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Challenge of Broadband

1.50

|,
1

=
=
&

Spectral Irradiance W

300 400 500 600 700 EDO apD 000 1100 1200 1300 1400 1500 1600 1700 1800 1500 2000
Wavelength nm

e laser-based photonic technologies can be 99.9% efficient over 100nm
spectral range

e applying photonics to photovoltaics requires efficiency for 700nm of
bandwidth.

 optimal solutions for AR and LT require spectral irradiance and IQE to
be considered and dissordered (chirped) designs.




Biomimetics and Plasmonics
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Single layer AR coating

» to reduce reflection a single thin film of quarter
wavelength thickness (taking into account refractive
Index) uses interference to reduce intensity of reflected
beem

e about 110nm of SIO, is simplest AR coating for Si
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Single layer AR coating
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e single layer ARCs are much better than bare surface
(roughly half reflection)
o still, around 20% of light is still reflected
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Double-layer AR coatings
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* Double layer coatings can be used to broaden the AR
effect and further reduce reflected intensity

 Ultimately there is only a small range of suitable
materials (n) that do not absorb.
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Double-layer AR coatings
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[Boden and Bagnall, Prog. Photovolt: Res. Appl. 2009; 17:241-252]
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Micron-scale texturing

e micron -scale themes are based on
the development of topographies that
provide light with multiple
opportunities to be absorbed

e reflectance can be as low as 1-2%

e easy to apply to C-Si (KOH etch)

e difficult to apply to other materials
and thin materials (2-3 um)

double layer finger “inverted” pyramids

metal finger honeycomb texturing antireflection
N p coating

n thin oxide

p-silicon (~200~)

rear contact oxide

~ rear contact metal UNIVERSITY OF

Southampton




Biomimetic moth-eyes
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« Arrays of subwavelength
features

e Gradual change in refractive
index from air into substrate
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Biomimetic moth-eyes

e sub-wavelength patterning “creates a gradual change in refractive
index and reduces reflection” - seen on moth-eyes

e our first structures were fabricated by e-beam and plasma etch
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\’3‘ 40 Moth-eye, pillar height ~ 500 nm

o)

S

®Q 30

C

g

O 20 -

Q

U

V)

X 10 |

0 Ll T T T T - T

Acc¥ Magn WD 1 2m 400 500 600 700 800 900 1000

7.00kV 48478x 10.1 k4008c2 b Cl bsccm

Wavelength (nm)

e first experimental results illustrates very low reflectance and
evidence of structure that can not be explained by effective medium

theory
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Biomimetic moth-eyes
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Tunable moth-eyes

e changing height, shape and period of pillar profiles on the
reflectance of silicon moth-eye arrays.

 Study reveals a low reflectance band which shifts with array

period.
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e samples by nano-imprint lithography
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Biomimetic moth-eyes

e Pillar shape also has a dramatic effect on the reflectance properties.

 For highest performance pillar height, shape and array period should
be optimized for the specific wavelength range of interest.
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Design Detaill....Period

Reflectance with period/wavelength (400nm height)
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Biomimetic moth-eyes

Optimise periodicity by considering:  R(A)
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Design Detaill....Period

Reflectance with period/wavelength (400nm height)

400 Reflectance
(%)
350 . 0.0
0.1
B 02
= =00 B 0.3
= . 0.4
- 250 I 0.5
o 0.6
0 0.7
O 200 0.8
0.9
- 1
150

100
400 600 800 1000 1200

Wavelength (nm)

S. A. Boden and D. M. Bagnall, Applied Physics Letters, 93, 133108 (2008)
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Sub-wavelength A/R

mmm | aboratory cell
Moth-eye E==2 Encapsulated cell

0 2 4 6 8 10 12 14

% loss in J__, . compared to ideal

* moth-eye AR schemes are promising for thin film solar cells
e requires self-assembly/cheap fabrication

e nanoscale roughened surfaces might already be doing the job for
some thin films
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Other biomimetics

e Meanwhile, many other natural systems offer interesting
prospects

e Each represents considerable challenge to fabricate or model

colour transparent white
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The case for light-trapping
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* light-trapping can help all devices (enhance absorption or
carrier collection, use less material)

* For a-Si, p-Si light-trapping is essential — but can it be
iImproved?
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Classic solutions

e ensure reflection from the
back surface of the solar cell
(doubles the effective path -
but in the highly symmetric
scheme remaining light is
decoupled at surface

« asymmetric back-reflector
ensures multiple reflections

(but hard to manufacture)

*R. H. Morf, in Diffractive Optics for Industrial
and Commercial Applications, edited by Jari
Turunen and Frank Wyrowski, Akademie
Verlag GmbH, Berlin (1997) p361-389

« diffuse scattering schemes
can increase path-lengths by
as much as 20x, but with
some escape-cone losses

e
<.
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Light-trapping mechanisms

Texturing
(Lambertian scattering)

Periodic structures
(diffraction, photonics)

Plasmonic
(preferential scattering)
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Haze (%)

Textured Surface
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[N.Taneda, T. Oyama and K. Sato,
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- : : : 3 i Proceedings of Intenational PVSEC-17, 2007]
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e Textured TCO on glass can be readily provided by
appropriate growth or etching regime

* Asahi “U” type is commercial product for a-Si devices

e Required to provide optimum scattering 500-700nm
wavelengths

e Classically measured by “haze” value
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Lambertian Scattering

Idiffuse — kd Ilight cosd

" LAMBERTIAN DIEFUSE REFLECTOR |

Incoming light is scattered equally in all directions
Viewed brightness is independent of viewing direction
Brightness does depend on direction of illumination
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Light-trapping

air

LAMBERTIAN DIFFUSE REFLECTOR

1

* Fraction of light reflected by total internal reflection = 1__—

n2

» For Si, n=3.4. Therefore, 91% of light is reflected back into the cell
each time it reaches the top surface

» “escape cone” losses account for 9%
» Overall, the path length can be increased by about a factor of 50




Textured TCOs

Asahi “U” type
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White-light angular scattering

Asahi “U” type
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Feature size dependence

« The main problem with texturing is that long-wavelength
scattering requires large feature size

e Large features sizes are difficult to grow on

« Commercial designs represent a compromise between optical
performance and device performance

e Asahi “U-Type” is used for a-Si
« Rougher surfaces are required for “micromorph” devices
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Light-trapping for longer wavelengths

—— Asahi type-W TCO
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[N.Taneda, T. Oyama and K. Sato,
Proceedings of Intenational PVSEC-17, 2007]

» Can metal nanoparticles offer an alternative scattering
mechanism?
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White-light angular scattering EPVSOLAR

EPV 386
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White-light angular scattering
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Plasmonic Light-trapping

Can metal nanoparticles offer an alternative
scattering mechanism?




Plasmonic light-trapping

e The interaction of light with metal nanoparticles can lead to the
generation of localised surface plasmons (LSP).
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Simulations

Spheres : Mie theory codes (BHMIE and BHCOAT)
(Bohren and Huffmen)

Spheroids : Separation of variables (SVM)

(Voshchinnikov and Farafonov)

Prisms etc : Discrete Dipole Analysis (DDA) (DDSCAT)

(Draine and Flatau)

(refractive index data taken from Palik)
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Fabrication of metal nanoparticles
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Electron-beam lithography: aspect ratio

Extinction efficiency
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e rectangles can be produced (chemically) and offer
excellent extinction at near bandedge



Optimized scattering
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Small particles are highly absorbing, large particles highly scattering
Absorption : good for organic, bad for inorganic

Scattering : good for all pv (part of light-trapping scheme)
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Choice of metal
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“Plasmonic” a-Si:H solar cells
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Design Rules

You should make sure you :

» chose a particle size and shape that maximises scattering in the region of
low absorption (i.e. the band edge)

* minimise absorption in the metal across entire spectral range (assuming
multiple scattering events small absoprtion will be multiplied 10 fold)

» select the metal carefully

* insert the plasmonic layer at the back of the device (short wavelength
absorption is unavoidable, avoids surface reflection)

» use large asymmetric particles as this produces high scattering efficiency at
long wavelengths

» spread the particles about (coupling leads to loss)

 randomly distribute particles (avoid diffraction) or else take diffraction into
account.

« randomly orientate particles (polarization) or else have vertical &
horizontal features

» understand that your metal nanoparticles change the optical properties of the
TCO they sit in (consider reflection and coupling to back contact and
antireflection)
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Conclusions

e Plasmonic enhancement of an inorganic thin film solar cell
has yet to be demonstrated

e First thin film “plasmonic devices” will exploit scattering in
conjunction with texturing

\
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e Enhanced absorption may feature in organic systems (will
be harder to use for inorganic)

e Second generation of inorganic plasmonic devices might
utilise preferential scattering and diffraction to allow ultra-

thin devices UNIVERSITY OF
Southampton
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“Photonic” light-trapping

e We've looked at random scattering and plasmonic
scattering

e The third light-trapping technique could be diffraction

e Techniques commonly used in photonics for coupling in
waveguides

-1st order Period. A
pet

}-2 um

. 1ét order
SIOZ Oth order

e We have found that blazed diffraction gratings can be
effective (90%) for 200nm spectral range

e rather expensive to produce for little benefit
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“Photonic” light-trapping

e We've looked at random scattering and plasmonic
scattering

e The third light-trapping technique could be diffraction
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Plasmonic + Photonic Light-trapping




Gratings
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Grating Plasmonics
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Conclusions

e Nanotechnology and photonics increasingly important to PV

e Challenges are
- “self-organised” fabrication
- integration into fabrication sequence
- reliability reproducibility of nano processes
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