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- Introduction

2

 LEDs are increasingly being used as a light source in architectural lights,
displays, automotive lamps, etc.

Power Conversion for “White"” Light Sources
; N Data Sheet Usable™ Lifetime
Incandescent® | Fluorescent® Metal LED Light Type Im /W Im/W (hrs)
(B0 (Typical linear Halide: Incandescant 17 10-17 =
Wy Boals — ‘ .
Visible Light 7.5% 21% 27 % 15-25% TSSO < f<et A
Infrared 733% 3T % 7% -0% T12 fluorescent - 60 40-5L:' _._'-JE
-~ Metal halide 65-70 35-40 1 0= 200k
Uraviolet! 0% i sl 0% T8 fluorescent 85-90 65-70 20-304
Total Radiant % % Y 15:26% | | TS fluorescent 90 62 30k
L High-pressure sodium 95-110 55-65 24k
oo nd% 2% % 15-85% | [Bect-in-Class Power LED 93 65-75 > SOk
s s Low-pressure sodium 120-140 65-75 16h
Total 100 % 100 % 100 % 100% |R. Liu, Independent Study Project, UA, 2009.
* Issues:

- Designing the optics: efficient design and etendue

- Color mixing or effects: need to mix discrete color LEDs

- Thermal effects: output efficiency decreases as temperature increases

- Binning of the LEDs: no two LEDs are made the same

- Tolerances of the optics: illumination systems made cheaply and quickly
- Currently very expensive

|
Creative Commons Slide 2 ICTP Winter College on Optics and 16 February 2010 @
@ http://creativecommons.org/ Energy College of O;t-i'cal Sciences

THE UNIVERSITY OF ARIZONAs



'
T
Designing the SSL Optics
Tailored Nonimaging Optics Design
Nonsequential Ray-Tracing Optimization
[
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"M How Do You Shape the Distribution from an LED?

 Lumileds LED:

- LXHL-PLO1 Luxeon |
Lambertian LED

- “Lambertian” angular
output, spatially non-
uniform output

- Amber spectrum (590-nm

peak)

- 42-lumen flux (no thermal

derating)

- Used FRED source model

* Includes geometry

* Includes ray set based on

measurements
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The “big” need
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desired

distribution at

high efficiency
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.-,,ﬂ-,;,ﬁ; Step 1: Optic Design Setup - Hybrid Optic
LED:
« Lumileds LXHL-PLO1 Front Lens:
 In Conforming Recess » Collimate Direct Output
« Small Air Gap » Convex

» “Contain” Other Light

* Described by NURBS
 Two End Points

* One Control Point

* Rotationally Symmetric
» Can Extend to Limits

Side Walls:
* Described by NURBS , |
 Two End Points 3

* One Control Point
* Rotationally Symmetric / \

 Collimate High Angle Output Annu I us.
* Parabolic * Linear
« “Contain” with TIR  Transition Walls-Lens
|
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- Step 2: Tailored Design Theory

|
« Design Around a Source of v & "Point Source”
Intensity /_,(¢).
» Equation That Governs Optic X
Shape, Where ais the Radius of >
the Source:
M — tan(a)_|_ i
dg r(¢)
» The Reflector Shape for a Point
Source: i
’ s 9(3) Light Ray
r(g)=r, exp{ ftan()ds} ,i4
2 ,
# / N
Ve v
« The Intensity Distribution for e s
Target Uniformity is: ~ Reflector
/
¢ %
0(¢)= arctan{tan O+ |lor (v)dv}
4
i
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7@ Step 3: Optimization Variables

|
#5  Point4:y4, z4, w4
 Point 5:y5, z5
« Point 6: y6
@ #7 « Point 7: y7, z7, w7
 Point 8: z8
#S « Positions:
- Coordinates in mm
- Minimum z =2.801 mm
- Maximum z =12.7 mm
- Minimumy = 2.801 mm
- Maximumy =12.7 mm
*  Weights:
&® = Control Point Variables () = Surface Point Variables - Minimum = 0.001
- Maximum = 1000
EE
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2 . .
oy Target and Merit Function
* Merit Function 1: * Merit Function 2: B
- Maximize Transfer Efficiency to - Maximize Transfer Efficiency to
Target Target
- Maximize Uniformity
Target
Intensity into £10° around optical axis (Z)
1 1
FOM = —, FOM = 2.~
771 [Peak 771
Stopping Condition
Size of the Test Point Volume (SNR Calculation)
N 52
\/(N + l)z —-—1<Tolerance =0.001
i=1 X;
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- Optimization Results

Angle (deg)

Can We Manufacture That?

[
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10 Variables

&® = Control Point Variables

& = Surface Point Variables

Creative Commons
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Optimization Variables Take Two

Point 4: y4, z4, w4
Point 5: y5, z5
Point 6: y6

Point 7:y7, z7, w7/
Point 8: z8

Positions:

- Percentages to maximum value or
another point’s value

- Offset by +0.1

- Range =[0.1, 1.1]

Weights:

- Log base 10 of the weight factor
- Offset by +3.1

- Range =[0.1, 5.1]

Slide 10
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@ Dynamic Variable Dependencies
Ve: 1Vs =9.88(9. —0.1)+2.801 300 01+ 2501
) zg =9.459(2; — 0. 8017
Ye(Ys): Vs :yS(y6 _O-l)‘ = 8 8 8

#4 @

z, = (2, —2.801)(2, = 0.1)+2.801:7 (7.)
#7

W4 — 10(W4—3.1) :W4

#8

w, =100 Dw,

y7(Ys):
Ya(Ys):
v; = (P _O-l)‘
y, =(y,—2.801)(p, —0.1)+2.801

z; = (2, —2.801)(2, —0.1)+2.801}z.(z,)

z, =(z, +0.46)(2, —0.1)-0.46 2,(25)
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- Complex Dependencies

Includes all the constraints to keep

the object realistic and bounded
Z, = [9.439(28 — 0.1)(27 — 0.1)(25 — 0.1)+ 3.261J><
(24 — O.l)— 0.46

This would have been “impossible”
to do through normal constraints —

the coding would have been
extensive
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Hybrid Optic

Lumileds Luxeon

Initial

il

Lambertian Emitter

Uniform

High Transfer

&
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Peak: 451 cd
Sdev: 138 cd
Transfer: 46%
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Optimizations

Log llluminance
Distribution
(2.4 orders)

Target Area

High Transfer

Function

(10 Vars) >

Peak: 766 cd
Sdev: 195 cd
Transfer: 66%
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, Log Intensity: Hybrid Optic

dosfan

/| Optimization

e
Initial

X

Uniform
High Transfer

High Transfer

§

r

& = Control Point Variables

& = Surface Point Variables
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Discussion: Hybrid Optic Optimization

Initial

Uniform
High Transfer

High Transfer

&® = Control Point Variables

& = Surface Point Variables

TIR-Parabolic NURBS
surface: collimates high-
angle rays

Lens-NURBS surface:
collimates low-angle rays
Does not conserve étendue
“Leaks” some moderate
angle rays

Parameterized: 10 variables

Creative Commons Slide 15
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Reduced the optic size to
control leakage

Reduced size also helps to
fill +/- 10 degree ROI

Strong traditional axicon in
center attempts to constrain
rays to ROI

TIR surface is parabolic like -
helps to collimate extended
source.

Increased size to previous
provides better flux transfer
via étendue conservation

Weaker axicon compared to
previous keeps low angle
light better collimated over
ROI

TIR surface is more parabolic
like for better collimation
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Tolerancing the SSL Optics
Thermal Effects
Binning Variation
Fabrication Tolerances
|
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R Motivation

« Lengthy design time for illumination systems:

- A few components comprise the system yet the shapes are complex
(e.g., faceted reflectors).

e Source variation is typical:
- The system with hominal source model provides required performance.
- Not always true in lab or measurement - LEDs especially.
- LED errors: die position, flux output, color output.

« Fabricated optics do not agree with model:

- Shape errors occur during fabrication, especially important for costly
injection-molded tools/parts.

« Established ISO Standards do not work for illumination system
tolerancing:
- ISO 10110-5: Surface form tolerances.
- 1SO 10110-6: Centering tolerances.

|___oaam
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e ISO Standards

.
« |SO Standard 10110-5: Surface « |SO Standard 10110-6: Centering
Form Tolerances Tolerances
- Determine tilt, sagittal error, and - For spherical/aspherical surfaces
surface irregularity - Expects reference position and/or
- Surface form deviation equals axis
difference between actual and - Assumes “imaging” type surfaces
theoretical :
i al . * What about freeform optical
- n a gas’,es the treatment expects surfaces?
imaging” type surfaces! o
| 5 b - lllumination surfaces are often
* ltexpects _Su aces to be freeform, segmented, or faceted
parameterized - Positions and axes can be hard to
- Illumination surfaces are often define
numerical in nature.
| ___oams
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) System Tolerances - Injection Molding

« System Errors: Ejector Eramiies

Pins

- Source to optic position errors - \‘u Cavity

die offsets, etc. Cy}nder

1 1 ! 1 1

- Misalignment - of optical E— S
components s pri e e :|
Mllted I

Plastic Screw Drive
Motor

« @Gross (Tool) Errors:
- Slope errors of surfaces
- Offset errors of surfaces it osha govidtslostalotmiotm_ilotm_i_11ig08 gif
* Injection-Mold Process Errors:
Sinking - dimple in the surface
Warping - bending of surface
Ripples - due to cooling of part
Corner round off
« Surface Roughness Errors:

- Microstructure introduced from the
tool/process

http://lwww.active-burgess.com/gallery.asp
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4
- LED Source Errors

S
 —
Geometrical
—Iﬁ— Axial Die Color or
Q— Spectrum

ﬁ Position

Tangential
Die
Position
www.lumileds.com/pdfs/AB21.pdf - Luxeon Product and Binning and Labeling 5/06
|
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- Overview of Errors
Error Type Deviation Severity Study Example

Varies Varies Parameter Source Offset

Gross Small Small Tool Error

Process Exp to Model Surface Ripple

Roughness Large Small Exp to Model Rough Surface
[ i
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- Overview of Errors

Error Type Deviation Severity Study Example

Varies Varies Parameter Source Offset

Gross Small Small Tool Error

Correct with new tooling

Process Medium Large Exp to Model Surface Ripple

Correct with process time/tooling

Roughness Large Small Exp to Model = Rough Surface

Correct with polishing of tool
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System: Binning Variation
Example
Hybrid LED Collimating Optics
To Mix RGB LEDs
System Setup
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Qs

System Setup

« System:

- Source: Three LED-Collimator
combination: Red, Green, and
Blue

- Optic: PMMA Hybrid Optic
- Target: Overlap on wall 3-m
distant

« LED Characteristics:
- Luxeon | Lambertian Emitters
- Select Single Bins for Each LED

« Surrounding optic:

- Designed with Fractional
Optimization of FRED
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LED Setup

Luxeon 1 Lambertian Emitters

Blue LXHL-PBO01 16 Lumens
Green LXHL-PMO1 53 Lumens
Red LXHL-PDO1 44 Lumens

Blue: LXHL-PBO1 (16 lum) | | Green: LXHL-PMO1 (53 lum)

Qe R U
ittt
SRR

A
R e
el Py
e ARt
MY N

R "* f‘H‘
Wlp ¥

.
Creative Commons Slide 25 ICTP Winter College on Optics and
@ http://creativecommons.org/ Energy

Red: LXHL-PDO1 (44 lum)

16 February 2010 @

College of O[;tical Sciences

THE UNIVERSITY OF ARIZONAs



System: Binning Variation
Example
Hybrid LED Collimating Optics
To Mix RGB LEDs
Initial Study
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Binning Variation: Typical A

 LED Binning:

- Luxeon | Lambertian Emitters
- Typical Values per Luxeon | Data Sheets

Typical Fluxes and Typical Wavelengths

Flux Wavelength
* Red R 4
 Green S 2/3
* Blue M 2/3
* Flux Ranges (lumens): |
Min Typ Max
- RedR 39.8 44 51.7
- GreenS 51.7 53 67.2
- Blue M 13.9 16 18.1
« Wavelength Ranges (nm):
Min Typ Max
- Red4 620.5 627 631
- Green 2/3 525 530 535
- Blue2/3 465 470 475
(N
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- First Design Lesson
* Emission from Discrete LED Spectral Emitters:
- Highly Dependent on LED Material
- Optical Design is Thus Dependent on the Material
* Design Methods:
- Design Distinct Optics (i.e., Hybrid Optics)
- Incorporate a Pre-Mixer
 Lightpipe
« Edge-Ray Type Device
 Diffuser
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y
Binning Variation: A Variation
Minimum Wavelengths Typical Wavelengths Maximum Wavelengths

Wavelength Ranges (nm):

Min Typ Max
Red 4 620.5 627 631
Green 2/3 525 530 535
Blue 2/3 465 470 475
i
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y
Binning Variation: ® Variation
Minimum Fluxes Typical Fluxes Maximum Fluxes

Flux Ranges (lumens):

Min Typ Max
Red R 39.8 44 51.7
Green S 51.7 53 67.2
Blue M 13.9 16 18.1
—
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Binning Variation: All Variation

Minimum Values

Typical Values Maximum Values

Wavelength/Flux Ranges:

Red 4

Min
620.5/39.8

Green 2/3 525/51.7

Blue 2/3

Creative Commons
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465/13.9

Slide 31

Typ Max
627/44 631/51.7
530/53 535/67.2
470/16 475/18.1
o
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System: Binning Variation

Example
Hybrid LED Collimating Optics
To Mix RGB LEDs

Pre-Mixer Optics
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- Pre-Mixer: Lightpipes

Foa

 Geometry:

- Uses Same Hybrid Optic

- Straight Lightpipe

- Scatter at End of Each Lightpipe
* Results:

- Better Mixing

- Same Optics

- Reduces Efficiency

- Have to Redesign the Hybrid

Optic
m
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4 Second Design Lesson

« Tight Binning Control of LEDs - Order of
Importance:
- Wavelength Variation
- Flux Variation

* Design Methods:
- Mix Several LEDs of the Same Part Number and Bin

- Beneficial Crosstalk/Leakage Between Neighboring
Channels
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H;;M . .
; Mixing Several LEDs
I
» Overlap Distributions at the Wall
» Helps to Offset Bin Variation
Issues
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Third Design Lesson

* Must Control Temperature at the Junction:
- Flux and Wavelength Can be Adversely Affected
- Red/Amber LEDS Especially Affected

* Design Methods:
- Thermal: Measure Temperature of LED Case

- Optical: Pickoff Piece of the Emission (Leakage) from
Each LED to Measure Flux and Spectrum

- Combination: Do Both Methods
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System: Binning Variation

Example
Hybrid LED Collimating Optics
To Mix RGB LEDs

Thermal Effects

Creative Commons Slide 37 ICTP Winter College on Optics and 16 February 2010 @
@ http://creativecommons.org/ Energy

\ A
College of Optical Sciences
THE UNIVERSITY OF ARIZONA»



Thermal Effects

y

desian

Blue and Green LEDs

123 Green Photometric
< 130 - -CyanPhotometric
?: — - - — - Blue Photometiic
2 120 iy — — — =White Photometric
8 ::g]g :E;:.._?E-_"—'- -—--RoyalBlueRamometnc
: o S
3 70 Sy
™ 60

50
-20 0 20 40 60 80 100 120

Junction Temperature, T | (°C)

Relative Light Output (%

200
180

160 -

140
120
100
80
60

40 1
20 1

|
Red LEDs
e,
> oy ‘ -
------- Red o~ _
Red-Orange
Amber
-20 0 20 40 60 80 100 120

Junction Temperature, T | (°C)

Technical Sheet DS25 - Luxeon Emitter Datasheet 5/07

To Date | Have Been Showing Operation at Junction

Temperature of 25° C. What Happens if the Junction

Temperature Can Range from 40° C to 80° C?
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Binning Variation: Typical, Thermal

40° C Junction 60° C Junction 80° C Junction

Next Include the Wavelength and Flux Binning Variations

to Fully Understand the Color Shifts

i
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Discussion

* ltis along process to design a solid-state lighting system:

First: must design a complex optic with tailored optical design

Second: to improve design, optimization is employed to bring in real
source issues
Third must: contend with tolerances:

« LED binning

» Thermal effects

» Optic manufacture variation (this is an additional lecture)

Fourth: It has to have the right look and feel
* Itis not as easy as designing the most efficient, best distribution on the
target

* You must contend with the subjective appearance: both lit and unlit
- This is called lit-appearance modeling, and it is a completely additional lecture
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