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In this series of lectures I will give an introduction to representation theory of Cohen-Macaulay modules
over orders based on the fundamental articles [A, A2] due to Auslander. The definition is quite simple.

Definition 0.1. Let R be a complete regular local ring of Krull dimension d, for instance, the formal
power series ring k[[x1, · · · , xd]] over a field k.

(a) We say that an R-algebra Λ is an R-order if Λ is a free R-module of finite rank.
(b) We say that a Λ-module X is Cohen-Macaulay (CM ) if X is a free R-module of finite rank.

The following three examples are fundamental:
• (d = 0) finite dimensional modules over finite dimensional algebras over fields [ARS, ASS],
• (d = 1) lattices over orders over complete discrete valuation rings [CR1, CR2],
• maximal Cohen-Macaulay modules over commutative complete local Cohen-Macaulay rings [Y].

We denote by CM(Λ) the category of CM Λ-modules. This category behaves quite similarly to the
categories of finite dimensional modules over finite dimensional algebras. Let us give some of basic
properties of CM(Λ).

• CM(Λ) is Krull-Schmidt,
• we have a canonical duality

HomR(−, R) : CM(Λ) ∼←→ CM(Λop), (1)

• CM(Λ) is a resolving subcategory of mod Λ,
• CM(Λ) is an exact category with enough projectives addΛ and enough injectives addHomR(Λ, R).

The stable category
CM(Λ) (respectively, CM(Λ))

is defined as the factor category of CM(Λ) by the ideal generated by Λ (respectively, HomR(Λ, R)). The
stable categories play more and more important role in representation theory and related subjects, e.g.
[O, KST, LP, IY, KMV].

The Auslander-Reiten theory on CM(Λ) was developed under the following condition:

Definition 0.2. We say that an R-order Λ is an isolated singularity if

gl.dim(Λ⊗R Rp) = Krull.dimRp

for any non-maximal prime ideal p of R.

If d = 0, then the condition is always satisfied. If d = 1, then the condition means that Λ⊗R K is a
semisimple K-algebra for the quotient field K of R.

For an R-order Λ which is an isolated singularity, CM modules have an another meaning given in
stable module theory [ABr]: We say that a finitely generated Λ-module X is n-torsionfree for a positive
integer n if

Exti
Λ(Tr X, Λ) = 0

for any 0 < i ≤ n, where
Tr : modΛ ∼←→ modΛop

is Auslander-Bridger transpose duality [ABr]. We denote by Fn(Λ) the category of n-torsionfree Λ-
modules. Then we have a duality [ABr]

Ωn Tr : Fn(Λ) ∼←→ Fn(Λop), (2)
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on the stable category Fn(Λ) of Fn(Λ), where Ω : modΛ→ modΛ is the syzygy functor.
The following observation plays a crucial role.

Proposition 0.3. [A] Let Λ be an R-order which is an isolated singularity.
(a) CM(Λ) = Fd(Λ).
(b) CM(Λ) is Hom-finite.

Now we have the following fundamental equivalence.

Definition-Theorem 0.4. Composing dualities (1) and (2) we have an equivalence

τ : CM(Λ) Ωd Tr−−−→ CM(Λop)
HomR(−,R)−−−−−−−−→ CM(Λ)

called the Auslander-Reiten translation.

Using τ we have Auslander-Reiten duality and existence theorem of almost split sequences as in the
case of finite dimensional algebras.

In the lecture I will explain the following subjects:
• orders in dimension 1: hereditary orders and Bass orders [CR1, CR2],
• Auslander-Reiten theory using τ : CM(Λ)→ CM(Λ) [A, A2],
• tilting theory aspects of CM modules: Auslander-Buchweitz approximation [ABu],
• orders in dimension 2: fundamental sequences and algebraic McKay correspondence [A3],
• triangulated categories associated with orders,
• toward higher dimensional Auslander-Reiten theory via cluster tilting [I].
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