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1 The Stokes Polarization Parameters
The description of light in terms of the polarization ellipse is very useful. It
allows to describe any state of completely polarized light by means of a single
equation. However, this representation is inadequate for several reasons

(1) As the beam of light propagates through space, the light vector traces
out an ellipse or some special form of ellipse. e.g.,

The circle or a straight line in a time interval of the order of 10�15 sec. This
period is clearly too short to allow us to follow the tracing of the ellipse as the
beam propagates and prevents us from following the polarization ellipse in the
optical time domain.

(2) The polarization ellipse is only applicable to describing light that is
completely polarized.

(3) The polarization ellipse is an amplitude description of polarized light
that can not be observed and measure. The measurable quantities are the time
average of the square of the �eld amplitudes and the intensity.

The light can be
(i) Completely Polarized
(ii) Partially Polarized
(iii) Completely Un-polarized.
A mathematical description of all these states is required.
The fact that we can only measure the intensity of light and not the ampli-

tudes requires that the polarization ellipse must be transformed, so that, only
intensities are present, that is, measured or observable quantities.

The transverse components of the optical �eld are given by

��(�� �) = �0� cos(��� �� + �	)


��(�� �) = �0� cos(��� �� + ��)


The equation for polarization ellipse is
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where � = �	� ��. All information concerning the polarization behavior of the
optical �eld is contained in Eq. (1).

In order to determine the observables of the polarization ellipse which are
its intensity and polarization behavior, it is necessary to transform Eq. (1) to
an intensity or observable representation.

In order to do this, we �rst take a time average of the time dependent
quantities in Eq. (1)
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The time average of the �eld components are de�ned as

h��(�� �)��(�� �)i = �����
1
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where i,j=x,y and � is the time of measurement.
In order to evaluate time averages, we must �rst remove the denominator of

Eq. (2). By multiplying Eq. (2) to the factor 4�2
0��

2
0�, we get
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(3)

The time averages of the above terms can be written as
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Putting these values in Eq. (3), we get
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0� � (2�0��0� cos �)2 = (2�0��0� sin �)2 
 (4)

In order to describe both the intensity and the polarization, the form �2
0�+�2

0�

must be included. Adding and Subtracting �4
0� + �4

0� on the L.H.S of Eq. (4)
will lead to perfect square.

�4
0� +�4

0� + 2�
2
0��

2
0� + 2�

2
0��

2
0� ��4

0� ��4
0� � (2�0��0� cos �)2 = (2�0��0� sin �)

2 �¡
�2
0� +�2

0�

¢2 � ¡
�2
0� ��2

0�

¢2 � (2�0��0� cos �)2 = (2�0��0� sin �)
2

(5)

The terms in the brackets can be written as

�0 = �2
0� +�2
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�2 = 2�0��0� cos ��
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where �0� �1� �2� �3 are the Stokes polarization parameters for a plane wave.
So, Eq. (5) can be written as

�20 = �21 + �22 + �23 


The non-observable amplitude polarization ellipse given by
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is transformed to the stokes relation which is an intensity relation in the ob-
servable or measured domain.

Stokes parameters are intensities and they are real quantities.
(1) �0 is the total intensity of the optical �eld.
(2) �1 describes the prepouderance of the intensity of linearly horizontal

polarized light over linearly vertical polarized light.
(3) �2 describes the prepouderance of the intensity of linearly positive 45�

polarized light over linearly negative 45� polarized light.
(4) �3 describes the prepouderance of the intensity of right circularly polar-

ized light over left circularly polarized light.

1.1 The Degenerate States of Polarized Light interms of
Stokes Parameters

1.1.1 (i) Linearly Horizontal Polarized Light (LHP)

For this case, we have
�0� = 0


So, the Stokes polarization parameters are

�0 = �1 = �2
0�


�2 = �3 = 0


1.1.2 (ii) Linearly Vertical Polarized Light (LVP)

In this case, we have

�0� = 0


So, the Stokes polarization parameters are

�0 = �2
0�


�1 = ��2
0�


�2 = �3 = 0
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1.1.3 (iii) Linearly +45� Polarized Light (L+45�P)

The conditions to obtain L+45�P polarized light are

�0� = �0� = �0� � = 0

So, the Stokes polarization parameters are

�0 = �2 = 2�
2
0 


�1 = �3 = 0


1.1.4 (iv) Linearly -45� Polarized Light (L-45�P)

The conditions on the amplitude are the same as for L+45�P light but the phase
di�erence is � = �. In this case, the Stokes polarization parameters are

�0 = 2�2
0 


�2 = �2�2
0 


�1 = �3 = 0


1.1.5 (v) Right Circularly Polarized Light (RCP)

The conditions for the right circularly polarized light (RCP) are

�0� = �0� = �0� � =
�

2

So, the Stokes polarization parameters are

�0 = �3 = 2�
2
0 


�1 = �2 = 0


1.1.6 (vi) Left Circularly Polarized Light (LCP)

The conditions on the amplitude are the same as that of right circularly polarized
light. However, the phase shift between the orthogonal components is now
� = 3�

2 . So, the Stokes polarization parameters are

�0 = 2�2
0 


�3 = �2�2
0 


�1 = �2 = 0


The Stokes parameters for any state of elliptically polarized light is repre-
sented by

�0 = �2
0� +�2

0�


�1 = �2
0� ��2

0�


�2 = 2�0��0� cos �


�3 = 2�0��0� sin �
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1.2 The Stokes Vector

The inspection of the four Stokes parameters suggests that they can be arranged
in the form of 4×1 column matrix. This column matrix is called “ Stokes Vector
”.

This step provides a formal method for treating numerous complicated prob-
lem using matrix algebra. The Stokes vector is

� =

�
���

�0
�1
�2
�3

�
��� 


The Stokes vector for elliptically polarized light (EPL) is

� =

�
���

�2
0� +�2

0�

�2
0� ��2

0�

2�0��0� cos �
2�0��0� sin �

�
��� 


The Stokes vector for the six degenerate polarization states are

1.2.1 (i) Linearly Horizontal Polarized Light (LHP)

The Stokes vector for linearly horizontal polarized light is

� = �0

�
���
1
1
0
0

�
��� �

where �0 = �2
0� is the total intensity.

1.2.2 (ii) Linearly Vertical Polarized Light (LVP)

The Stokes vector for linearly vertical polarized light is

� = �0

�
���

1
�1
0
0

�
��� �

where �0 = �2
0� is the total intensity.

1.2.3 (iii) Linearly +45� Polarized Light (L+45�P)

The Stokes vector for linearly +45� polarized light is
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� = �0

�
���
1
0
1
0

�
��� �

where �0 = 2�2
0 is the total intensity.

1.2.4 (iv) Linearly -45� Polarized Light (L-45�P)

The Stokes vector for linearly -45� polarized light is

� = �0

�
���

1
0
�1
0

�
��� �

where �0 = 2�2
0 is the total intensity.

1.2.5 (v) Right Circularly Polarized Light (RCP)

The Stokes vector for right circularly polarized light is

� = �0

�
���
1
0
0
1

�
��� �

where �0 = 2�2
0 is the total intensity.

1.2.6 (vi) Left Circularly Polarized Light (LCP)

The Stokes vector for left circularly polarized light is

� = �0

�
���

1
0
0
�1

�
��� �

where �0 = 2�2
0 is the total intensity.

All this is based on the theoretical considerations.

1.3 Orientation and Ellipticity Angles

The Stokes polarization parameters can also be expressed in terms of the orien-
tation and ellipticity angles of the polarization ellipse � and �.

� =

�
���

�2
0� +�2

0�

�2
0� ��2

0�

2�0��0� cos �
2�0��0� sin �

�
��� 
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As orientation angle � of the polarization is given by

tan 2� =
2�0��0� cos �

�2
0� ��2

0�




This implies that

tan 2� =
�2
�1

� 0 � � � ��

and ellipticity � is given by

sin 2� =
2�0��0� sin �

�2
0� +�2

0�

=
�3
�0

�
��
4
� � � �
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1.4 The Classical Measurement of the Stokes Polarization
Parameters

The determination of the four Stokes parameters of an optical source requires
an optical beam to pass squentially through two polarizing elements known as
a “ Wave plate ” and a “ Polarizer ”. In the measurement, the waveplate is
�xed with its fast axis along the transverse x-direction whereas polarizer can be
rotated around its longitudinal z-axis.

The �rst three Stokes parameters �0, �1, �2 are measured by removing the
waveplate from the optical train and rotating the polarizer to three speci�c
angles (�).

The �nal Stokes parameter �3 is obtained by inserting a quarter waveplate
into the optical train.

In order to obtain the Stokes parameters of an optical beam, one must always
take a time average of the polarization ellipse. However, the time averaging
process can formally bypassed by representing the (real) optical amplitudes
that is

��(�� �) = �0� cos(��� �� + �	)

��(�� �) = �0� cos(��� �� + ��)

in terms of complex amplitudes

��(�) = �0� exp(��	) exp(���)


��(�) = �0� exp(���) exp(���)


The Stokes parameters for a plane wave are now de�ned by the equations

�0 = ���
�
� +���

�
� 


�1 = ���
�
� ����

�
� 


�2 = ���
�
� +���

�
�


�3 = �
¡
���

�
� ����

�
�

¢
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Since the exponential time factor exp(���) disappears using the above de�ni-
tions, it can be completely suppressed.

�� = �0� exp(��	)


�� = �0� exp(���)


In order to measure Stokes parameters experimentally, we consider the complex
components of the source. That is, the incident beam is represented in terms of
its horizontal x and y-components �� and �� respectively.

The beam propagates through the waveplate. The waveplate has two orthog-
onal axes x and y. These axes are known as “fast” and “slow” axes respectively.

Along the x-axis (fast), the phase on the beam is advanced (increased) by
�
2 and along the y-axis, the phase of the beam is retarted (decreased) by �

2

(written as -�2 ).
The total phase shift between the orthogonal components is then �

2�(��
2 ) =

�. Then the complex components emerging from the wave plates are

�
0
� = �� exp(�

�

2
)


�
0
� = �� exp(���

2
)


This beam is now incident on the polarizer. The polarizer has the property that
it attenuates the optical components unequally along the x and y-directions.
For an ideal polarizer along one axis, there is complete attenuation where as
along the orthogonal axis there is complete (perfect) transmission.

The optical �eld only passes through the axis that allows complete trans-
mission. This is called the transmission axis of the ideal polarizer.

If the transmission axis of the polarizer is rotated through an angle �, so
only the components of �

0
� and �

0
� along the rotated transmission axis can

be perfectly transmitted. The component of �
0
� along the transmission axis is

�
0
� cos � and the component of �

0
� along the transmission axis is �

0
� sin �. The

�eld transmitted along the transmission axis is the sum of these components.
The �eld emerging from the rotated ideal polarizer is

� = �
0
� cos � +�

0
� sin �


Putting values of �
0
� and �

0
�, we get

� = �� exp(�
�

2
) cos � +�� exp(���

2
) sin �


The intensity of the beam is de�ned by

� = �
��


The intensity of the beam emerging from the rotated ideal polarizer is

�(�� �) = ���
�
� cos

2 �+���
�
� sin

2 �+���
�
��

	� sin � cos �+������
�	� sin � cos �
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By using trignometric half angle formulas such as

cos2 � =
1 + cos 2�

2



sin2 � =
1� cos 2�

2



sin � cos � =
sin 2�

2
�

we have

�(�� �) =
1

2

£
(���

�
� +���

�
�) + (���

�
� ����

�
�) cos 2� + (���

�
� +�����) sin 2� cos�

+�(���
�
� ������) sin 2� sin�

¤



The terms in the brackets are exactly the Stokes parameters. So, the intensity
formula for measuring the four Stokes parameters is

�(�� �) =
1

2
[�0 + �1 cos 2� + �2 sin 2� cos�+ �3 sin 2� sin�]
 (6)

The intensity �(�� �) is a linear superposition of the four parameters. Removing
the wave plate is equivalent to setting � = 0 in Eq. (6), we get

�(�� 0) =
1

2
[�0 + �1 cos 2� + �2 sin 2�]


The polarizer is now related squentially to the angles � = 0� �4 �
�
2 . The corre-

sponding intensities are measured as

�(�� 0) =
1

2
[�0 + �1]


�(
�

4
� 0) =

1

2
[�0 + �2]


�(
�

2
� 0) =

1

2
[�0 � �1]


The forth Stokes parameter is measured by inserting a quarter-wave plate (� =
�
2 ) into the optical train and rotating the linear polarizer to � = �

4 .

�(
�

4
�
�

2
) =

1

2
[�0 � �3]


Exercise# 01
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Solve the four equations for �0� �1� �2� �3. The result is

�0 = �(0� 0) + �(
�

2
� 0)


�1 = �(0� 0)� �(
�

2
� 0)


�2 = 2�(
�

4
� 0)� �(0� 0)� �(

�

2
� 0)�

= 2�(
�

4
� 0)� �0


�3 = �2�(�
4
�
�

2
) + �(0� 0) + �(

�

2
� 0)�

= �0 � 2�(�
4
�
�

2
)


Exercise#02
Consider that we make the following intensity measurements on an optical

beam and �nd

�(0� 0) = 0
50� �(
�

4
� 0) = 0
50� �(

�

2
� 0) = 0
50� �(

�

4
�
�

2
) = 0
50


Find the Stokes vector of the optical beam.
Answer

� =

�
���

1
0
0
�1

�
��� 


The Stokes vector for left circularly polarized light (LCP).

1.5 Unpolarized Light

Stokes parameters not only describes completely polarized light but also un-
polarized light and partially polarized light as well. Stokes used experimental
de�nition to explain unpolarized light.

Accoring to Stokes, unpolarized light is a light that is una�ected other than
by a constant attenuation by its propagation through a waveplate and/or a linear
polarizer even if either or both elements are rotated around their longituinal axis.

Using this de�nition, Stokes determined the parameters for unpolarized light
from the expression of intensity of the beam incident on the optical detector.
As

�(�� �) =
1

2
[�0 + �1 cos 2� + �2 sin 2� cos�+ �3 sin 2� sin�]


The intensity for unpolarized light can remain constant when the polarizer is
rotated through the angle � if and only if �0= constant and �1 = �2 = �3 = 0.
So

�(�� �) =
1

2
�0
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The stokes vector for an unpolarized light can be written as

� = �0

�
���
1
0
0
0

�
��� 


Normalized form is obtained by setting �0 = 1
So

� =

�
���
1
0
0
0

�
��� 


This result can also be obtained from Stokes vector, derived from the theoretical
grounds. i.e.,

� =

�
���

�2
0� +�2

0�

�2
0� ��2

0�

2�0��0� cos �
2�0��0� sin �

�
��� 


Unpolarized light is de�ned if
�
�2
0�

®
+

�
�2
0�

®
= �0�

�
�2
0�

®� �
�2
0�

®
= 0�

hcos �i = hsin �i = 0�
where �0 is the intensity of the optical beam.

Thus, the Stokes parameters can be used to describe the extreme states of
polarized light-completely polarized light and unpolarized light.

For completely polarized light

�20 = �21 + �22 + �23 �

and for unpolarized light
�20 � 0


There must be an intermediate state between these two extremes called partially
polarized light.

All polarization states are given by

�20 � �21 + �22 + �23 �

where, for completely polarized light

�20 = �21 + �22 + �23 �

and for partially polarized light

�20 � �21 + �22 + �23 �
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and for unpolarized light

�20 � �21 + �22 + �23 �

provided that �1 = �2 = �3 = 0


1.6 Degree of Polarization (DOP)

Degree of polarization can be de�ned in terms of the Stokes parameters. A
mathematical statement is obtained by decomposing the optical �eld into a
polarize an an unpolarized portion. In all states, the intansity of the beam is
�0. Subtract the polarized intensity

p
�21 + �22 + �23 from the total intensity to

obtain the unpolarized intensity.
The components of the Stokes vector for unpolarized portion are

�(
) = �0 �
q
�21 + �22 + �23 � 0� 0� 0�

and for the polarized portion are

�(�) =
q
�21 + �22 + �23 � �1� �2� �3�

where �(
) is the unpolarized part and �(�) is the polarized part of the optical
beam.

The degree of polarization (DOP) is then de�ned to be

��� = � =
����
�����

=

p
�21 + �22 + �23

�0
�

where 0 � ��� � 1.
If ��� = 0, then the light is unpolarized and if ��� = 1, then the

light is completely polarized (elliptically polarized). The condition for partially
polarized light is

0 � ��� � 1


1.7 Partially Polarized Light

Partially polarized light lies between the extremes of unpolarize light and com-
pletely polarized light. This suggests that partially polarized light is a superpo-
sition of unpolarized light and completely polarized light.

The Stokes vector for partially polarized light has the form

� =

�
���

�0
�1
�2
�3

�
��� =  

�
���

�0
0
0
0

�
���+ !

�
���

�0
�1
�2
�3

�
��� � (7)

where
�0 =  �0 + !�0�
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which shows that  = 1� !. So, Eq. (7) becomes

� =

�
���

�0
�1
�2
�3

�
��� = (1� !)

�
���

�0
0
0
0

�
���+ !

�
���

�0
�1
�2
�3

�
��� �

where 0 � ! � 1. For unpolarized light ! = 0 and for polarized light ! = 1. This
means that ! is identical to ��� = �. So, Eq. (7) becomes

� =

�
���

�0
�1
�2
�3

�
��� = (1� �)

�
���

�0
0
0
0

�
���+ �

�
���

�0
�1
�2
�3

�
��� � 0 � � � 1


It gives the Stokes vector for partially polarized light as an incoherent superpo-
sition of unpolarized an completely polarized light.
Exercise# 03
By using

�(�� �) =
1

2
[�0 + �1 cos 2� + �2 sin 2� cos�+ �3 sin 2� sin�]


Show that �0 is the total intensity, �1 describes the preponderance of the in-
tensity of LHP over LVP light, �2 describes the preponderance of the intensity
of L+45P over L-45P light and �3 describes the preponderance of the intensity
of RCP over LCP light.

2 The Mueller Matrices for Polarizing Compo-
nents

In classical optics, there are three types of polarizing elements which can be
used to change the polarization state of an optical beam

(i) Polarizers
(ii) Waveplates
(iii) Rotators
The solution to the problem of the propagation of elliptically polarized light

through several polarizing elements came from an entirely di�erent area of math-
ematical analysis- namely- matrix algebra .

In late 1940 two new matrix algebras arose to solve these problems
(1) Jones Matrix Calculus
(2) Mueller-Stokes Matrix Calculus
Jones matrix calculus is suitable for describing the polarization behaviour in

terms of amplitudes and phases.
Mueller-Stokes matrix calculus for describing the polarization behaviour in

terms of intensities. Matrix approach to describe the polarization state of light
is quite natural since the components of a optical �eld after a polarizing device
are linearly related to its components before it entered the device.

13



2.1 The Mueller Matrix Calculus

Consider an incident beam with a given state of intensity and polarization in-
teracting with a polarizing element.

Figure 1:

The beam propagates through the polarizing element and emerges with a
new intensity and polarization state.

Both the induced beam and emerging beam are characterized by their four
Stokes polarization parameters �� and �

0
� respectively, where  = 0� 1� 2� 3.

Assume that the Stokes parameters of the output beam �
0
� can be linearly

related to the Stokes parameters of the input beam ��.

�
0
0 = �00�0 +�01�1 +�02�2 +�03�3�

�
0
1 = �10�0 +�11�1 +�12�2 +�13�3�

�
0
2 = �20�0 +�21�1 +�22�2 +�23�3�

�
0
3 = �30�0 +�31�1 +�32�2 +�33�3


Written as a matrix equation in terms of the Stokes vector
�
���

�
0
0

�
0
1

�
0
2

�
0
3

�
��� =

�
���

�00 �01 �02 �03

�10 �11 �12 �13

�20 �21 �22 �23

�30 �31 �32 �33

�
���

�
���

�0
�1
�2
�3

�
��� 


In symbolic matrix form,
�
0
="
��

where �
0
is the Stokes vector of output beam.

� is the Stokes vector of input beam.
" is 4× 4 matrix called the Mueller matrix.
The elements of the Mueller matrix are real Quantities.
When an optical beam interacts with matter such as an optical polarization

element-its polarization state is almost always changed.
The polarization state of an optical �eld can be changed by
(1) Changing the orthogonal amplitude(s)
(2) Changing the phase(s)
(3) Changing the direction of the components
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A polarization element that changes the orthogonal amplitudes unequally is
called a polarizer and is an anisotropic attenuator.

A polarizing element that introduces a phase shift between the orthogonal
components is called a waveplate also called retarders or compensators.

A polarizing element that rotates the orthogonal components of the beam
through an angle � to a new direction is called a rotator.

3 The Mueller Matrix of the Polarizer

3.1 Polarizer

An optical elements that attenuates the orthogonal components of an optical
beam unequally- that is- anisotropically- so a polarizer is an anisotropic atten-
uator.

It is described by two orthogonal transmission axes- characterized by trans-
mission factors p� and p� respectively, the magnitudes are unequal to each
other.

For equal transmission factors of each axis- the polarizer becomes a neutral
density �lter.

Consider a polarized beam incident on a polarizer.

Figure 2:

The components of incident beam are represented by E� and E� and the
components of the output beam are E

0
� and E

0
� respectively. The output and

input �eld components are

�
0
� = #���� 0 � #� � 1�

�
0
� = #���� 0 � #� � 1�

where #� and #� are the amplitude transmission co-e�cients directed along the
orthogonal x and y-axis.

(i) For perfect transmission #�(#�) = 1

(ii) For perfect attenuation #�(#�) = 0
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If one of the transmission co-e�cients is zero- polarizer has only single trans-
mission axes- we have an ideal linear polarizer.

The Stokes parameters of incident beam are given by

�0 = ���
�
� +���

�
� 


�1 = ���
�
� ����

�
� 


�2 = ���
�
� +���

�
�


�3 = �
¡
���

�
� ����

�
�

¢



The Stokes parameters of the output beam are

�
0
0 = �

0
��

�0
� +�

0
��

�0
� 


�
0
1 = �

0
��

�0
� ��

0
��

�0
� 


�
0
2 = �

0
��

�0
� +�

0
��

�0
� 


�
0
3 = �

³
�

0
��

�0
� ��

0
��

�0
�

´



Putting values of �
0
� and �

0
� in terms of �� and ��, we �nd that

�
���

�
0
0

�
0
1

�
0
2

�
0
3

�
��� =

1

2

�
���

#2� + #2� #2� � #2� 0 0
#2� � #2� #2� + #2� 0 0
0 0 2#�#� 0
0 0 0 2#�#�

�
���

�
���

�0
�1
�2
�3

�
��� 


The 4× 4 matrix is written as

"��(#�� #�) =
1

2

�
���

#2� + #2� #2� � #2� 0 0
#2� � #2� #2� + #2� 0 0
0 0 2#�#� 0
0 0 0 2#�#�

�
��� �

the Mueller matrix of a polarizer.
For a neutral density �lter #� = #� = #. The Mueller matrix reduces to

"�� = #2

�
���
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�
��� � 0 � #2 � 1


This is the unit diagonal matrix and #2 is the transmission factor. Now
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�
���

�
0
0

�
0
1

�
0
2

�
0
3

�
��� = #2

�
���
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�
���

�
���

�0
�1
�2
�3

�
���

= #2

�
���

�0
�1
�2
�3

�
��� 


The polarization state of output beam and input beam are same, apart from a
factor #2. The total intensity of incident beam is reduced by a factor #2.

�
0
= #2�� 0 � #2 � 1


(1) An Ideal Linear Polarizer

Transmission of the polarized beam takes place along only one axis. For
x-direction #� 6= 0� #� = 0� we have

"��(k) = #2�
2

�
���
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

�
��� 


The output beam that propagates through a linear polarizer of this kind is
described by

�
���

�
0
0

�
0
1

�
0
2

�
0
3

�
��� =

#2�
2

�
���
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

�
���

�
���

�0
�1
�2
�3

�
���

=
#2�
2

�
���

�0 + �1
�0 + �1
0
0

�
���

=
#2�
2
(�0 + �1)

�
���
1
1
0
0

�
��� 


This shows regardless of the state of polarization of the input beam- the state
of the output beam is always linearly horizontal polarized (LHP).

A linear polarizer is simply a polarizing element in which the polarization
state of the output beam is always linearly polarized (LP) regardless of the
polarization state of the input beam.
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If transmission takes place only along the y-axis, then #� 6= 0� #� = 0, so

"��(�) =
#2�
2

�
���

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

�
��� 


� indicates that the transmission axis is perpendicular to the x-axis, i.e., along
the y-axis.

The Stokes vector of output beam are now given by

�
���

�
0
0

�
0
1

�
0
2

�
0
3

�
��� =

#2�
2

�
���

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

�
���

�
���

�0
�1
�2
�3

�
���

=
#2�
2

�
���

�0 � �1
��0 + �1

0
0

�
���

=
#2�
2
(�0 � �1)

�
���

1
�1
0
0

�
��� 


This is the Stokes vector for LVP light.
Regardless of the polarization of the input state, the polarization state of

the output beam is always linearly vertically polarized (LVP).
For an ideal linear polarizer, LHP or LVP light, are the only two states of

polarization that can emerge from either a linear horizontal or linear vertical
polarizer, respectively.
Exercise
(i) A linear horizontally polarized (LHP) beam is incident on a linear po-

larizer with its transmission axis in the x-direction. Find the Stokes vector of
output beam.

Soln.

�
���

�
0
0

�
0
1

�
0
2

�
0
3

�
��� =

#2�
2

�
���
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

�
���

�
���
1
1
0
0

�
���

= #2�

�
���
1
1
0
0

�
��� 
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Output beam is still LHP and the intensity of the incident beam is reduced by
the transmission factor #2�.

(ii) If the incident beam is LVP, then

�
���

�
0
0

�
0
1

�
0
2

�
0
3

�
��� =

#2�
2

�
���
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

�
���

�
���

1
�1
0
0

�
���

= #2�

�
���
0
0
0
0

�
��� 


So, the incident beam is completely blocked and no light is transmitted through
the polarizer.

(iii) A linear polarizer with its transmission axis parallel to the x-axis fol-
lowed by another linear polarizer with its transmission axis perpendicular to
x-axis, this arrangement is called “ Crossed polarizers ”.

The Stokes vector of the incident beam is � and the Stokes vector of the
output beam emerging from the �rst linear polarizer is given by

�
0
="���(k)�


The beam �
0
then propagates through the second polarizer and we have

�
00

= "���(�)�0

= "���(�)
"���(k)�
= "
�


where " ="���(�)
"���(k). Putting values of "���(�) and "���(k), we get

" =
#2�#

2
�

4

�
���
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

�
���

�
���

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

�
���

=
#2�#

2
�

4

�
���
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

�
��� 


This is a null Mueller matrix.
Regardless of the input state of polarization, no light emerges from the

crossed polarizer pair. It suggests a means of controlling the passage or blocking
of light.

The Mueller matrix of the polarizer can be expressed in trigonometric rather
than algebric terms.
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"��� =
1

2

�
���

#2� + #2� #2� � #2� 0 0
#2� � #2� #2� + #2� 0 0
0 0 2#�#� 0
0 0 0 2#�#�

�
��� � 0 � #�� #� � 1


By writing #� = # cos$ and #� = # sin$, we get

"��� =
#

2

�
���

1 cos 2$ 0 0
cos 2$ 1 0 0
0 0 sin 2$ 0
0 0 0 sin 2$

�
��� � 0 � 2$ � �


(i) For 2$ = 0, the Mueller matrix is for linear horizontal polarizer.
(ii) For 2$ = �

2 , the Mueller matrix is for neutral density �lter.
(iii) For 2$ = �, the Mueller matrix is for linear vertical polarizer.

4 The Mueller Matrix of a Waveplate
Waveplate is a polarizing element that introduces a phase shift � between the
orthogonal components of an optical beam. A waveplate is a phase shifter. It
is also called retarder or a compensator.

The phase of a propagating optical beam is given by

� = �� =
2�

%
��

where � is the wave number, � is the distance and % is the wavelength.
If a wave travels a distance, for example � = �

4 (a quarter wavelength) then
the phase shift is

� =
2�

%

%

4
=

�

2



i.e., The distance of �
4 corresponds to a phase of �

2 . Similarly, a propagation
distance of � = �

2 (a half wavelength) corresponds to a phase shift of �.
A wavelength is characterized by two orthogonal axes called the fast axis

and the slow axis- taken to be along the x-axis and y-axis respectively. The
phase shift along the fast axis is +�

2 and along the slow axis is -�2 . The total
phase shift between the two axes is

�

2
� (��

2
) = �


The �eld components of the emerging beam are related to the incident �eld
components by

�
0
� = �� exp(�

�

2
)


�
0
� = �� exp(���

2
)
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Figure 3:

Putting these values in the de�nition of the Stokes parameters for the input and
output beams.

�
0
0 = �0� �

0
1 = �1�

�
0
2 = �2 cos�� �3 sin��

�
0
3 = �2 sin�+ �3 cos�


In matrix form
�
���

�
0
0

�
0
1

�
0
2

�
0
3

�
��� =

�
���
1 0 0 0
0 1 0 0
0 0 cos� � sin�
0 0 sin� cos�

�
���

�
���

�0
�1
�2
�3

�
��� 


The Mueller matrix for a wave plate with a phase shift of � is given by

"�� (�) =

�
���
1 0 0 0
0 1 0 0
0 0 cos� � sin�
0 0 sin� cos�

�
��� 


There are two special cases
(i) The quarter-waveplate (� = �

2 )
(ii) The half-waveplate (� = �)
(i) For a quarter-waveplate

"�� (
�

2
) =

�
���
1 0 0 0
0 1 0 0
0 0 0 �1
0 0 1 0

�
��� 


The quarter-waveplate transforms linearly polarized light to right or left circu-
larly polarized light (RCP or LCP).
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Consider the Stokes vector for incident �± 45� light.

� =

�
���

1
0
±1
0

�
��� 


The Stokes vector of the output beam is

�
0
=

�
���
1 0 0 0
0 1 0 0
0 0 0 �1
0 0 1 0

�
���

�
���

1
0
±1
0

�
���

=

�
���

1
0
0
±1

�
��� 


This is the Stokes vector for right or left (±) circularly polarized light (RCP,
LCP).

The transformation of LPL to circularly polarized light is an important ap-
plication of the quarter-waveplate. Circularly polarized light is obtained only if
the incident linearly polarized light is oriented exactly at ±45� with respect to
the fast axes of the quarter-waveplate.
Exercise
Show that the quarter-waveplate can transform RCP or LCP light to �+45�

or �� 45� respectively.

� =

�
���
1 0 0 0
0 1 0 0
0 0 0 �1
0 0 1 0

�
���

�
���

1
0
0
±1

�
���

=

�
���

1
0
�1
0

�
��� 


The QWP can be used to transform linearly polarized light to circularly polar-
ized light or circularly polarized light to linearly polarized light.

(ii) For half-waveplate (� = �)

"�� (�) =

�
���
1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

�
��� 


A half-waveplate is characterized by a diagonal matrix wiath �22 = �33 = �1.
So,
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�
0
=

�
���

�
0
0

�
0
1

�
0
2

�
0
3

�
��� =

�
���
1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

�
���

�
���

�0
�1
�2
�3

�
���

=

�
���

�0
�1
��2
��3

�
��� 


As the orientation and the ellipticity angles � and � of an optical beam are
given by

tan 2� =
�2
�1

�

and

sin 2� =
�3
�0




Comparing the elements of Stokes parameters, we see that

�
0
=

�

2
� �


�
0
= �� �

2



Thus, the e�ect of �22 = �33 = �1 is that it reverses the orientation and
ellipticity of the polarization state of an optical beam.

Another useful property of the waveplates is that their phases add if one
waveplate has a phase shift �1 and another has phase shift �2.

The product of the Mueller matrices of the two waveplates leads to a Mueller
metrix whose phase is the sum of the phases � = �1 + �2.

"�� = "�� (�1)
"�� (�2)


=

�
���
1 0 0 0
0 1 0 0
0 0 cos�2 � sin�2
0 0 sin�2 cos�2

�
���

�
���
1 0 0 0
0 1 0 0
0 0 cos�1 � sin�1
0 0 sin�1 cos�1

�
���

=

�
���
1 0 0 0
0 1 0 0
0 0 cos(�2 + �1) � sin(�2 + �1)
0 0 sin(�2 + �1) cos(�2 + �1)

�
��� 


5 The Mueller Matrix of a Rotator

The �nal way to change the polarization state of an optical �eld is to allow a
beam to propagates through the polarizing element that rotates its orthogonal
�eld components ��(�
�) through an angle �.
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The angle � gives the rotation of ��(�
�) to �
0
�(�
�) and ��(�
�) to �

0
�(�
�).

The angle & is the angle between E located at the ouput point P and ��(�
�).
Point P is described in the primed co-ordinate system.

�
0
� = � cos(& � �)


�
0
� = � sin(& � �)


In unprimed co-ordinate system, we have

�� = � cos &��� = � sin &
 (8)

Expaniding the trignometric function, we get

�
0
� = � (cos & cos � + sin & sin �) 


�
0
� = � (sin & cos � � sin � cos &) 
 (9)

Substituting Eq. (8) into Eq. (9), we get the amplitude equations of rotation.

�
0
� = �� cos � +�� sin �


�
0
� = ��� sin � +�� cos �


In order to �nd the Mueller matrix for the amplitude equations of rotation, we
form the Stokes parameters and �nd the Mueller mtarix for rotation is

"��� (�) =

�
���
1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

�
��� 


It is found that the physical rotation of an angle � leads to the appearence 2� in
"��� because we are working in the intensity domain. In amplitude domain
we would expect just �.

Rotators are used primarily to change the orientation angle of the polariza-
tion ellipse. To see this behaviour, The Stokes vector of the input and output
beams are �

���
�
0
0

�
0
1

�
0
2

�
0
3

�
��� =

�
���
1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

�
���

�
���

�0
�1
�2
�3

�
��� 


Consider that the angle of orientation of an incident beam is �. The orientation
angle is de�ned as

tan 2� =
�2
�1


 (10)

For the emerging beam, the orientation angle �
0
is

tan 2�
0
=
��1 sin 2� + �2 cos 2�

�1 cos 2� + �2 sin 2�

 (11)
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Substituting Eq. (10) inti Eq. (11), we �nd that

tan 2�
0
= tan(2� � 2�)


This implies that
�
0
= � � �
 (12)

Eq. (12) shows that a rotator merely rotates the polarization ellipse of the
incident beam through an angle �. The sign of � is negative because the rotation
is de�ned to be clockwise. If the rotation is counterclockwise, then � is positive.
i.e.,

�
0
= � + �


For ellipticity

sin 2� =
�3
�0




For output beam

sin 2� =
�03
�
0
0




This implies that the ellpiticity remains unchanged.

6 The Mueller matrices for Rotated Polarizing
Components

In the derivation of the Mueller matrices for a polarizer,a waveplate, and a
rotator, we have assumed that the axes of these devices are aligned along the x-
and y-axes, respectively. Consequently, it is necessary to know the form of the
Mueller matrices for the rotated polarizing elements.

In practice, the polarization elements are often rotated which greatly en-
hances their use and application.

Nearly all polarizing elements are rotated in an optical system. Furthermore,
when the polarizing component is rotated, its usefulness is extended. For ex-
ample, rotating a linear horizontal polarizer through an angle 90�, the polarizer
becomes a linear vertical polarizer.

The axes of the polarizing component are rotated through an angle � and
are along the x

0
and y

0
axes. The axes of the incident beam, however, are along

the x- and y-axes. In order for the incident beam to interact with the rotating
polarizing element, we must determine the components of the incident beam
along the axes of the rotated polarizing axis. Then after the beam has passed
through the polarizing element, we must then determine the components of the
emerging beam that are along the original x- and y-axes.

In order to derive the Mueller matrix for the rotated polarizing element, we
must determine the components of the Stokes vector � of the incident beam
that can propagate along the x

0
and y

0
axes of the rotated polarizing element.
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The Stokes vector �
0
of the beam whose components are along the x

0
and y

0

axes are
�
0
="��� (�)
�


The �
0
beam now interacts with the rotated polarizing element characterized

by a Mueller matrix " . The Stokes vector �
00
of the beam emerging from the

rotated polaring component is

�
00
="
�

0
="
"��� (�)
�


We now must determine the components of the emerging beam �
00
along the

original x- and y-axes. This can be done by a counterclockwise rotation of �
00

through an angle -�.

�
000

= "��� (��)
�00
="��� (��)
"
"��� (�)
�

= "(�)
��

where
"(�) ="��� (��)
"
"��� (�)
 (13)

Eq. (13) is the Mueller matrix of a rotated polarizing component.
We recall that the Mueller matrix for rotation "��� (�) is

"��� (�) =

�
���
1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

�
��� 


The Mueller matrix for a rotated polarizer is most conveniently found by ex-
pressing the Mueller matrix of a polarizer in trigonometric form, namely,

"���(�) =
#2

2

�
���

1 cos 2$ 0 0
cos 2$ 1 0 0
0 0 sin 2$ 0
0 0 0 sin 2$

�
��� � 0 � 2$ � �


The Mueller matrix for a rotated polarizer is

"���(�) =
#2

2

�
���

1 cos 2$ cos 2� cos 2$ sin 2� 0
cos 2$ cos 2� cos2 2� + sin 2$ sin2 2� (1� sin 2$) sin 2� cos 2� 0
cos 2$ sin 2� (1� sin 2$) sin 2� cos 2� sin2 2� + sin 2$ cos2 2� 0

0 0 0 sin 2$

�
���

The Mueller matrix for an ideal linear polarizer ($ = 0) is

"���(�) =
1

2

�
���

1 cos 2� sin 2� 0
cos 2� cos2 2� sin 2� cos 2� 0
sin 2� sin 2� cos 2� sin2 2� 0
0 0 0 0

�
��� �

where #2 = 1 for an ideal linear polarizer.
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(1) Linear Horizontal Polarizer

For linear horizontal polarizer � = 0. So, the Mueller matrix is

"��� (0) =
1

2

�
���
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

�
��� 


(2) Linear Vertical Polarizer

For linear vertical polarizer � = �
2 . So, the Mueller matrix is

"�� � (
�

2
) =

1

2

�
���

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

�
��� 


(3) Linear +45� Polarizer

For linear +45� polarizer � = �
4 . So, the Mueller matrix is

"�+45� (
�

4
) =

1

2

�
���
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

�
��� 


(4) Linear -45� Polarizer

For linear -45� polarizer � = �. So, the Mueller matrix is

"��45� (�) =
1

2

�
���

1 0 �1 0
0 0 0 0
�1 0 1 0
0 0 0 0

�
��� 


These forms of the Mueller matrix for a polarizer appear often in problems
involving the generation and analysis of polarized light.

6.1 The Mueller matrix for a waveplate

The Mueller matrix for a waveplate is given by

"�� =

�
���
1 0 0 0
0 1 0 0
0 0 cos� � sin�
0 0 sin� cos�

�
��� 
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The Mueller matrix for a waveplate rotated through an angle � is

"�� (�) =

�
���
1 0 0 0
0 cos2 2� + cos� sin2 2� (1� cos�) sin 2� cos 2� sin' sin 2�
0 (1� cos�) sin 2� cos 2� sin2 2� + cos� cos2 2� � sin' cos 2�
0 � sin' sin 2� sin' cos 2� cos�

�
��� 


Now, the Mueller matrix for half-waveplate is at � = �.

"��� (�) =

�
���
1 0 0 0
0 cos 4� sin 4� 0
0 sin 4� � cos 4� 0
0 0 0 �1

�
��� 


It looks similar to the Mueller matrix for rotation

"��� (�) =

�
���
1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

�
��� 


Both di�ers in some essential ways.
(1) The presence of -ive sign along the diagonal term �22 = �33 = �1. This

behaviour showed that the ellipticity and orientation of the emerging beam
is reversed from that of the incident beam. For above case, it shows that a
clockwise rotation of the half-waveplate causes the polarization ellipse of the
output beam to rotate counterclockwise.

As the orientation and the ellipticity of an incident beam using a half-
waveplate is reversed (in comparison to a true rotator), a half-waveplate is
called a pseudo-rotator.

(2) For a mechanical rotation of � with the half-waveplate, the polariztion
ellipse is rotated by 2� and in a direction opposite to the direction of the me-
chanical rotation.

For a true mechanical rotation using a rotator, the polarization ellipse is
rotated by an amount � and in the same direction as rotation.

Half-waveplates can be use as a polarization rotators but accuracy reduces
to half as compared to true rotators.

If the objective is to rotate the polarization ellipse by a �xed amount it is
better to use a true rotator rather than a half-waveplate. Half-waveplates are
most suitable when there is need to reverse the ellipticity or the orientation of
the polarization ellipse.

Consider an either right (+) or left (-) circularly polarized incident beam.
The stokes vector for these two states is written as

� =

�
���

1
0
0
±1

�
��� 
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Multiplying with "��� (�) for � = 0, we get

� =

�
���

1
0
0
�1

�
��� 


It is again a circularly polarized light but its ellipticity is reversed. i.e. right
circularly polarized light (RCP) is transformed to left circularly polarized light
(LCP) and vice versa.

If we have incident beams that are �+45� and ��45� , their Stokes vectors
are, respectively.

� =

�
���

1
0
±1
0

�
��� 


After the beam pass through a half-waveplate, the Stokes vector of the emerging
beas is

� =

�
���

1
0
�1
0

�
��� 


This shows that the orientations of linearly polarized beams are reversed. i.e.,
�+ 45� light is transformed to �� 45� and vice versa.
These are the properties of reversing the elipticity and orientation manifested

by the -ive sign in �22 and �33 in the mueller matrix for the half-waveplate
and its rotational behaviour that makes half-waveplates so useful.

For the Mueller matrix of a rotated quarter-waveplate, set � = �
2 in the

Mueller matrix "�� (�), we get

"��� (�) =
1

2

�
���
1 0 0 0
0 cos2 2� sin 2� cos 2� sin 2�
0 sin 2� cos 2� sin2 2� � cos 2�
0 � sin 2� cos 2� 0

�
��� 


Consider an incident linearly horizontally polarized beam (LHP) so its normal-
ized Stokes vector is

� =

�
���
1
1
0
0

�
��� 


Multiplying the above two matrices , we get the output beam.

� =

�
���

1
cos2 2�

sin 2� cos 2�
� sin 2�

�
��� 
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The orientation angle �
0
and the ellipticity angle �

0
of emerging beam (its

polarization ellipse) are given by

tan 2�
0
=

�
0
2

�
0
1

=
sin 2� cos 2�

cos2 2�

= tan 2�


and

sin 2�
0
=

�
0
3

�
0
0

= � sin 2�


This implies that

�
0
= �


�
0
= � +

�

2



It shows that the rotated quarter-waveplate can be used to generate a polarized
optical beam with a speci�c desired orientation and ellipticity.

7 The Jones Matrix Calculus
In early 1940’s Jones expressed the classical electric �eld components (ampli-
tudes and absolute phases) in terms of a 2×1 column matrix and the polarizing
elements (polarizer, waveplate and rotator) as 2× 2 matrix.

The Jones matrix calculus describes the polarization behaviour in terms of
amplitudes and phases. Jones matrices helps to solve very complex problems.

The Jones matrix for two of the polarizing elements, namely, the polarizer.
The Jones matrix describes only completely polarized light. Jones matrix are
simpler than the Mueller matrix.

The Jones matrix calculus has played a signi�cant role in the development
of �bre optics. We begin the development of the Jones matrix calculus by
considering the following �gure. The �gure shows the components of the incident
optical �eld that propagates through a polarizing element from which the output
optical �eld emerges.

The optical �eld components for the emerging beam are assumed to be lin-
early related to the incident �eld components. Furthermore, the polarizing ele-
ment is also assumed to respond di�erentialy to the input components ��(�
�)
and ��(�
�) and the components can be coupled.

The plane-wave components of the optical �eld in terms of the complex
quantities can be written as

��(�� �) = �0� exp �(��� �� + ��)


��(�� �) = �0� exp �(��� �� + ��)


The propagator ��� �� is now suppressed , so

��(�� �) = �0� exp ���
 (14)
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Figure 4:

��(�� �) = �0� exp ���
 (15)

In matrix form, above equation becomes

� =

μ
��

��

¶
=

μ
�0� exp ���
�0� exp ���

¶

 (16)

This 2×1 matrix is called the Jones column matrix or, simply, the Jones vector.
In the Jones vector the amplitudes �0� and �0� are real quantities. Before

we peoceed to �nd the Jones vectors for various states of polarized light, we
discuss the normalization of the Jones vector.

The total intensity of the optical �eld is given by

� = ���
�
� +���

�
� 


In matrix form,

� =
¡
��� ���

¢μ ��

��

¶



The row matrix
¡
��� ���

¢
is the complex transpose of the Jones vector matrix

E. i.e.,
�† =

¡
��� ���

¢



So, the intensity of the optical �eld is

� = �†�
 (17)

Substituiting Eq. (14) and (15) into Eq. (17), we get

�2
0� +�2

0� = � = �2
0 


It is customary to set �2
0 = 1, whereupon the Jones vector is said to be normal-

ized. The normalized condition is �†� = 1.
We now �nd the Jones vector for the following degenerate states of com-

pletely polarized light.
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(1) LHP Light

For this state �� = 0, so Eq.(16) becomes

���� =

μ
��

��

¶
=

μ
�0� exp ���

0

¶



From the normalization condition, we see that �2
0� = 1. Thus, the

normalized Jones vector for LHP light is written as

���� =

μ
1
0

¶

 (18)

(2) LVP Light

For this state �� = 0, so Eq.(16) becomes

��� � =

μ
0
1

¶

 (19)

(3) L +45P Light

For this state �� = ��, so 2�2
0� = 1 and Eq.(16) becomes

��+45� =
1�
2

μ
1
1

¶



(4) L -45P Light

For this state �� = ���, so 2�2
0� = 1 and Eq.(16) becomes

���45� =
1�
2

μ
1
�1

¶



(5) RCP Light

For this case �0� = �0� and �� � �� =
�
2 . Then 2�2

0� = 1 and Eq.(16)
becomes

���� =
1�
2

μ
1
�

¶

 (20)

(6) LCP Light

For this case �0� = �0� and �� � �� = ��
2 . Then 2�2

0� = 1 and Eq.(16)
becomes

���� =
1�
2

μ
1
��

¶

 (21)
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7.1 Orthogonality of the Jones Vectors

An additional property of the Jones vector is that they are orthogonal vectors.
Two vectors A and B are said to be orthogonal if A†.B = 0. For example,

for LHP and LVP light we have

(†
) =
¡
1 0

¢�μ 0
1

¶
= 0�

so the two states are orthogonal.
Similarly, for RCP and LCP light we have

(†
) =
1

2

¡
1 �

¢�μ 0
�

¶
= 0�

so oppositely circularly polarized states are orthogonal.
Thus, the normalized condition for two Jones vectors �1 and �2 is

�†1�2 = 0


The orthonormal and normalizing conditions allows us to write

�†��� = ��� � � * = 1� 2�

where ��� is the kronecker delta and is de�ned to be

��� = 1�  = *

= 0�  6= *


Any pair of orthonormal polariztaion states forms a complete set. Therefore,
any arbitrary state of polarization can be expressed as a linear combination of
the polarization states belonging to any pair of orhthogonal polarization states.

In a manner analogous to the superposition of incoherent intensities or Stokes
vectors, we can superpose coherent amplitudes, that is, Jones vectors. To show
this the Jones vectors for LHP and LVP light are ���� and ��� � , we have

���� =

μ
�0� exp ���

0

¶

 (22)

��� � =

μ
0

�0� exp ���

¶

 (23)

Adding Eq. (22) and Eq. (23), we get

� = ���� +��� � (24)

=

μ
�0� exp ���
�0� exp ���

¶

= ���� �
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Which is the Jones vector for elliptically polarized light (ELP). Thus, super-
posing the two orthogonal linear polarizations gives rise to elliptically polarized
light. If �0� = �0� and �� = ��, then Eq. (24) becomes

� = �0� exp ���

μ
1
1

¶



This implies that

� =

μ
1
1

¶
� (25)

which aside from the normalizing factor is �+ 45� light. Eq. (25) can also be
obtained from Eq. (18) and Eq. (19)

� = ���� +��� �

=

μ
1
0

¶
+

μ
0
1

¶

=

μ
1
1

¶



Example
Consider the case of superposing left and right circularly polarized light of

equal amplitudes. Then from Eq. (20) and Eq. (21), we see that

� = ���� +����

=
1�
2

μ
1
�

¶
+

1�
2

μ
1
��

¶

=
2�
2

μ
1
0

¶
�

which aside from the normalizing factor is the Jones vector for LHP light.
As a �nal example of the Jones vector, we show that the elliptically polarized

light can be obtained by superposing two oppositely circularly polarized beams
of unequal amplitude. The jones vector for two oppositely circular polarized
beams can be represented by

�+ =  

μ
1
�

¶
� �� = !

μ
1
��

¶



By the principle of coherent superposition we can then write

� = �+ +�� (26)

=  

μ
1
�

¶
+ !

μ
1
��

¶

=

μ
 + !

�( � !)

¶
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In component form, Eq. (26) can be written as

�� =  + !��� = ( � !) exp �
�

2

 (27)

The propagator is now restored to Eq. (27) and we now write

��(�� �) = ( + !) exp �(��� ��)
 (28)

��(�� �) = ( � !) exp �(��� �� + �
�

2
)
 (29)

Taking the real part of Eq. (28) and Eq. (29), we have

��(�� �) = ( + !) cos(��� ��)

��(�� �)

( + !)
= cos(��� ��)
 (30)

��(�� �) = ( � !) cos(��� �� + �
�

2
)

= �( � !) sin(��� ��)

��(�� �)

( � !)
= � sin(��� ��)
 (31)

Squarind and adding Eq. (30) and Eq. (31), we get

�2
�(�� �)

( + !)2
+

�2
�(�� �)

( � !)2
= 1
 (32)

Eq. (32) is the equation of an ellipse in standard form whose major and mi-
nor axes lenghts are  + ! and  � !, respectively. Thus, the superposition of
two oppositely circularly polarized beams of unequal magnitudes give rise to a
(nonrotated) ellipse with it locus vector moving in a counterclockwise direction.

8 Jones matrices for the Polarizer, Waveplate,
and Rotator

We now determine the Jones matrices for polarizers, retarders, and rotators.
A 2 × 1 column matrix requires a 2 × 2 matrix in order to be transformed to
another 2 × 1 column matrix. In order to do this, the Jones matrix calculus
assumes that the components of a beam emerging from a polarizing element are
linearly related to the components of the incident beam. This relation is then
expressed as

�
0
� = *���� + *����


�
0
� = *���� + *����
 (33)

35



Before we proceed to determine the Jones matrices we should point out that
if the polarization train of optical elements consists entirely of waveplates and
rotators, then all the matrices are unitary. Since we shall be dealing only with
square matrices with complex entities, the matrix is called unitary if

(�1 = (†


Example

Show that the following (square) matrix is unitary.

( =
1

2

μ
1 + � 1 + �
1� � �1 + �

¶



We �rst �nd the inverse matrix (�1. This is found to be

(�1 =
1

2

μ
1� � 1 + �
1� � �1� �

¶
(34)

After taking the complex transpose, we get

(† =
1

2

μ
1� � 1 + �
1� � �1� �

¶
(35)

Comparing Eq. (34) and Eq. (35), we see that the unitary condition is satis�ed.
So, ( is indeed a unitary matrix.

Unitary matrices play an important role in �bre optics. Some of their major
properties are

(1) A matrix is unitary if and only if its column (or rows) form an orthonor-
mal set of vectors.

(2) The prouct of unitary matrices of the same order is a unitary matrix.
(3) All of the eigenvalues of a unitary matrix have an absolute value of 1.
(4) The determinant of a unitary matrix has an absolute value of 1.
An orthogonal matrix is also a unitary matrix whose elements are all real.

If P is orthogonal then ��1 = � †.
Eq. (33) can be written in a matrix form as

μ
�

0
�

�
0
�

¶
=

μ
*�� *��
*�� *��

¶μ
��

��

¶
�

or as a symbolic matrix equation

�
0
= +
��

where J is the Jones matrix of the polarizing element,

+ =

μ
*�� *��
*�� *��

¶



We now determine the Jones matrices for a polarizer, waveplate, and rotator.

36



8.1 Jones Matrix for Polarizer

A polarizer is characterized by the relations

�
0
� = #���� �

0
� = #���� 0 � #��� � 1


For a polarizer the Jones matrix equation is

+��� =

μ
#� 0
0 #�

¶
� 0 � #��� � 1
 (36)

For an ideal linear horizontal polarizer #� = 1 and #� = 0. So, Eq. (36) becomes

+��� =

μ
1 0
0 0

¶



Similarly, for an ideal linear vertical polarizer, we have

+�� � =

μ
0 0
0 1

¶



Jones Matrix for a Waveplate
The next important polarizing element of importance is the waveplate. As

before, the waveplate is characterized by a phase shift of +�
2 along the fast axis

and a phase shif of -�2 along the orthonormal slow y-axis. This behavior leads
to the following relation between the output and input �elds,

�
0
� = exp �

μ
�

2

¶
��� �

0
� = exp��

μ
�

2

¶
��


Then the Jones matrix for the waveplate is

+�� =

�
� exp �

³
�
2

´
0

0 exp��
³
�
2

´
�
� 


The two most common types of waveplates are the quarter-waveplate and the
half-waveplate. For these devices, � = �

2 and �, respectively.
The Jones matrix for quarter-waveplate is

+��� =

μ
exp �

¡
�
4

¢
0

0 exp�� ¡�4 ¢
¶

= exp �
³�
4

´μ
1 0
0 �1

¶
�

and the Jones matrix for half-waveplate is

+��� =

μ
exp �

¡
�
2

¢
0

0 exp�� ¡�2 ¢
¶

= �

μ
1 0
0 �1

¶
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Finally, the Jones matrix for a rotator is obtained from the familiar equations
for rotation,

�
0
� = cos ��� + sin ���

�
0
� = � sin ��� + cos ����

which leads immediately to the Jones matrix for the rotator

+��� = +(�) =

μ
cos � sin �
� sin � cos �

¶



We now apply these results to determining the Jones matrices for di�erent
polarizer con�gurations. The most useful of these con�gurations is to know the
Jones matrix for a linear polarizer rotated through an angle �. This can be done
by using the familiar rotation transformation

+���(�) = +(��)+���+(�)

For a rotated polarizer, we have

+���(�) =

μ
cos � � sin �
sin � cos �

¶μ
#� 0
0 #�

¶μ
cos � sin �
� sin � cos �

¶

=

μ
#� cos

2 � + #� sin
2 � (#� � #�) sin � cos �

(#� � #�) sin � cos � #� sin
2 � + #� cos

2 �

¶

 (37)

For an ideal linear horizontal polarizer, #� = 1 and #� = 0, So Eq. (37) becomes

+���(�) =

μ
cos2 � sin � cos �

sin � cos � sin2 �

¶

 (38)

The Jones matrix for an ideal linear polarizer rotated through +45� is

+��� (
�

4
) =

1

2

μ
1 1
1 1

¶



If the linear polarizer is not ideal, then

+���(
�

4
) =

1

2

μ
#� + #� #� � #�
#� � #� #� + #�

¶



For � = 0 or �
2 , Eq. (38) gives the Jones matrices for an ideal linear horizontal

and linear vertical polarizer, respectively.
Eq. (37) also describes a neutral densit (ND) �lter and its e�ect on polarized

light. The condition for a neutral density �lter is #� = #� = #. So, Eq. (37)
becomes

+��(�) = �

μ
1 0
0 1

¶
� 0 � # � 1


Thus the neutral density does not a�ect the polarization state of the incident
beam.
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We now investigate the behavior of the waveplate. The Jones matrix for a
rotated waveplate determined from

+�� (�) = +(��)+��+(�)

=

�
� exp �

³
�
2

´
cos2 � + exp��

³
�
2

´
sin2 � (exp �

³
�
2

´
� exp��

³
�
2

´
) sin � cos �

(exp �
³
�
2

´
� exp��

³
�
2

´
) sin � cos � exp �

³
�
2

´
sin2 � + exp��

³
�
2

´
cos2 �

�
� 
(39)

Using the half angle formulas, Eq. (39) can be wirtten as

+�� (�) =

μ
cos �2 + � sin �

2 cos 2� 2� sin �
2 sin 2�

2� sin �
2 sin 2� cos �2 � � sin �

2 cos 2�

¶

 (40)

For a quarter- and a half-waveplate, Eq. (40) reduces, respectively to

+��� (�) =

�
2

2

μ
1 + � cos 2� � sin 2�
� sin 2� 1� � cos 2�

¶



and

+��� (�) = �

μ
cos 2� sin 2�
sin 2� � cos 2�

¶

 (41)

Eq. (41) looks very similar to a rotator. However, when we discussed the
rotated half-waveplate in the Mueller-Stokes formulation, it is actually a matrix
of a pseduo-rotator.

The �nal Jones matrix is to determine the e�ect of rotating a true rotator.
We have the familiar transformation

+��� (�) = +(��)+���+(�)� (42)

where

+��� =

μ
cos$ sin$
� sin$ cos$

¶

 (43)

So, Eq. (42) becomes

+��� (�) =

μ
cos$ sin$
� sin$ cos$

¶
= +(�)
 (44)

The polarization ellipse can only be rotated by an amount $ as shown in Eq.
(44). We conclude that the only way to rotate the polarization ellipse mechan-
ically is to use a half-waveplate.

9 Geometrical and Wave Optics
Matrix formulation of geometrical optics with in the paraxial ray approximation.
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9.1 Ray

By de�nition normal to the optical wave front is called a ray. Understanding
of the ray behavior makes it possible to understand the behavior of complex
optical waves passing through optical elements.

9.2 Paraxial Ray

Paraxial ray is a ray whose angular deviation from the cylinderical axis is small
enough that the sine and tangent of the angle can be approximated by the angle
itself.

10 Matrix Formulation of Geometrical Optics
Many important features of optical resonators and lens wave guide can be ob-
tained by geometric or ray optics, neglecting di�raction e�ects.

Consider a ray of light that is either transmitted by or re�ected from an
optical element (e.g. a lens or a mirror).

Figure 5:

If the ray is travelling approximately along the z-direction, then the ray
vector at a given point is given by it radial displacement (lateral) r(z) from the
z-axis and its angular displacement �.

,
0
=

�,

��
= tan � ' �


Example
Consider the propagation of light ray in vacuum from z = z1 to z = z2=

z1+�. The ray displacement and slope at output plane are related to the input
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isplacement and slope at z1 by

,2 = ,1 + �,
0
1�

where ,
0
1 is the slope at z = z1. As in vacuum there is nothing to change the

direction of a ray
,
0
2 = ,

0
1


i.e.,

,
0
1 =

�,1
��1

= �1


,
0
2 =

�,2
��2

= �2


In matrix notation, we write this equation as
μ

,2
,
0
2

¶
=

μ
1 �
0 1

¶μ
,1
,
0
1

¶



This implies that a ray is completely described by column (or 2× 1) matrix.
The propagation of a ray through a general optical element is given by

,2 = (,1 +),
0
1


,
0
2 = -,1 +�,

0
1


Or μ
,2
,
0
2

¶
=

μ
( )
- �

¶μ
,1
,
0
1

¶



This is called ABCD matrix. The ABCD matrix completely characterizes the
given optical element with in the paraxial ray approximation.

11 Free Space Propagation
Consider the free space propagation of a ray along a length �� = � of a given
material with refractive index n. If the input and output planes lies just outside
the medium, in a medium of refractive index equal to unity, then we have

,2 = ,1 +
�,

0
1

.
�

,
0
2 = ,

0
1


The corresponding ABCD matrix is
μ

( )
- �

¶
=

μ
1 �

�
0 1

¶
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Proof

Using Snell’s law
.1 sin �1 = .2 sin �2�

where �1 is the angle of incident and �2 is the angle of refraction. For small
angles sin� = �, so

.1�1 = .2�2�

where .1 = 1 for air. When ray enters the meium of refractive index n. Using
Snell’s law, we get

�1 = .�
0
1�

�
0
1 =

�1
.
=

,
0
1

.



When ray again crosses the boundary angle of incident is �
0
1 with refractive

index n so using Snell’s law again, we get

.�
0
1 = �2�

.
�1
.

= �2�

�1 = �2


This implies that
,
0
2 = ,

0
1


12 ABCDMatrix for Propagation Through Lens
Consider a thin convex lens of focal length f. If lens is thin then the input and
output distance from the z-axis are equal. i.e.,

,2 = ,1


Using laws of geometrical optics that

1

#
+
1

/
=
1

0

 (45)

From the �gure, we have
# =

,1
,
0
1

� / =
,2
,
0
2

Using Eq.(45) and ,2 = ,1 we get

,
0
2 = �

,1
0
+ ,

0
1
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This implies that μ
1 0
�1
� 1

¶



Bit if a ray passes through the centre of lens then ,1 = 0 and slopes are

,
0
1 = ,

0
2


If the ray enters the lens parallel to the axis at transverse distance ,1 then
,
0
1 = 0, as lens is convex then ray bends towards the focal point adn its �nal
slope is

,
0
2 = �

,1
0



This implies that μ
1 0
�1
� 0

¶



For concave lens replace 0 with -0 , therefore it has negative focal point.

12.1 ABCD Matrix for Spherical Mirror

Now consider the re�ection of a ray by a spherical mirror of radius of curvature
R (R is positive for a concave mirror and negative for a convex mirror).

In this case the z1 and z2 planes are taken to be coincient and to be placed
just infront of the mirror. The displacement of the ray is the same immediately
before and after re�ection from the mirror.

,2 = ,1


The ray matrix of a concave mirror of curvature R and hence focal length f =
�
2 becomes identical to that of a positive lens of focal length f.

,
0
2 = ,

0
1 �

2

1
,1


The slope ,
0
is ,

0
� 0 if , is increasing with propagation, otherwise ,

0
� 0.

Radius of curvature R is positive for a concave mirror and negative for a
convex mirror. Similarly, focal length f is positive for convex (converging) lens
and negative for concave (diverging) lens. So a concave mirror becomes identical
to a convex lens.

The ray matrix is therefore
μ

1 0
�2
� 1

¶



An important property of ABCD matrix is its determinant is equal to 1 for
optical element.
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Figure 6:

13 Ray Matrices
(i) Straight section of length L.

The ray matrix is μ
1 �
0 1

¶
�

and

,2 = ,1 + �,
0
1


,
0
2 = ,

0
1


(ii) Free space propagation of a wave through a medium of lehgth L and refrac-
tive index n.

The ray matrix is
μ
1 �

�
0 1

¶
�

and

,2 = ,1 + �
,
0
1

.



,
0
2 = ,

0
1


(iii) Thin lens focal length is positive for converging lens and negative for iverging
lens.The ray matrix is

μ
1 0
�1
� 1

¶
�

and
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Figure 7:

,2 = ,1


,
0
2 = �,1

0
+ ,

0
1


(iv) For spherical mirror, radius of curvature is positive for concave and negative
for convex.

Figure 8:

The ray matrix is μ
1 0
�2
� 1

¶



and

,2 = ,1


,
0
2 = � 2

1
+ ,

0
1


(v) Flat dielectric interface of refractive index .1� .2.The ray matrix is
μ
1 0
0 �1

�2

¶
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Figure 9:

and

,2 = ,1


,
0
2 = ,

0
1

.1

.2



(vi) For curved dielectric interfaceThe ray matrix is

Figure 10:

μ
1 0

�1��2
�2�

�1
�2

¶



and

,2 = ,1


,
0
2 = (

.1 � .2
.21

),1 + ,
0
1

.1

.2
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