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What is a Fourier Series?

• A Fourier series decomposes a periodic function or periodicp p p
signal into a sum of simple oscillating functions, namely sines
and cosines (or complex exponentials).

OROR
• The theory of Fourier series lies in the idea that most signals

can be represented as a sum of sine waves-including squareca be ep ese ted as a su o s e waves c ud g squa e
waves and triangle waves-they're possibly the most-used
examples.
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Sine Waves

• Sine waves have lots of interesting properties- many natural
operations deal with a set of differing frequency sine waves

• Fourier series give a great picture of the kind of content of a
signalsignal.

• A sharp transition in data generally results from a high-
frequency sine wave- only high-frequency sine waves have
the fast-changing edge required.

• By cutting out the low frequencies- one can pick out the
edges This is particularly useful in image processingedges. This is particularly useful in image processing.
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Anharmonic Waves are Sums of SinusoidsAnharmonic Waves are Sums of Sinusoids
Consider the sum of two sine waves (i.e., harmonic waves) 

of different frequencies:of different frequencies:

The resulting wave is periodic, but not harmonic.  
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Essentially all waves are anharmonic.



Building a Square Wave

Let's see how a square wave is built up- start with a sine 
wave:

• Add another with an amplitude 1/3 of the original and a• Add another, with an amplitude 1/3 of the original and a
frequency 3 times that of the first- 3rd harmonic
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Building a Square Wave

Add another, with an amplitude 1/5 of the original and a frequency 
5 i h f h fi 5th h5 times that of the first- 5th harmonic

• If we carry on until the 15th harmonic- we should see a pattern 
emergingemerging

• It looks quite noisy- but bears resemblance to the square wave.
• If we add more and more harmonics,- we get closer and closer to
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Fourier Series Expansions

• Odd and Even Functions:
An important point is the difference between odd and evenAn important point is the difference between odd and even

functions. For odd functions- on the other side of the y-axis-
the function is inverted.

sin is an odd function. So, we can  see that an odd function  is made up 
of sin functions only. And any combination of sin functions will 
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Even and Odd Functions

• Even Function- cosine is an even function-mirrored about the
y-axis- and so combinations of cosine functions produce even
functions.
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Asymmetric FunctionAsymmetric Function

Some functions are neither wholly odd nor even- arey
asymmetric. Asymmetric functions are made up of both
sine and cosine functions:
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Fourier Cosine Series

Because cos(mt) is an even function (for all m), we can write an 
even function, f(t), as:

f( )
1

( )
�

�f( t) �
�

Fm cos(mt)
m �0
�

where the set {Fm; m = 0, 1, … } is a set of coefficients that define m
the series.
And where we’ll only worry about the function f(t) over the 
interval ( � �)interval (–�,�).

1/29/2010Preparatory�School�to�Winter�college�on�Optics�and�Energy



The Kronecker delta function

1 if m n
�

��
�, 0 if m n m n

�
�

	 � 
�
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Finding the coefficients, Fm, in a Fourier Cosine 
SeriesSeries
Fourier�Cosine�Series:

0

1( ) cos( )m
m

f t F mt
�

�

�

� �
To�find�Fm,multiply�each�side�by�cos(m’t),�where�m’ is�another�integer,�and�integrate:

1( ) cos( ' ) cos( ) cos( ' )f t m t dt F mt m t dt
� ��

� �� �
But:�������������������

0

( ) cos( ) cos( ) cos( )m
m

f t m t dt F mt m t dt
� �

�
� 

�� �

'

'
cos( ) cos( ' )

0 ' m m

if m m
mt m t dt

if

�
�

� �
��

� 	�
��

So: � only�the�m’ = m term�contributes

,( ) ( )
0 ' m mif m m

�

� 
��

, '
1( ) cos( ' ) m m mf t m t dt F

�

� �
�

� ��
Dropping�the�’ from�the�m:��������������������������������������������������������������������

� yields the

,
0

m m m
m�

�
�

��

( ) cos( )mF f t mt dt
�

� � � yields�the�
coefficients�for�
any�f(t)!
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Fourier Sine Series

Because sin(mt) is an odd function (for all m), we can write ( ) ( ),
any odd function, f(t), as:

1
�

�f (t) �
1
�

��F m sin(mt)
m� 0
�

where the set {F’m; m = 0, 1, … } is a set of coefficients that define the 
series.

where we’ll only worry about the function f(t) over the interval (–�,�).where we ll only worry about the function f(t) over the interval ( �,�).
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Finding the coefficients, F’m, in a Fourier Sine Series

Fourier�Sine�Series: 1( ) sin( )f t F mt
�

�� �
To�find�Fm,multiply�each�side�by�sin(m’t),�where�m’ is�another�integer,�and�integrate:

0

( ) sin( )m
m

f t F mt
�

�
�

1( ) i ( ' ) i ( ) i ( ' )f d F d
� ��

��� �
But:�����������������������

0

1( ) sin( ' ) sin( ) sin( ' )m
m

f t m t dt F mt m t dt
� �

�
� 

�� �� �
'if m m

�
� ��
��

S

, 'sin( ) sin( ' )
0 ' m m

f
mt m t dt

if m m
�

� �


�
� 	� 
��

1
� �

�So:�
� only�the�m’ = m term�contributes, '

0

1( ) sin( ' ) m m m
m

f t m t dt F
�

� �
�

�

�� ��
�

�Dropping�the�’ from�the�m: � yields�the�coefficients�
for�any�f(t)!1/29/2010 Preparatory�School�to�Winter�college�on�
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Fourier Series 

So if f(t) is a general function, neither even nor odd, it can 
b itt

1 1( ) cos( ) sin( )f t F mt F mt
� �

�� �� �

be written:

even component                     odd component

0 0
( ) cos( ) sin( )m m

m m
f t F mt F mt

� �� �

� �� �

p p

where

andFm � f (t) cos(mt) dt� ��F m � f (t) sin(mt) dt�
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Fourier Series to Fourier Transform

• Periodic signals- represented by linear combinations of
harmonically related complex exponentialsharmonically related complex exponentials

• To extend this to non-periodic signals, we need to consider ap g
periodic signals with infinite period.

• As the period becomes infinite the corresponding frequency• As the period becomes infinite, the corresponding frequency
components form a continuum and the Fourier series sum
becomes an integral
F i t f i l l d f ti i h• Fourier transform - is a complex valued function in the
frequency domain
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Comparison between Fourier series and 
Fourier transform

Fourier series Fourier transform

ou e s o

• Support periodic function • Support non-periodic 
f ifunction

• Discrete frequency 
spectrum • Continuous frequency 

spectrumspectrum
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The Fourier Transform
Consider the Fourier coefficients. Let’s define a function F(m)
that incorporates both cosine and sine series coefficients, with
the sine series distinguished by making it the imaginarythe sine series distinguished by making it the imaginary
component:

( ) cos( )f t mt dt� ( ) sin( )i f t mt dt �F(m)���	 Fm – i F’m =

Let’s now allow f(t) to range from  to , so we’ll have to integrate from to    , 
and let’s redefine m to be the “frequency,” which we’ll now call �:

� �
� � � �

( ) ( ) exp( )F f t i t dt� �
�

� � The Fourier
Transform

F( ) is called the Fourier Transform of f(t). It contains equivalent information to 
that in f(t). We say that f(t) lives in the time domain, and F(  ) lives in the 
frequency domain. F( ) is just another way of looking at a function or wave.

�

�
�

�
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The Inverse Fourier Transform

The Fourier Transform takes us from f(t) to F( )�The Fourier Transform takes us from f(t) to F( ).

Recall our formula for the Fourier Series of f(t) :

�

Now transform the sums to integrals from to and again replace F with

'

0 0

1 1( ) cos( ) sin( )m m
m m

f t F mt F mt
� �

� �

� �

� �� �
Now transform the sums to integrals from to , and again replace Fm with 
F( ).  Remembering the fact that we introduced a factor of i and included a 
factor of 2, we have:
�

� �

1( ) ( ) exp( )
2

f t F i t d� � �
�

�

� � Inverse
Fourier
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The Fourier Transform and its Inverse

The Fourier Transform and its Inverse:

FourierTransform( ) ( ) exp( )F f t i t dt� �
�

� �

Inverse Fourier Transform

f
�
�

1( ) ( ) exp( )f t F i t d� � �
�

� �
So we can transform to the frequency domain and back.  
Interestingly these transformations are very similar

Inverse Fourier Transform( ) ( ) exp( )
2

f t F i t d� � �
�

�

� �

Interestingly, these transformations are very similar.  

There are different definitions of these transforms.  The 2� can 
occur in several places, but the idea is generally the same.occur in several places, but the idea is generally the same.

1/29/2010Preparatory�School�to�Winter�college�on�Optics�and�Energy



• Generally, the Fourier transform F(�) exists when the Fourier 
integral convergesg g

• A condition for a function f(t) to have a Fourier transform is, 
f(t) can be completely interable.

• This condition is sufficient but not necessary• This condition is sufficient but not necessary

���
�

dttf )( ���
�

dttf )(
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Fourier Transform Notation

There are several ways to denote the Fourier transform of a y
function.

If the function is labeled by a lower case letter such as fIf the function is labeled by a lower-case letter, such as f,  
we can write:

f(t)  ®  F( )�
If the function is already labeled by an upper-case letter, such 
as E, we can write:

or: ( ) ( )E t E �� �( ) { ( )}E t E t�Y
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Properties of Fourier transform
1 Linearity:

For any constants a, b the following equality holds:

{ ( ) ( )} { ( )} { ( )} ( ) ( )F af t bg t aF f t bF g t aF bG� �� � � � �

2 Scaling:

{ ( ) ( )} { ( )} { ( )} ( ) ( )F af t bg t aF f t bF g t aF bG� �� � � � �

For any constant a, the following equality holds:

1 �1{ ( )} ( )
| |

F f at F
a a

�
�
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Properties of Fourier transform 2
3 Time shifting:

{ ( )} ( )i aF f t a e F� ��

Proof:

{ ( )} ( )F f t a e F � �

i ti i
� �

� �
• Frequency shifting:

0
0 0{ ( )} ( ) ( ) i ti t i aF f t a f t a e dt e f t e dt�� �  

� �

 �  �� �

Proof:

0
0{ ( )} ( )i tF e f t F� � �� 

Proof:

0 0
0{ ( )} ( ) ( )i t i t i tF e f t e f t e dt F� � � � �

�
 

�

� � �
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Properties of Fourier transform 3
5. Symmetry (Duality):

Proof:

Th i F i f i

{ ( )} 2 ( )F F t f� �� 

The inverse Fourier transform is

1 1( ) { ( )} ( )
2

i tf t F f F e d�� � �
�

� � �
therefore

( ) { ( )} ( )
2

f f
� �
�

1 �

� �12 ( ) ( ) ( )
2

i tf F t e dt F F t�� �
� �

 � ��
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Properties of Fourier transform 4p
6. Modulation:

0 0 0
1{ ( )cos( )} [ ( ) ( )]
2

F f t t F F� � � � �� � � 

Proof:
0 0 0

1{ ( )sin( )} [ ( ) ( )]
2

F f t t F F� � � � �� �  
Proof:

Using Euler formula, properties 1 (linearity) and 4 (frequency
shifting): 1shifting):

0 0
0

1{ ( )cos( )} [ { ( )} { ( )}]
2

1

i t i tF f t t F e f t F e f t� �� � �
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Scale Theorem 

The Fourier transform 
f l d f ti f( t): { ( )} ( / ) /f at F a a��Yof a scaled function, f(at): { ( )} ( / ) /f at F a a��Y

{ ( )} ( ) exp( )f at f at i t dt�
�

� �Y
Proof:

{ ( )} ( ) p( )f f
�
�

�

�
Assuming a > 0, change variables:  = at0t

0 0 0{ ( )} ( ) exp( [ / ]) /f at f t i t a dt a�
�

� �Y

( ) exp( [ / ] ) /f t i a t dt a�
�

� � 0 0 0( ) exp( [ / ] ) /f t i a t dt a�
�

� �
( / ) /F a a��
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hence the absolute value.



The Scale Theorem in action 
f(t) F(�)

ShortShort
pulse

Medium-

The shorter 
the pulse, 

the broader

�t

length
pulse

the broader
the

spectrum! �t

Long
pulse

This is the essence 
of the Uncertainty 
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Shift Theorem

( ) :f t aThe Fourier transform of  a shifted function,

Proof : � �( ) exp( ) ( )f t a i a F� � � Y

� �� �            ( ) exp( )f t a f t a i t dt

t t

�
�

�

 �  �
Ch i bl

Y

0

0 0 0            ( ) exp( [ ])

t t a

f t i t a dt�
�

� 

 ��

Change variables :

0 0 0     exp( ) ( ) exp( )i a f t i t dt� �

�

�

�  

�

�
    

�

        exp( ) ( )                                  i a F� �� 
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Parseval’s Theorem 

Parseval’s Theorem says that the energy is the 
same, whether you integrate over time or 
frequency:

2 21( ) ( )
2

f t dt F d� �
� �

�� �frequency:

Proof: 

2�
� �
� �

2     ( ) ( ) *( )f t dt f t f t dt
� �

� �

� �� � Use��’,�not��,�to�avoid�conflicts�in�
integration�variables.

1 1( exp( ) *( exp( )
2 2

F i t d F i t d dt� � � � � �
� �

� � �

� � �

� � � �
� � �� � � �� � � 

� � � �� � � �
� � �
1 1( ) *( ) exp( [ ] )

2 2
F F i t dt d d� � � � � �

� �

� � �

� � �

� �
� � �� �� 
� �� �

� � �
1 1( ) *( ) [2 )]

2 2
F F d d� � �� � � �

� �

� �

� �

� � �� � � � �
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� �� �



Parseval's Theorem in action

Time�domain Frequency�domainf(t) F(�)f(t) F(�)

| f(t)|2 |F(�)|2

t �

tt �
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The ConvolutionThe Convolution
The convolution allows one function to smear or broaden another.

0 0 0( ) ( ) ( ) ( ) ( ) ( )f t g t f t g t f t g t t dt
�

� 	 � 	 �
�

changing variables:
( – ) ( )f t t g t dt

�

� � � t -0 0 0( ) ( )f t t g t dt
�

� �
g f g�f

0t 0t

* =
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The convolution can be performed visually: 
rect * rect

�

� 0 0 0( ) ( ) ( – ) ( )f t g t f t t g t dt
�

� � �

rect(t) * rect(t) =  (t)

rect(x)  (t)

x t
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Convolution with a delta function

0 0 0( – ) ( )f g f t t g t dt
�

� � �

0 0 0( ) ) ( ) ( )f t t f t t t dt� �
�

� � � �

0 0 0( ) ( )f g f t t g t dt
�
�

0 0 0( ) ) ( ) ( )

                         ( )

f f

f t
�

�

�

�

• Convolution with a delta function simply centers the function 
on the delta-function.  
• This convolution does not smear out f(t) Since a device’s• This convolution does not smear out f(t). Since a device s 
performance can usually be described as a convolution of the 
quantity it’s trying to measure and some instrument response, a 
perfect device has a delta-function instrument response.
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The�Convolution�Theorem�

The Convolution Theorem turns a convolution into the inverse FT of 
h d f h F i T fthe product of the Fourier Transforms:

{ ( )  ( )} = ( ) ( )f t g t F G� ��Y
� !

Proof:

0 0 0{ ( ) ( )} ( ) ( – ) exp( )f t g t f t g t t dt i t dt�
� �

� �

� !
� � � "

� #
� �Y

( ) ( ) ( )f i d d
� �� !

� "� �0 0 0( ) ( ) exp(– )f t g t t i t dt dt�
� �

�

� � "
� #

� �

� 0 0 0( ){ ( exp(– )}f t G i t dt� �
�

�

� ��
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The Autocorrelation

The convolution of a function f(x) with itself (the auto- convolution) is f( ) ( )
given by:

0 0 0( ) ( )f f f t f t t dt
�

� � � 0 0 0( ) ( )f f f f
�
�

Suppose that we don’t negate any of the arguments, and we complex-
dconjugate the 2nd factor. Then we have the autocorrelation:

*( ) ( )f f f t f t t dt
�

� 0 0 0( ) ( )f f f t f t t dt
�

	 �
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The autocorrelation plays an important role in optics.



The Autocorrelation

As with the convolution we can also perform the autocorrelationAs with the convolution, we can also perform the autocorrelation 
graphically.  It’s similar to the convolution, but without the inversion.

f f

=

f g

x x t

Like the convolution, the autocorrelation also broadens the function 
in time. For real functions, the autocorrelation is symmetrical (even). 
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The Autocorrelation Theorem

The�Fourier�Transform�
of the autocorrelation � � 2

�� !
� "�

of�the�autocorrelation�
is�the�spectrum!
Proof:

� � 2
0 0( ) *( ) ( )f t f t t dx f t

�

� !
 �� "

� #
�Y Y

� � �� !
� "� � �0 0 0 0 0

*

( ) *( ) exp( ) ( ) *( )f t f t t dx i t f t f t t dt dt�
� � �

� �

� !
 �  � "

� #

� �

� � �

� �

Y

0 0 0

*

( ) exp( ) ( )f t i t f t t dt dt�
� �

� � �

� �
� � �

� �

� �

� � t’ =  t

$ %*
0 0 0 0 0 0( ) exp( ) ( ) ( ) ( )exp( )f t i t f t t dt dt f t F i t dt� � �

� � �

� �
� � ��  � �� �

� �
� � �
�
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The Autocorrelation Theorem in 
actionaction

� �rect( ) sinc( / 2)t ��Y

1
rect(t)

1

sinc( / 2)�

sinc( /2)
sinc( /2)

�
�

&
�

rect( ) rect( )
( )

t t
t

�
 0 1-1 t �0

2sinc ( / 2)�
( )t 

1

2sinc ( / 2)�
1

( )t 

-1 0 1 t �0
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The Modulation Theorem:
The Fourier Transform of E(t) cos(w0 t)( ) ( 0 )

� �( ) cos( ) ( ) cos( ) exp( )E t t E t t i t dt� � �
�

� �Y � �0 0( ) cos( ) ( ) cos( ) exp( )E t t E t t i t dt� � �
�

� �Y

0 0
1 ( ) exp( ) exp( ) exp( )
2

E t i t i t i t dt� � �
�

� �  � �� �� 0 0( ) p( ) p( ) p( )
2

�

� ��
0 0

1 1( ) exp( [ ] ) ( ) exp( [ ] )
2 2

E t i t dt E t i t dt� � � �
� �

�   �  �� �2 2
� �
� �

� �0 0 0
1 1( )cos( ) ( ) ( )
2 2

E t t E E� � � � ��  � �� �Y
2 2

� �0( ) cos( )E t t�YExample: 0( ) cos( )E t t�
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E(t) = exp(-t2)
t



The Fourier Transform of 1

• Using integration, the Fourier transform of 1 is 

{1} 1 ?
i t i i

i t e e ee dt
�

�
��   � � �

 � � 
� ��F{1} 1 ?e dt

i i� �� �

� � � �� � � �
�F

• At first, we may conclude that 1 has no Fourier transform, but 
in fact, it can be found using the principle of duality!
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*Note that          is neither 0 nor � since ie �

where cos � and sin � do not converge and |cos �| � 1 and |sin 
|

e
cos sin ??ie i � � �  � �

�| � 1. 
But                 equal to 0 since 

( )a ie � � �

( ) 0 0a i i i� � � �  �  �&
with condition a is real and a > 0.

( ) 0 0a i i ie e e e� � � & �
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The Spectrum 

We define the spectrum,�S(�),�of a wave E(t) to be:

2
( ) { ( )}S E t� 	 Y( ) { ( )}S E t� 	 Y

This is the measure of the frequencies present in a light wave
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This is the measure of the frequencies present in a light wave.



The Dirac delta function

Unlike the Kronecker delta-function which is a function ofUnlike the Kronecker delta-function, which is a function of 
two integers, the Dirac delta function is a function of a real 
variable, t.

if 0�
�(t)

if 0
( )

0 if 0
t

t
t

�
� ��

	 � 
�0 if 0t 
�
t
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Dirac �function Propertiesp

�

� ( ) 1t dt�
�

�� �(t)

t( ) ( ) ( ) ( ) ( )t a f t dt t a f a dt f a� �
� �

� �

 �  �� �

exp( ) 2 (i t dt� � � �
�

( � ��

exp[ ( ) ] 2 (i t dt� � � � � �

�

�

� �(  �  �

�

�
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ExampleExample

Using the definition find the Fourier transformUsing the definition, find the Fourier transform 
of �(t).�
Then deduce the Fourier transform of 1.Then deduce the Fourier transform of 1.
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SolutionSolution

* )()()( fdf�
�

�

Th F i f f f (t) �(t) i

*Recall the sifting property:� )()()( afdttfat ��
�

�

0 0( ) { ( )} ( ) 1i t iF t t e dt e e� �� � �
�

 � � � � ��F

The Fourier transform of  f (t) = �(t) is

( ) { ( )} ( ) 1F t t e dt e e� � �
�
�F

Then, using the duality principle, the Fourier transform of 1 isg y p p

)(2)(2)(2}1{ �������� ��� fF
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The Fourier Transform of �(t) is 1

( ) exp( ) exp( [0]) 1t i t dt i� � �
�

 �  �� ( ) exp( ) exp( [0]) 1t i t dt i� � �
�
�

�(t) )

t �0

1exp( ) 2 (i t dt� � � �
�

�

 � ��The Fourier Transform of 1 is *��(�):

*��(�))

�
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The Pulse Width

There are many definitions of the 
" idth" “l th” f l  "width" or “length” of a wave or pulse.

The effective width is the width of a rectangle t

 t

The effective width is the width of a rectangle 
whose height and area are the same as those of the pulse.
Effective width � Area / height: f(0)g

1 ( )
(0)efft f t dt

f

�

 	 �

f(0)

 teff
(Abs value is 
unnecessary 
f i t it )

Advantage:  It’s easy to understand.
Disadvantages: The Abs value is inconvenient

(0)f �
�

t0

for intensity.)
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Disadvantages:  The Abs value is inconvenient.
We must integrate to ± �.



The Uncertainty Principle

The Uncertainty Principle says that the product of a function's widths
i h i d i ( ) d h f d i ( ) h i iin the time domain ( t)�and the frequency domain ( �)�has a minimum.

Define the widths 
assuming f(t) and

1 1( )         ( )
(0) (0)

t f t dt F d
f F

� � �
� �

 	  	� �
1 1 (0)( ) ( ) exp( [0] )
(0) (0) (0)

Ft f t dt f t i t dt
f f f

� �

� �

 + �  �� �
F(�) peak at 0:

(0) (0)f F� �
� �

1 1 2 (0)( ) ( ) exp(
(0) (0) (0)

fF d F i d
F F F

�� � � � � �
� �

� �

 + � $'%� �� �
(Different definitions of the widths and 
the Fourier Transform yield different 

constants.)(0) (0)2 f Ft� �  +

Combining results:
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(0) (0)

t
F f

� �  +
2t� �  + 1t,  +or:



Some�common�Fourier�transform�
pairspairs
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Source:�http://mathworld.wolfram.com/FourierTransform.html



Example:  the Fourier Transform of a
rectangle function: rect(t)rectangle function: rect(t)

1/ 2
1/ 2

1/ 2
1( ) exp( ) [exp( )]F i t dt i t� � � �  � � 1/ 2

1/ 2

( ) p( ) [ p( )]

1 [exp( / 2) exp(

i

i i
i

�

� �
�

 

�   -*�%


�

exp( / 2) exp(
2

i (

i i
i

� �
�
)   -*�

�
� -*�

-*�

F(�)

sin(�
�

-*�
�

� -*�
Imaginary 
Component = 0

( sinc(F � �� � -*�
Component = 0

�
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Example: the Fourier Transform of a
G i ( t2) i it lf!Gaussian, exp(-at2), is itself!

�
2 2{exp( )} exp( )exp( )at at i t dt�

�

 �  �Y

2exp( / 4 )a�.  The details are a HW problem!

2exp( / 4 )a�2exp( )at

�
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The Fourier transform of exp(i�0 t)

� �0 0exp( ) exp( ) exp( )i t i t i t dt� � �
�

� �Y � �0 0p( ) p( ) p( )
�
�

0exp( [ ] )i t dt� �
�

�  � 02 ( )� � � �� 
�
�

Y   {exp(i�0t)}
exp(i�0t)

0

' �'

�
'

t

tRe

Im

'

The function (i t) is the essential component of Fourier

'
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The function exp(i�0t) is the essential component of Fourier 
analysis.  It is a pure frequency. 



The Fourier transform of cos(�' t)

� �0 0cos( ) cos( ) exp( )t t i t dt� � �
�

� �Y � �0 0( ) ( ) p( )
�
�

$ %0 0
1 exp( ) exp( ) exp( )
2

i t i t i t dt� � �
�

� �  �2
�
�

0 0
1 1exp( [ ] ) exp( [ ] )
2 2

i t dt i t dt� � � �
� �

�   �  �� �2 2
� �
� �

0 0( ) ( )� � � � � � � ��  � �

�

cos(�0t)

t

0{cos( )}t�Y

1/29/2010Preparatory�School�to�Winter�college�on�Optics�and�Energy

��''�'

�'



Fourier Transform with respect to spaceFourier Transform with respect to space

• If f(x) is a function of position,f( ) p ,

Y {f( )} F(k)

( ) ( ) exp( )F k f x ikx dx
�

�
� �

xY  {f(x)}  =  F(k) x

W f t k th ti l f• We refer to k as the spatial frequency.

• Everything we’ve said about Fourier transforms                            
between the t and domains also applies to the x and k domains.

k

�be wee e t d do s so pp es o e x d k do s.
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The 2D Fourier TransformThe 2D Fourier Transform
Y  (2){f(x,y)}  =  F(kx,ky) f(x,y)y

=       f(x,y) exp[-i(kxx+kyy)] dx dy�� yy

If f( ) f ( ) f ( )

x

If f(x,y) = fx(x) fy(y),�

then the 2D FT splits into two 1D FT's.  

Y  (2){f(x,y)}

But this doesn’t always happen.
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Fourier Optics LayoutFourier Optics Layout
• Fourier Opticsp
• Wave Equations and Spectrum
• Separation of Variables
• The Superposition Integral
• Fourier Transform Pairs
• Optical Systems: General Overview
• Abbe Sine Condition
• 2D Convolution against Impulse Response Function• 2D Convolution against Impulse Response Function
• Applications of Fourier Optics
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Fourier OpticsFourier Optics

• Fourier optics is the study of classical optics using techniquesp y p g q
involving Fourier transforms and can be seen as an extension of
the Huygens-Fresnel principle.
A id hi h f d t ll b th ht• Any wide wave which moves forward can actually be thought
of as an infinite amount of wave points, all of which could
move relatively independently of each other. The theorem
basically says square objects can be made by combining an
infinite amount of curved objects.

• If a wave is far enough away from something that it can be• If a wave is far enough away from something that it can be
simplified to a square block moving forward, a Fraunhofer
diffraction would be created.
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Fourier Optics 1Fourier Optics 1

• When the wave is close enough than more attention must be paidg p
to the individual wave points and the wave can only be simplified
to a round ball instead of a square block, a Fresnel diffraction
would be createdwould be created.

• Fourier optics forms much of the theory behind image processing
techniques, as well as finding applications where information
needs to be extracted from optical sources such as in quantum
optics.

• Fourier optics makes use of the spatial frequency domain (k k )• Fourier optics makes use of the spatial frequency domain (kx, ky)
as the conjugate of the spatial (x,y) domain.
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Foundations of Scalar Diffraction 
Theory

• Diffraction plays an important role in the branches ofDiffraction plays an important role in the branches of
physics and engineering that deals with wave
propagation.

• To fully understand the properties of optical imaging
and data processing system- it is essential that
diffraction and its limitations on system performance
be appreciated.

• First step to scalar diffraction theory is - Maxwell’s
Equations
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From Vector to Scalar Theory

• The Maxwell’s equations in free space are written asq p

0E/01 �
�� ��

0

0

E

H

/01 �

01 �
�� ���

HE
t

2 30& � 
3

����� ��
t

EH
t

/

3
3

0& �
3

���� ���
t3
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From Vector to Scalar TheoryFrom Vector to Scalar Theory
• Where � and μ are permittivity and permeability of the

di i hi h i imedium in which wave is propagating.
• We assume that wave is propagating in a linear, homogenous,

isotropic and non-dispersive dielectric medium.
• Isotropic –properties are independent of direction of

polarization of the wave.
• Homogenous-permittivity is constant throughout the region of

propagation.
• Non-dispersive - permittivity is independent of wavelength

over the wavelength region occupied by the propagating wave.
• Non-magnetic-magnetic permeability is always equal to free

space permeability.
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From Vector to Scalar TheoryFrom Vector to Scalar Theory
Electromagnetic Wave Equation
• Electric and magnetic fields satisfy wave equations in  

free space �
02

2
2 �

3
3

0
EE oo

��
/2 23too2

23 B
�

02

2
2 �

3
3

0
t
BB oo

�
/2
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From Vector to Scalar TheoryFrom Vector to Scalar Theory

• Since the vector wave equation is obeyed by both ESince the vector wave equation is obeyed by both E
and B – an identical scalar wave equation is obeyed
by all the components of those vectors.

• For example x-component of E obeys the equation

2E32
2

2 0x
x o o

EE
t

2 / 3
0  �

3t3
It�is�possible�to�summarize�the�behavior�of�all�components�of�E

and B through a single scalar wave equation
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Propagation of LightPropagation of Light

An optical field (light) can be described as a waveform propagatingAn optical field (light) can be described as a waveform propagating
through free space (vacuum) or a material medium (such as air or
glass) - the amplitude of the wave is represented by a scalar wave
function u that depends on both space and time. i.e.

u= u(r, t)( , )
Where

r = (x, y, z)

represents position in three dimensional space, and t represents time.
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Scalar Wave EquationScalar Wave Equation

• In a dielectric medium that is, linear, isotropic , homogeneous,, , p , g ,
and non-dispersive- all components of the electric and
magnetic field behaves identically and described by single
scalar wave equationscalar wave equation.

2
2

2 2

1 ( , ) 0u r t
4 53
0  �6 7

• where - represents any of the scalar field components

2 2 ( , )
c t6 738 9

( , )u r t
in free space.

• Fourier optics begins with scalar wave equation
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The Helmholtz EquationThe Helmholtz Equation
• One possible solution of scalar wave equation for

monochromatic fields can be

h
( , ) ( ) i tu r t u r e ��

where
( )( ) ( ) i ru r a r e :�

• By substituting this in the wave equation- the time-independent
form of the wave equation may be derived- known as the
Helmholtz equation.

� �2 2 ( ) 0k u r0 � �
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The Helmholtz Equation 1q

• Where
2k

c
� �

;
� �

• is the wave number, is the imaginary unit and is the
time-independent- complex valued component of the
propagating wave

i ( )u r

propagating wave.
• The propagation constant k, and the frequency � are linearly

related to one another, a typical characteristic of transverse
electromagnetic (TEM) waves.
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The Paraxial Wave EquationThe Paraxial Wave Equation

• An elementary solution to the Helmholtz equation takes the y q
form

.
0( ) ( ) ik ru r u k e�

Where

0( ) ( )

ˆ ˆ ˆx y zk k x k y k z� � �
�

is the wave vector and

x y zy

2 2 2k k k k k �

is the wave number. 

2 2 2
x y zk k k k k

c
�

� � � � �
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The Paraxial Wave Equation 1The Paraxial Wave Equation 1

• Using the paraxial approximation, it is assumed thatg p pp ,

2 2 2
x y zk k k� �

Or equivalently
sin< <=

kwhere is the angle between the wave vector and the z-axis.
As a result

< k

2
(1 )k k k <<

and
cos (1 )2zk k k <<� = 

2
2( )( ) ( ) x yi k x k y ikz ikzu r u k e e e< � �
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The Paraxial Wave Equation 2The Paraxial Wave Equation 2

• Substituting into the Helmholtz equation - the Paraxial( )u rg q
wave equation is given by

( )u

2 02 0uu ik 30  �
where

0 2 0T u ik
z

0 �
3

2 23 3

Is the transverse Laplacian operator in cartesian coordinates

2
2 2T x y

3 3
0 � �

3 3
Is the transverse Laplacian operator in cartesian coordinates.
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DiffractionDiffraction

Diffraction: The bending of light around the edges or someg g g
obstacle is called diffraction.

Two types of diffractions
1. Fresnel diffraction- Near Field diffraction
2 F h ff Diff ti F fi ld diff ti2. Fraunhoffer Diffraction- Far field diffraction

Huygens’s Principle: Every point on a wave front can beHuygens s Principle: Every point on a wave front can be
considered as a point source for a spherical wave
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Fresnel DiffractionFresnel Diffraction
• Fresnel diffraction- is a process of diffraction that

occurs when wave passes through an aperture andoccurs when wave passes through an aperture and
diffracts in the near field.

• Any diffraction pattern observed is different in sizeAny diffraction pattern observed is different in size
and shape- depending on the distance between the
aperture and observation plane.

• It occurs due to the short distance in which the
diffracted waves propagates- results in a Fresnel
number greater than 1

2

1aF
L;

� +
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The Fraunhofer DiffractionThe Fraunhofer Diffraction

• Fraunhofer diffraction- is a form of wave diffractionFraunhofer diffraction is a form of wave diffraction
that occurs when field waves are passed through an
aperture or slit causing only the size of an observed
aperture image to change.

• It is due to the far field location of observation and
increasingly planar nature of outgoing diffracted
waves passing through the aperture.
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The Fraunhofer DiffractionThe Fraunhofer Diffraction
• If a light source and observation screen are

ff i l f h f diff i / lieffectively far enough from a diffraction aperture/slit-
the wave fronts arriving at the aperture and the screen
can be considered to be collimated or planarcan be considered to be collimated or planar.

• Fraunhofer diffraction occurs when the Fresnel• Fraunhofer diffraction occurs when the Fresnel
number is less than 1.

2

1aF
L;

� �
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Comparison of Fresnel and Fraunhofer 
Diffraction
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Fraunhofer Diffraction Using lensesFraunhofer Diffraction Using lenses

• Using a point like source for light and collimating lens it isg p g g
possible to make parallel light.

• This light will then be passed through the slit.

A th l ill f th ll l li ht b ti l• Another lens will focus the parallel light on observation plane.

• The same setup with multiple slits can also be used- creating aThe same setup with multiple slits can also be used creating a
different diffraction pattern.
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Fraunhofer Diffraction Using lensesFraunhofer Diffraction Using lenses
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Huygens’s PrincipleHuygens s Principle

• Huygens’s Principle: Every point on a waveHuygens s Principle: Every point on a wave 
front can be considered as a point source for a 
spherical wavespherical wave
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The Huygens-Fresnel PrincipleThe Huygens Fresnel Principle

The Huygens-Fresnel Principle describes the value of fieldThe Huygens-Fresnel Principle describes the value of field
U(P0) as a superposition of diverging spherical waves
originating from the secondary sources located at each and
every point P1 with in the aperture �.

01exp( )1 ikr
�� 01

0 1
01

exp( )1( ) ( ) cos
s

ikrU P U P ds
i r

<
;

� ��

Where 	 is the angle between element of area and displacement
vector between two point
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The Huygens-Fresnel Principleyg p
• According to the Huygens- Fresnel Principle every point in the

plane (x’,y’,0) will act as a point source for spherical wave of type

( ) ikrAU r e
r

�
r
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The Fresnel Diffraction IntegralThe Fresnel Diffraction Integral

• The field diffraction pattern at a point (x y z) isThe�field�diffraction�pattern�at�a�point�(x,y,z)�is�
given�by

( , , ) ( ', ', 0) ' '

h

ikrz eU x y z U x y dx dy
i r;

� ��

2 2 2

where

( ') ( ')r x x y y z�  �  �
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The Fresnel ApproximationThe Fresnel Approximation

• UnderUnder�
2 2( ') ( ')
2

x x y yr z
z

 � 
= �

2 2( ') ( ')
2

2
The Fresnel diffraction integral can be written as 

( ) ( ' ' 0) ' '
ikikz x x y y

z

eU U d d
� � � � ��� 2( , , ) ( ', ', 0) ' '

It shows that the propagating field is a spherical wave-

zU x y z U x y e dx dy
i z;

� �� ��

 orginating at the aperature and moving along z-axis. 
This integral modulates the amplitude and phase of the
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The Fraunhofer Diffraction IntegralThe Fraunhofer Diffraction Integral

• In scalar diffraction theory the FraunhoferIn scalar diffraction theory, the Fraunhofer
approximation is a far field approximation
made to the Fresnel diffraction integralmade to the Fresnel diffraction integral.

U d hi di i h d i h f• Under this condition the quadratic phase factor
under the integral sign is approximately unit

h iover the entire aperture.
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The Fraunhofer Diffraction IntegralThe Fraunhofer Diffraction Integral

Th F h f diff ti if
2 2

The Fraunhofer diffraction occurs if
( ' ' )k x y z� �

2 2( )

Using this approximation in Fresnel diffraction integral we get
ik 2 2( ) 22 ( ' ' )

( , ) ( ', ') ' '
x yikz z i x x y y

kze eU x y U x y e dx dy
i z

�

;

�
 �

� ��
 

i z;
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The Plane Wave SpectrumThe Plane Wave Spectrum

• The plane wave spectrum concept is the basic foundation of p p p
Fourier Optics.

• The plane wave spectrum is a continuous spectrum of uniform
l d th i l t i thplane waves and there is one plane wave component in the 

spectrum for every tangent point on the far-field phase front.
• The amplitude of that plane wave component would be the e a p tude o t at p a e wave co po e t wou d be t e

amplitude of the optical field at that tangent point.
• In the far field defined as

Range =
• D is the maximum linear extent of the optical sources and 
 is 

the wavelength

22 D
;

the wavelength.
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The Plane Wave Spectrum 1
1/29/2010The Plane Wave Spectrum 1

• The plane wave spectrum is often regarded as being

0

p p g g
discrete for certain types of periodic gratings.

• In reality- the spectra from gratings are continuous as

Prepara

well -since no physical device can have the infinite
extent required to produce a true line spectrum.

atory�School�to�W
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• For optical systems- bandwidth is a measure of how far
a plane wave is tilted away from the optic axis.

W
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• This type of bandwidth is often referred to as angular
bandwidth or spatial bandwidth.

n�O
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The Plane Wave Spectrum 2The Plane Wave Spectrum 2
• The plane wave spectrum arises as the solution of the

h l i i ihomogeneous electromagnetic wave equation in
rectangular coordinates.
I th f d i th h• In the frequency domain, the homogeneous

electromagnetic wave equation or the Helmholtz
equation takes the formequation takes the form

2 2 0r rE k E0 � �

where r= (x, y, z) and is the wave number of
the medium

2k �
;

�

the medium.
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Separation of VariablesSeparation of Variables

• Solution to the homogeneous wave equation-in rectangularg q g
coordinates can be found by using the principle of separation
of variables for partial differential equations.
Thi i i l th t i bl th l di t• This principle says that in separable orthogonal coordinates, an
elementary product solution may be constructed to this wave
equation of the following form

( , , ) ( ) ( ) ( )r x y zE x y z f x f y f z� & &
• i.e. a solution which is expressed as the product of a function

of x times a function of y times a function of z.
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Separation of Variables 1Separation of Variables 1

• Putting this elementary product solution into the wave equationg y p q
- using the scalar Laplacian in rectangular coordinates

2 2 2
2 r r rE E EE 3 3 3

0

we obtained

2
2 2 2

r r r
rE

x y z
0 � � �

3 3 3

'' '' '' 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0f f f f f f f f f k f f f
Rearranging

2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0x y z x y z x y z x y zf x f y f z f x f y f z f x f y f z k f x f y f z� � � �

'''' ''( )( ) ( )f yf x f z 2( )( ) ( ) 0
( ) ( ) ( )

yx z

x y z

f yf x f z k
f x f y f z

� � � �
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Separation of Variables 2Separation of Variables 2
• Three ordinary differential equations for the          and   , along 

i h bl di i
,x yf f

zf
with one separable condition are

2
2

2 ( ) ( ) 0x x x
d f x k f x
dx

� �

2
2

2 ( ) ( ) 0y y y

dx
d f y k f y
dy

� �

2
2

2 ( ) ( ) 0z z z
d f z k f z
dz

� �

where
2 2 2 2

x y zk k k k� � �
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Separation of Variables 3Separation of Variables 3

• Each of these differential equations has the same solution- aq
complex exponential- so that the elementary product solution
for isrE

( ) ( )( ) x y z x y zi k x k y k z i k x k y ik zE x y z e e e � �  � 

2 2 2( )

( , , ) y y z

x yx y

r

iz k k ki k x k y

E x y z e e e

e e(  � �

� �

�
• This represents a propagating or exponentially decaying

uniform plane wave solution to the homogeneous wave
equation.

• The - sign is used for a wave propagating or decaying in the +z
direction and the + sign is used for a wave propagating or
decaying in the -z direction.decaying in the z direction.
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The Superposition IntegralThe Superposition Integral

• A general solution to the homogeneous electromagnetic waveg g g
equation in rectangular coordinates is formed as a weighted
superposition of all possible elementary plane wave solutions
as

Thi i l d f i i fi i i fi i

2 2 2( )( , ) ( , ) x yx y iz k k ki k x k y
r r x y x yE x y E k k e e dk dk(  ��� � �

• This integral extend from minus infinity to infinity.
• This plane wave spectrum representation of the electro-

magnetic field is the basic foundation of Fourier Optics.
• When z=0, the equation above simply becomes a Fourier

transform (FT) relationship between the field and its plane
wave content.wave content.
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The Superposition IntegralThe Superposition Integral

• All spatial dependence of the individual plane wavep p p
components is described explicitly via the exponential
functions.

• The coefficients of the exponentials are only functions of
spatial wave-numbers kx and ky just as in ordinary Fourierspat a wave u be s a d y just as o d a y ou e
analysis and Fourier transforms.
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Free Space as a Low-pass FilterFree Space as a Low pass Filter
• If

2 2 2k k k� �
• Then the plane waves are evanescent (decaying)- so that any

spatial frequency content in an object plane transparency which

x y zk k k� �

p q y j p p y
is finer than one wavelength will not be transferred over to the
image plane- simply because the plane waves corresponding to
that content cannot propagate.p p g

• In connection with lithography of electronic components, this
phenomenon is known as the diffraction limit and is the reason
why light of progressively higher frequency (smallerwhy light of progressively higher frequency (smaller
wavelength) is required for etching progressively finer features
in integrated circuits.
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Fourier Transform Pairs
• The Analysis equation is

( )( , ) ( , ) x yi k x k y
x yf k k f x y e dxdy

� �
 �

� �

� � �
• The Synthesis equation is

� �

1 � �
( )

2

1( , ) ( , )
4

x yi k x k y
x y x yf x y F k k e dk dk

�

� �
�

��

� � �

• The normalizing factor of is present whenever angular
frequency (radians) is used, but not when ordinary frequency
(cycles) is used

2

1
4�

(cycles) is used.
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Optical systems: General OverviewOptical systems: General Overview

• An optical system is consists of an input plane and output plane.
• A set of components that transforms the image f formed at the

input into a different image g formed at the output.
Th t t i i l t d t th i t i b l i th• The output image is related to the input image by convolving the
input image with the optical impulse response h - known as the,
point-spread function - for focused optical systems.

• The impulse response uniquely defines the input-output behavior
of the optical system.
Th i i f h i k h i A l h• The optic axis of the system is taken as the z-axis. As a result, the
two images and the impulse response are all functions of the
transverse coordinates - x and y.y
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Optical systems: General overview 1Optical systems: General overview 1
• Optical systems typically fall into one of two different categories.
• The first is the ordinary focused optical imaging system- wherein

the input plane is called the object plane and the output plane is
called the image planecalled the image plane.

• The field in the image plane is desired to be a high-quality
reproduction of the field in the object plane.

• The impulse response of the optical system is desired to
approximate a 2D delta function- at the same location in the
output plane corresponding to the location of the impulse in theoutput plane corresponding to the location of the impulse in the
input plane.
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Optical systems: General overview 2Optical systems: General overview 2
• The second type is the optical image processing system-yp p g p g y

in which a significant feature in the input plane field is to
be located and isolated.

• The impulse response of the system is desired to be a
close replica of that feature which is being searched for
in the input plane field- so that a convolution of the
f t i t th i t l fi ld ill d b i htfeature against the input plane field will produce a bright
spot.
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Input Plane and Output PlaneInput Plane and Output Plane

• The input plane is defined as the locus of all pointsThe input plane is defined as the locus of all points
such that z = 0. The input image f is therefore

• The output plane is defined as the locus of all points

0
( , ) ( , , )

z
f x y U x y z

�
�

The output plane is defined as the locus of all points
such that z = d. The output image g is therefore

( , ) ( , , )
z d

g x y U x y z
�

�
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The convolution of input function 
i t i l f tiagainst impulse response function

The convolution of input function with input response function isThe convolution of input function with input response function is 

( , ) ( , ) ( , )g x y h x y f x y� �

' ' ' ' ' '( , ) ( , ) ( , )g x y h x x y y f x y dx dy
� �

�  � �

• The integral below tacitly assumes that the impulse response is 
not a function of the position (x' y') of the impulse of light in the

� �

not a function of the position (x , y ) of the impulse of light in the 
input plane. 

• This�property�is�known�as�shift�invariance.
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The convolution of input function 
i i l f iagainst impulse response function

This�equation�assumes�unit�magnification.�If�magnification�is�present
then�above�eqn.�becomes

' ' ' ' ' '( , ) ( , ) ( , )Mg x y h x Mx y My f x y dx dy
� �

� �

�  � �

• It translates the impulse response function from x’ to x=Mx’.
The relation between magnified and unmagnified response
f nction isfunction is

� �,M
yxh h M M�
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Derivation of the convolution equationDerivation of the convolution equation

• The convolution representation of the system responseThe convolution representation of the system response
requires representing the input signal as a weighted
superposition over a train of impulse functions by using the
shifting property of Dirac delta functions.

' ' '( ) ( ) ( )f t t t f t dt�
�

�

� �

• The system under consideration is linear- that is the output of
the system due to two different inputs is the sum of thethe system due to two different inputs is the sum of the
individual outputs of the system to the two inputs - when
introduced individually.
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Derivation of the convolution equation 1Derivation of the convolution equation 1

• The output of the system is then simplified to a single delta p y p g
function input- which would be the impulse response of the 
system h(t - t'). Thus, the output of the linear system to a 
general input function f(t) isgeneral input function f(t) is

' ' '( ) ( ) ( )Output t h t t f t dt
�

�

� �

• The convolution equation is useful because it is often much 
easier to find the response of a system to a delta function input 

d h f h l i b fi d h

�

- and then perform the convolution above to find the response 
to an arbitrary input - than find the response to the arbitrary 
input directly. p y
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System Transfer FunctionSystem Transfer Function 

• The Fourier transform of above equation becomesq

where
( ) ( ) ( )Output H F� � ��

where

• is the spectrum of the output signal.

• is the system transfer function

( )Output �

( )H �• is the system transfer function.
• is the spectrum of the input signal.

Thus the input plane plane wave spectrum is transformed into

( )H �

( )F �

Thus, the input-plane plane wave spectrum is transformed into
the output-plane plane wave spectrum through the
multiplicative action of the system transfer function.
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Applications of Fourier opticsApplications of Fourier optics

• Fourier optics is used in the field of optical informationFourier optics is used in the field of optical information 
processing.

• The Fourier transform properties of a lens provide 
numerous applications in optical signal processing such 
as spatial filtering, optical correlation and computer 
generated hologramsgenerated holograms.

• Fourier optical theory is used in interferometry, optical 
tweezers, atom traps, and quantum computing.tweezers, atom traps, and quantum computing.

• Concepts of Fourier optics are used to reconstruct the 
phase of light intensity in the spatial frequency plane
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