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In this series of lectures I will give an introduction to representation theory of Cohen-Macaulay modules
over orders based on the fundamental articles [A, A2] due to Auslander. The definition is quite simple.

Definition 0.1. Let R be a complete regular local ring of Krull dimension d, for instance, the formal
power series ring k[[z1, -, xq]] over a field k.

(a) We say that an R-algebra A is an R-order if A is a free R-module of finite rank.
(b) We say that a A-module X is Cohen-Macaulay (CM) if X is a free R-module of finite rank.

The following three examples are fundamental:

e (d =0) finite dimensional modules over finite dimensional algebras over fields [ARS, ASS],
e (d =1) lattices over orders over complete discrete valuation rings [CR1, CR2],
e maximal Cohen-Macaulay modules over commutative complete local Cohen-Macaulay rings [Y].

We denote by CM(A) the category of CM A-modules. This category behaves quite similarly to the
categories of finite dimensional modules over finite dimensional algebras. Let us give some of basic
properties of CM(A).

e CM(A) is Krull-Schmidst,

e we have a canonical duality

Homp(—, R) : CM(A) «— CM(A°P), (1)

e CM(A) is a resolving subcategory of mod A,

e CM(A) is an exact category with enough projectives add A and enough injectives add Hompg (A, R).
The stable category

CM(A) (respectively, CM(A))
is defined as the factor category of CM(A) by the ideal generated by A (respectively, Hompg (A, R)). The
stable categories play more and more important role in representation theory and related subjects, e.g.
[0, KST, LP, IY, KMV].
The Auslander-Reiten theory on CM(A) was developed under the following condition:

Definition 0.2. We say that an R-order A is an isolated singularity if
gl.dim(A ® g Rp) = Krull.dimR),
for any non-maximal prime ideal p of R.

If d = 0, then the condition is always satisfied. If d = 1, then the condition means that A ®p K is a
semisimple K-algebra for the quotient field K of R.

For an R-order A which is an isolated singularity, CM modules have an another meaning given in
stable module theory [ABr]: We say that a finitely generated A-module X is n-torsionfree for a positive
integer n if

Ext) (Tr X,A) =0
for any 0 < ¢ < n, where
Tr : modA <~ modA°P
is Auslander-Bridger transpose duality [ABr]. We denote by F,(A) the category of n-torsionfree A-
modules. Then we have a duality [ABr]

Q' Tr: F, (A) << F, (A°P), (2)
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on the stable category F, (A) of F,,(A), where Q : modA — modA is the syzygy functor.
The following observation plays a crucial role.

Proposition 0.3. [A] Let A be an R-order which is an isolated singularity.
(a) CM(A) = Fa(A).
(b) CM(A) is Hom-finite.
Now we have the following fundamental equivalence.

Definition-Theorem 0.4. Composing dualities (1) and (2) we have an equivalence

Q4 Tr Hompg(—,R)
—_— _—

7: CM(A) C—M(A)

called the Auslander-Reiten translation.

CM(A®P)

Using 7 we have Auslander-Reiten duality and existence theorem of almost split sequences as in the
case of finite dimensional algebras.

In the lecture I will explain the following subjects:

e orders in dimension 1: hereditary orders and Bass orders [CR1, CR2],

Auslander-Reiten theory using 7 : CM(A) — CM(A) [A, A2],
tilting theory aspects of CM modules: Auslander-Buchweitz approximation [ABu],
orders in dimension 2: fundamental sequences and algebraic McKay correspondence [A3],
triangulated categories associated with orders,
toward higher dimensional Auslander-Reiten theory via cluster tilting [I].
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