injective in Γ^{\prime}. For the remaining vertices of $\Gamma^{\prime}, \tau^{\prime}$ coincides with the translation τ of Γ^{*}. We note that X_{t-1}^{\prime} is injective.

The integer $t \geq 2$ is such that the number of infinite sectional paths parallel to $X_{0} \rightarrow X_{1} \rightarrow$ $X_{2} \rightarrow \cdots$ in the inserted rectangle equals $t+$ 1. We call t the parameter of the operation.
(ad 4) Suppose that $\mathcal{S}(X)$ consists an infinite sectional path, starting at X

$$
X=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots
$$

and

$$
Y=Y_{1} \rightarrow Y_{2} \rightarrow \cdots \rightarrow Y_{t}
$$

with $t \geq 1$, be a finite sectional path in Γ_{A} such that $F_{Y}=F=F_{X}$. Let r be a positive integer. Moreover, we consider the translation quiver $\bar{\Gamma}$ of Γ obtained by deleting the arrows $Y_{i} \rightarrow \tau_{A}^{-1} Y_{i-1}$. We assume that the union $\hat{\Gamma}$ of connected components of $\bar{\Gamma}$ containing the vertices $\tau_{A}^{-1} Y_{i-1}, 2 \leq i \leq t$, is a finite translation quiver. Then $\bar{\Gamma}$ is a disjoint union of $\hat{\Gamma}$ and a cofinite full translation subquiver Γ^{*}, containing the pivot X. For $r=0$ we define the modified algebra A^{\prime} of A to be the one-point extension $A^{\prime}=$ $A[X \oplus Y]$ and the modified translation quiver Γ^{\prime} of Γ to be obtained from Γ^{*} by inserting the rectangle consisting of the modules $Z_{i j}=\left(F, X_{i} \oplus Y_{j},\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ for $i \geq 0,1 \leq j \leq t$, and $X_{i}^{\prime}=\left(F, X_{i}, 1\right)$ for $i \geq 1$ as follows:

The translation τ^{\prime} of Γ^{\prime} is defined as follows: $\tau^{\prime} Z_{i j}=Z_{i-1, j-1}$ if $i \geq 1, j \geq 2, \tau^{\prime} Z_{i 1}=X_{i-1}$ if $i \geq 1, \tau^{\prime} Z_{0 j}=Y_{j-1}$ if $j \geq 2, Z_{01}$ is projective, $\tau^{\prime} X_{0}^{\prime}=Y_{t}, \tau^{\prime} X_{i}^{\prime}=Z_{i-1, t}$ if $i \geq 1, \tau^{\prime}\left(\tau^{-1} X_{i}\right)=$ X_{i}^{\prime} provided X_{i} is not injective in Γ, otherwise X_{i}^{\prime} is injective in Γ^{\prime}. For the remaining vertices of $\Gamma^{\prime}, \tau^{\prime}$ coincides with the translation of Γ^{*}.

For $r \geq 1$, let $G=T_{r}(F), U_{1, t+1}, U_{2, t+1}, \ldots$, $U_{r, t+1}$ denote the indecomposable projective G-modules, $U_{r, t+1}, U_{r, t+2}, \ldots, U_{r, t+r}$ denote the indecomposable injective G-modules, with $U_{r, t+1}$ the unique indecomposable projectiveinjective G-module. We define the modified algebra A^{\prime} of A to be the triangular matrix algebra of the form:

$$
A^{\prime}=\left[\begin{array}{cccccc}
A & 0 & 0 & \ldots & 0 & 0 \\
Y & F & 0 & \ldots & 0 & 0 \\
Y & F & F & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
Y & F & F & \ldots & F & 0 \\
X \oplus Y & F & F & \ldots & F & F
\end{array}\right]
$$

with $r+2$ columns and rows and the modified translation quiver Γ^{\prime} of Γ to be obtained from Γ^{*} by inserting the rectangles consisting of the modules $U_{k l}=Y_{l} \oplus U_{k, t+k}$ for $1 \leq k \leq r$, $1 \leq l \leq t$, and $Z_{i j}=\left(F, X_{i} \oplus U_{r j},\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ for $i \geq 0,1 \leq j \leq t+r$, and $X_{i}^{\prime}=\left(F, X_{i}, 1\right)$ for $i \geq 0$ as follows:

The translation τ^{\prime} of Γ^{\prime} is defined as follows:
$\tau^{\prime} Z_{i j}=Z_{i-1, j-1}$ if $i \geq 1, j \geq 2, \tau^{\prime} Z_{i 1}=X_{i-1}$ if $i \geq 1, \tau^{\prime} Z_{0 j}=U_{r, j-1}$ if $2 \leq j \leq t+r$, $Z_{01}, U_{k 1}, 1 \leq k \leq r$ are projective, $\tau^{\prime} U_{k l}=$ $U_{k-1, l-1}$ if $2 \leq k \leq r, 2 \leq l \leq t+r, \tau^{\prime} U_{1 l}=$ Y_{l-1} if $2 \leq l \leq t+1, \tau^{\prime} X_{0}^{\prime}=U_{r, t+r}, \tau^{\prime} X_{i}^{\prime}=$ $Z_{i-1, t+r}$ if $i \geq 1, \tau^{\prime}\left(\tau^{-1} X_{i}\right)=X_{i}^{\prime}$ provided X_{i} is not injective in Γ, otherwise X_{i}^{\prime} is injective in Γ^{\prime}. For the remaining vertices of $\Gamma^{\prime}, \tau^{\prime}$ coincides with the translation of Γ^{*}, or Γ_{G}, respectively.

We note that the quiver $Q_{A^{\prime}}$ of A^{\prime} is obtained from the quiver of the double one-point extension $A[X][Y]$ by adding a path of length $r+1$ with source at the extension vertex of $A[X]$ and sink at the extension vertex of $A[Y]$.

The integers $t \geq 1$ and $r \geq 0$ are such that the number of infinite sectional paths parallel to $X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots$ in the inserted rectangles equals $t+r+1$. We call $t+r$ the parameter of the operation.

To the definition of the next admissible operation we need also the finite versions of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4), which we denote by (fad 1), (fad 2), (fad 3) and (fad 4), respectively. In order to obtain these operations we replace all infinite sectional paths of the form $X_{0} \rightarrow X_{1} \rightarrow$ $X_{2} \rightarrow \cdots$ (in the definitions of $(\operatorname{ad} 1),(\operatorname{ad} 2)$, (ad 3), (ad 4)) by the finite sectional paths of the form $X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{s}$. For the operation (fad 1) $s \geq 0$, for (fad 2) and (fad 4) $s \geq 1$, and for (fad 3) $s \geq t-1$. In all above operations X_{s} is injective.
(ad 5) We define the modified algebra A^{\prime} of A to be the iteration of the extensions described in the definitions of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4), and their finite versions corresponding to the operations (fad 1), (fad 2), (fad 3) and (fad 4). The modified translation quiver Γ^{\prime} of Γ is obtained in the following three steps: first we are doing on Γ one of the operations (fad 1), (fad 2) or (fad 3), next a finite number (possibly empty) of the operation (fad 4) and finally the operation (ad 4), and in such a way that the sectional paths starting from all the new projective vertices have a common cofinite (infinite) sectional subpath.
C finite dimensional K-algebra
\mathcal{T}^{C} a family of pairwise orthogonal generalized standard stable tubes of Γ_{C}.

A finite dimensional K-algebra algebra A is a generalized multicoil enlargement of C, with respect to \mathcal{T}^{C}, if A is obtained from C by an iteration of admissible operations of types (ad 1)-(ad 5) and (ad $\left.1^{*}\right)-\left(a d 5^{*}\right)$ performed either on stable tubes of \mathcal{T}^{C}, or on generalized multicoils obtained from stable tubes of \mathcal{T}^{C} by means of operations done so far.

A generalized multicoil is a translation quiver obtained from a finite family $\mathcal{T}_{1}, \ldots, \mathcal{T}_{s}$ of stable tubes by an iteration of admissible (translation quiver) operations of types (ad 1)(ad 5) and (ad 1*)-(ad 5*).

