

2132-7

Winter College on Optics and Energy

8 - 19 February 2010

Anti-reflection and light-trapping

D. Bagnall
Southampton University
U.K.

Anti-reflection and light-trapping

Professor Darren Bagnall

Electronics and Computer Science, Southampton University

Contents

- Introduction
- Antireflection
 - Single layer AR coatings
 - Double layer AR coatings
 - Micron-scale texturing
 - Sub-wavelength texturing
- Light-Trapping
 - texturing
 - plasmonic
 - photonic

Challenge of Broadband

- laser-based photonic technologies can be 99.9% efficient over 100nm spectral range
- applying photonics to photovoltaics requires efficiency for 700nm of bandwidth.
- optimal solutions for AR and LT require spectral irradiance and IQE to be considered and dissordered (chirped) designs.

Biomimetics and Plasmonics

colour transparent white

Anti-reflection

Single layer AR coating

- to reduce reflection a single thin film of quarter wavelength thickness (taking into account refractive index) uses interference to reduce intensity of reflected beem
- about 110nm of SiO₂ is simplest AR coating for Si

Single layer AR coating

- single layer ARCs are much better than bare surface (roughly half reflection)
- still, around 20% of light is still reflected

Double-layer AR coatings

- Double layer coatings can be used to broaden the AR effect and further reduce reflected intensity
- Ultimately there is only a small range of suitable materials (n) that do not absorb.

Double-layer AR coatings

[Boden and Bagnall, Prog. Photovolt: Res. Appl. 2009; 17:241-252]

Southampton Southampton

- Nanostructured corneal surface of some night moths
 - Improved eyesight
 - Less visible to predators

Bernhard, Endeavour vol 26, pp. 79-84, (1967)

- Arrays of <u>subwavelength</u> features
- Gradual change in refractive index from air into substrate

Micron-scale texturing

- micron –scale themes are based on the development of topographies that provide light with multiple opportunities to be absorbed
- reflectance can be as low as 1-2%
- easy to apply to C-Si (KOH etch)
- difficult to apply to other materials and thin materials (2-3 um)

Bernhard, Endeavour vol 26, pp. 79-84, (1967)

- Arrays of subwavelength features
- Gradual change in refractive index from air into substrate

- sub-wavelength patterning "creates a gradual change in refractive index and reduces reflection" seen on moth-eyes
- our first structures were fabricated by e-beam and plasma etch

• first experimental results illustrates very low reflectance and evidence of structure that can not be explained by effective medium theory

CeO SLAR

0.9 80 0.8 70 0.7 60 Reflectance 30 20 0.2 10 0.1 800 λ (nm) 400 600 1200 1000

ZnS,MgF₂ DLAR

Moth-eye 500 nm

Tunable moth-eyes

- changing height, shape and period of pillar profiles on the reflectance of silicon moth-eye arrays.
- Study reveals a low reflectance band which shifts with array period.

samples by nano-imprint lithography

- Pillar shape also has a dramatic effect on the reflectance properties.
- For highest performance pillar height, shape and array period should be optimized for the specific wavelength range of interest.

Design Detail....Period

Reflectance with period/wavelength (400nm height)

Optimise periodicity by considering: $R(\lambda)$ QE (λ) and AM1.5 (λ)

Design Detail....Period

Reflectance with period/wavelength (400nm height)

S. A. Boden and D. M. Bagnall, *Applied Physics Letters*, 93, 133108 (2008)

Sub-wavelength A/R

- moth-eye AR schemes are promising for thin film solar cells
- requires self-assembly/cheap fabrication
- nanoscale roughened surfaces might already be doing the job for some thin films

Other biomimetics

- Meanwhile, many other natural systems offer interesting prospects
- Each represents considerable challenge to fabricate or model

our transparent

white

Light-trapping

The case for light-trapping

- light-trapping can help all devices (enhance absorption or carrier collection, use less material)
- For a-Si, p-Si light-trapping is essential but can it be improved?

Classic solutions

- ensure reflection from the back surface of the solar cell (doubles the effective path but in the highly symmetric scheme remaining light is decoupled at surface
- asymmetric back-reflector ensures multiple reflections (but hard to manufacture)
 R. H. Morf, in Diffractive Optics for Industrial
- •R. H. Morf, in *Diffractive Optics for Industrial* and Commercial Applications, edited by Jari Turunen and Frank Wyrowski, Akademie Verlag GmbH, Berlin (1997) p361-389
- diffuse scattering schemes can increase path-lengths by as much as 20x, but with some escape-cone losses

Light-trapping mechanisms

Texturing (Lambertian scattering)

Periodic structures (diffraction, photonics)

Plasmonic (preferential scattering)

Textured Surface

Asahi type-U TCO Asahi type-W TCO [N.Taneda, T. Oyama and K. Sato, Proceedings of Intenational PVSEC-17, 2007]

- Textured TCO on glass can be readily provided by appropriate growth or etching regime
- Asahi "U" type is commercial product for a-Si devices
- Required to provide optimum scattering 500-700nm wavelengths
- Classically measured by "haze" value

Lambertian Scattering

$$I_{diffuse} = k_d I_{light} \cos \theta$$

- · Incoming light is scattered equally in all directions
- · Viewed brightness is independent of viewing direction
- · Brightness does depend on direction of illumination

Light-trapping

- Fraction of light reflected by total internal reflection = $1 \frac{1}{n^2}$
- For Si, n=3.4. Therefore, **91%** of light is reflected back into the cell each time it reaches the top surface
- "escape cone" losses account for 9%
- Overall, the path length can be increased by about a factor of 50

Textured TCOs

Asahi "U" type

White-light angular scattering

Asahi "U" type

Feature size dependence

- The main problem with texturing is that long-wavelength scattering requires large feature size
- Large features sizes are difficult to grow on
- Commercial designs represent a compromise between optical performance and device performance
- Asahi "U-Type" is used for a-Si
- Rougher surfaces are required for "micromorph" devices

Light-trapping for longer wavelengths

Asahi type-W TCO
[N.Taneda, T. Oyama and K. Sato,
Proceedings of Intenational PVSEC-17, 2007]

• Can metal nanoparticles offer an alternative scattering mechanism?

White-light angular scattering

EPV 386

Mag = 201.24 K X 200 nm NVision 40-38-44

Stage at T = 0.0° WD = 4.7 mm

EHT = 1.00 kVSignal A = SE2 FIB Mode = Imaging Noise Reduction = Line Avg ESB Grid = 0 V FIB Lock Mags = No FIB Probe = 30KV:40 pA

Tilt Corrn. = Off Tilt Angle = 54.0 Date :30 Oct 2009 Time :11:59:28 System Vacuum = 1.22e-006 mbar

White-light angular scattering

Plasmonic Light-trapping

Can metal nanoparticles offer an alternative scattering mechanism?

Plasmonic light-trapping

• The interaction of light with metal nanoparticles can lead to the generation of localised surface plasmons (LSP).

Extinction = Scattering + Absorption

Simulations

Spheres: Mie theory codes (BHMIE and BHCOAT) (Bohren and Huffmen)

Spheroids: Separation of variables (SVM)

(Voshchinnikov and Farafonov)

Prisms etc: Discrete Dipole Analysis (DDA) (DDSCAT)

(Draine and Flatau)

(refractive index data taken from Palik)

Fabrication of metal nanoparticles

Electron-beam lithography: aspect ratio

 rectangles can be produced (chemically) and offer excellent extinction at near bandedge

Optimized scattering

Small particles are highly absorbing, large particles highly scattering

Absorption: good for organic, bad for inorganic

Scattering: good for all pv (part of light-trapping scheme)

Choice of metal

Qrad > 0.9

Maximum radiative efficiency 8.0 Αl Cu 0.6 Au 0.4 0.2 300 450 600 750 900 1050 1200 Sphere diameter (nm)

Spectrum present at rear of two devices

"Plasmonic" a-Si:H solar cells

Design Rules

You should make sure you:

- chose a particle size and shape that **maximises scattering** in the region of low absorption (i.e. the band edge)
- minimise absorption in the metal across entire spectral range (assuming multiple scattering events small absorption will be multiplied 10 fold)
- select the metal carefully
- insert the **plasmonic layer at the back of the device** (short wavelength absorption is unavoidable, avoids surface reflection)
- use **large asymmetric particles** as this produces high scattering efficiency at long wavelengths
- spread the particles about (coupling leads to loss)
- randomly distribute particles (avoid diffraction) or else take diffraction into account.
- randomly orientate particles (polarization) or else have vertical & horizontal features
- understand that your metal nanoparticles change the optical properties of the TCO they sit in (consider reflection and coupling to back contact and antireflection)

Conclusions

- Plasmonic enhancement of an inorganic thin film solar cell has yet to be demonstrated
- First thin film "plasmonic devices" will exploit scattering in conjunction with texturing

- Enhanced absorption may feature in organic systems (will be harder to use for inorganic)
- Second generation of inorganic plasmonic devices might utilise preferential scattering and diffraction to allow ultrathin devices

Photonic Light-trapping

"Photonic" light-trapping

• We've looked at random scattering and plasmonic scattering

• The third light-trapping technique could be diffraction

• Techniques commonly used in photonics for coupling in

waveguides

- We have found that blazed diffraction gratings can be effective (90%) for 200nm spectral range
- rather expensive to produce for little benefit

"Photonic" light-trapping

- We've looked at random scattering and plasmonic scattering
- The third light-trapping technique could be diffraction

Plasmonic + Photonic Light-trapping

Gratings

Stanford University

Grating Plasmonics

Attwater group

Conclusions

- Nanotechnology and photonics increasingly important to PV
- Challenges are
 - "self-organised" fabrication
 - integration into fabrication sequence
 - reliability reproducibility of nano processes

