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Introduction 
• Solar cell efficiency limited to 30%  

on thermodynamic grounds 
•  pn junction optimal for  

monochromatic light 
• Fundamental loss terms (Si) 

•  Spectral (50% loss) 
•  No absorption for Eph < Eg 

•  Partial use of energy when Eph > Eg 
• Practical limit presently ~15% (mc-Si) 
• Challenge: use complete solar spectrum 
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Example: spectral down shifter 

quantum dot 
CdSe, 4 nm Ø 

blue and green  
absorption 
 red emission 

transparent plastic blue green 

red 

solar cell 

AM1.5G: 10% 
increase in  
short circuit 
current 
[Van Sark et al, 
Sol.Eng.Mat.Sol.Cells 2005] 
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Introduction 
• Luminescent solar         

concentrator (LSC) proposed              
as possible low-cost alternative for 
high-cost photovoltaic cells         
(Goetzberger, 1970s) 

• LSC employs spectral down shifters/
converters 

• US patent (1979) 
•  4,149,902 

solar cell 
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solar cell 
Escaping ray 

Ray trapped by total 
internal reflection 
(TIR) 

Incident radiation 

Luminescent centre 

Transmitted radiation 
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mirror 

Luminescent Solar 
Concentrator 

Van Sark, WCOE, ICTP, Triest, 16 Feb 2010    8/100 



Stacks 
•  Similar to triple-junction solar cells 

[Goetzberger, 1970s] 
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Introduction 
• Diffuse solar irradiation constitutes half 

of irradiation at higher latitude  no 
conventional optical concentrators 

• Polymer based materials “capture” 
diffuse irradiation due to low index of 
refraction, trapping efficiency ~75% 

• Collects direct and diffuse light 
•  In the UK over 7× as much solar energy 

falls on buildings as is consumed inside and 
about half of this is diffuse [Chatten, 2008] 
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LSC advantages 
• Concentration ratio 5-10X 
• Non-tracking concentrator! 
• Present efficiency record: 7.1%  
• Reduce the costs of PV electricity 

•  Large area cheap plastic 
•  Small area not-so-cheap solar cell 

• Ideally suited to                         
building integration 
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Basic principles 

Van Sark, WCOE, ICTP, Triest, 16 Feb 2010    12/100 



Basic principles 
• Efficiency of LSC 

• Optical efficiency      ;  PV efficiency  
• Note: at           

emission           
wavelength,                
PV efficiency              
is high 

 ηLSC = ηoptηPV

 ηopt  ηPV
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Optical efficiency 

  
ηopt = 1− R( )ηabsηLQEηSηtrapηmat 1−ηself( )ηTIR

  

R      reflection coefficient
ηabs   absorption efficiency
ηLQE  luminescent quantum efficiency

ηS     Stokes' efficiency
ηtrap   trapping efficiency

ηmat   transmission efficiency through matrix
ηself   efficiency of self absorption
ηTIR    total internal reflection efficiency
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Optical efficiency 

• Surface reflection loss (Fresnel) 

• Polymethylmethacrylate (PMMA): 
n = 1.49   1-R = 3.9% 

• Can be lowered using anti-reflection 
coating 

  
1− R =

n −1
n +1

⎛
⎝⎜

⎞
⎠⎟

2
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Optical efficiency 

• Absorption efficiency  
• Depends on luminescent species: 

•  Organic dyes, narrow absorption bands 
•  Nanocrystals, broad absorption bands 

 ηabs
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Optical efficiency 

• Luminescent quantum efficiency  
• Depends on luminescent species: 

•  Organic dyes: 90-95% 
•  Nanocrystals: 20-80% 

• Stokes’ efficiency 
•  Must be small for low energy loss 
•  Must be large for low self-absorption 

 ηLQE

 ηS
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Optical efficiency 

• Trapping efficiency 

• For PMMA: 
• Can be enhanced by selective mirrors 

(dichroic/photonic)  

  
ηtrap =

n2 −1
n

  
ηtrap = 0.741
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Optical efficiency 

• Transmission through material efficiency 

• Depends on scattering in the matrix 
•  Absorption coefficient ~1 m-1 

•  Lambert-Beer  

• Self absorption depends on species, and 
leads to red shift of emission 

• Total internal reflection depends on 
surface quality 

 ηmat

  
I = Io exp −αx( )
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Optical efficiency 

  

1− R  reflection         96%                    
ηabs   absorption       15-20%
ηLQE  LQE                 95%

ηS     Stokes'            85-95%
ηtrap   trapping           74%

ηmat   transmission    85-95%
ηself   selfabsorption  50-80%
ηTIR    TIR                  90%

  ηopt = 3.2 − 8.8%
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Concentration 
•  Maximum concentration depends strongly on 

Stokes’ shift [Yablonovitch, 1980] 

•  Lumogen F Red dye: 
•  Absorption maximum at 578 nm 
•  Emission maximum at 613 nm 
 C=119    
(order of magnitude larger than obtained in practice!)  
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Concentration 
•  Dependence on absorption maximum 

wavelength 
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Modelling 
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Modelling 

• Two models 

• Thermodynamic model 
•  Based on radiative energy transfer between points 

(of a mesh) in the concentrator 

• Ray-trace model 
•  Every incoming photon is tracked and its fate is 

determined using Monte Carlo principles 
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Thermodynamic model 
•  Yablonovitch [1980] was the first to develop a 

thermodynamic model  
•  applying a detailed balance argument to relate the absorbed light 

to the spontaneous emission  

•  1D model: obtain the photon chemical potential as f(x) only 

•  Not accounted for 
•  absorption of incident flux by matrix 

•  spectral overlap of the incident radiation with the luminescence 

•  re-absorption of radiation emitted into the escape cone 

•  reflection at surfaces 

•  losses owing to absorption in the host  

•  Chatten [2004] developed self-consistent 3D flux model, 
considering reflection and transmission at the surfaces 
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• Brightness B of radiation field in 
equilibrium with electronic degrees of 
freedom of absorbing species 

  
B ν( ) = 8πn2ν 2

c2

1
e hν −µ( )β −1

n = refractive index 
β = 1/kT 
µ = chemical potential 

Thermodynamic model 

[Yablonovitch, 1980] 
[Chatten, 2004] 
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• Applying the principle of detailed 
balance within the absorber leads to: 

  
F µ( ) = dνNσe ν( )IC ν( ) − dν

Nσe ν( )
Qe

B ν( )∫ = 0∫ = A − EC

Thermodynamic model 

Yablonovitch, 1980 

IC = concentrated radiation field  
Qe = quantum efficiency 
N = density of luminescent centres     
σe = absorption cross section   
Wc = escape cone 
W2 = 4π – 2 
Wc totally internally reflected solid 
angle in 1D 

Wc	

W2	


Wc	


z = D 

z = 0 

I1(n) 

x 

y 

z [Chatten, 2004] 
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Module comprises a slab with a 
solar cell bonded to the right-
hand surface 

3D flux model 

[Chatten, 2004] 

6 escape cones 
[Shurcliff, 1949] 
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1.  integrating the differential equations 
for the fluxes 

2. evaluating the resulting expressions at 
the surfaces 

3. applying appropriate  boundary  
conditions considering reflection and 
transmission at the surfaces 

  derive the trapped and escaping  
 intensities within the slab and fluxes 
 exiting the surfaces 

(thin plates: analytically) 

3D flux model 

[Chatten, 2004] 
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4.  Chandrasekhar’s general three-
dimensional radiative transfer equation  

5.  Schwarzschild and Milne, detailed 
angular dependence of the radiative 
intensity is ignored; radiation is either 
forward (+) or backward (-) streams  

6.  Treat the escaping photons (q <qc) 
and the trapped photons (q >qc) as 
separate streams 

3D flux model 

[see for details: Chatten, 2004] 
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3D flux model 
• Escaping intensity in x-direction: 

• Trapped intensity 
  

Ix x,y,z( ) =
Ωcλe cosh λax + αL

2( )
2π sinh λaL +αLR( ) dx '

0

L

∫ cosh λa L − x '( ) + αR

2
⎡
⎣

⎤
⎦B x ',y,z( )

−
Ωcλe

2π
dx 'sinh λa x − x '( )⎡⎣ ⎤⎦0

x

∫ B x ',y,z( )

  

It x,y,z( ) = Ω6λet cosh λat x( )
4π sinh λatL + α t

2( ) dx '
0

L

∫ cosh λat L − x '( ) + α t

2
⎡
⎣

⎤
⎦B x ',y,z( )

−
Ω6λet

4π
dx 'sinh λat x − x '( )⎡⎣ ⎤⎦0

x

∫ B x ',y,z( )
[Chatten, 2004] 
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3D flux model 
• Flux exiting on to the solar cell: 

  

IR y,z( ) = Ωcλe

2π

e−αLR e−λaL sinh αR
2( )

sinh λaL +αLR( ) dx '
0

L

∫ cosh λa L − x '( ) + αB

2
⎡
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⎤
⎦B x ',y,z( )

+
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2( ) dx '
0

L

∫ cosh λat L − x '( ) + α t

2
⎡
⎣

⎤
⎦B x ',y,z( )

+
Ω6λete

−
α t
2 sinh α t

2( )
8π

dx '
0

L

∫ e−λat L− x '( )B x ',y,z( )
[Chatten, 2004] 
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3D flux model - results 
•  Modelled and measured luminescence for a 

1cm thick sample of CdSe/CdS core-shell dots 
in acrylic illuminated by a 530 nm laser 
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•  Predicted fluxes escaping right hand side 
•  L×W×D = 42×10×5 mm3 slab  
•  CdSe/CdS QDs in acrylic, connected to cell 
•  LQE of 0.5  

•  AM1.5 

3D flux model – predicted fluxes 

 shows concentration 
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•  Measure short circuit current Isc of cell bonded to the 
right-hand surface for modules, or of 2.65mm cell flush 
to the right-hand surface for slabs 

Calibrated 
lamp 2.65x2.65

mm Si cell 

3D 
movement Sample 

z 

SMU   25nA 

3D flux model - results 

[Chatten, 2008] 
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•  Measured and predicted short circuit currents, Jsc, for 
the slabs and module investigated  good agreement 

•  Evaporated Al mirrors 
•  BP Si concentrator cell on RHS 

3D Flux model - results 

[Chatten, 2008] 
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•  Tracing photons of specific wavelength using 
geometrical optics 

•  Random numbers determine outcome 
Reflection or 
transmission 

Direction of emission Emission wavelength 

Re-emission Absorption  
(path length) 

~ e-az 

+ versatile  
-  large number 

of rays 
required 
Burgers, 2005 
Bose, 2007 

Ray trace model 
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Ray trace model 

•    

 Example path of the fate of an individual ray incident at 
the top of the LSC 

•  A green photon enters the LSC perpendicularly (centre) 
•  It is emitted as a red photon close to the bottom of the 

LSC  
•  It subsequently undergoes several internal reflections to 

finally arrive at the left side of the LSC where it is 
absorbed by the solar cell 

[Gallagher, 2004; Burgers, 2005] 

solar cell LSC plate 
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Models compared 
• Thermodynamic model requires 

minimum of input data, and runs 
quickly, but limited to square 
geometries and single, homogenously 
doped with luminescent species 

• Ray-trace approach is more flexible 
allowing multiple dopant dyes, thin-
films and different geometries 

• Do they yield similar results? 
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Models compared 
•  four Plexit slabs 
• different sizes 
• different dyes  

•  Red and Yellow Coumarin 

good agreement [Chatten, 2005] 
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Ray trace model 
• Parametric study               [Van Sark , 2008] 

•  Mirror configuration 

•  Polymer background absorption 
•  Solar cell type 
•  Infrared dyes 

•  Wavelength selective mirrors 
•  Geometry 

•  Nanoparticles 
•  PMMA (n=1.49, abs 1.5 m-1) 
•  5x5x0.5 cm3, Si solar cell on one side 
•  CRS040 and Lumogen F Red dye (next slide) 
•  Modeled efficiency 2.45%  
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Ray trace model 
•  CRS040 and Lumogen F Red dye (LQE 95%) 
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Ray trace model 
•  Parametric study: Mirror configuration 
•  Adding mirrors directly to sides removes TIR, 

reflection coefficient of mirror 
•  Air gap restores TIR 
•  Lambertian bottom Mirror (R=97%) 
•  3M adhesive silver foil on sides (R=97%) 
•  Efficiency up from 2.45% to 2.97%  

(a) 

(b) (c) 
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Ray trace model 
•  Parametric study: background absorption 
•  Efficiency further up from 2.97% to 3.42% 
 (with n=1.7, efficiency would be 3.8%)  
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Ray trace model 
•  Parametric study: solar cell type 
•  Si cells not optimized for emission dyes 
•  650-1050 nm spectral range not used 

band gap 
Si  1.1 eV 
GaAs  1.45 eV 
InGaP  1.9 eV 
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Ray trace model 
•  Parametric study: solar cell type 
•  The higher the band gap, the higher efficiency 

1.1 eV   1.45 eV  1.9 eV  band gap 
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Ray trace model 
•  Parametric study: IR dyes 
•  Not yet available at high LQE (model 50%) 
•  Stacks: similar to tandem solar cells 

•  If LQE would be 95%  efficiency 5.4% (in 
single plate) 
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Ray trace model 
•  Parametric study: Wavelength selective 

mirrors to reduce top escape losses 
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Ray trace model 
•  Parametric study: Wavelength selective 

mirrors: cholesteric mirrors [Debije, 2006] 
•  Low transmission in dye emission range 
•  However, depends on angle of incidence 
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Ray trace model 
•  Parametric study: geometry 
•  Square, triangular, hexagonal shapes, but in 

terms of cost per unit of power no difference 
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Ray trace model 
•  Parametric study: nanoparticles 
•  Broad absorption 
•  Stable  
•  Tunable 
•  Example: [Kennedy, 2008] 
•  Three types of quantum dots 

•  Green, 488 nm (commercial) 
•  Orange, 605 nm (commercial) 

•  Infrared, 690 nm (UU-research) 

•  QD Intermezzo 
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Intermezzo: quantum dots 
• semiconductor nanocrystals 

•  CdSe/ZnS 

• quantum confinement  
•  exciton is “particle-in-a-box” 
•  radius smaller than exciton Bohr radius  

• used as fluorescent probes 
•  tunable emission as a function of size  

CdSe 

ZnS 

5 nm 
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Tunable emission: QD size 

λem  470  480   520  560  594   620   nm 

 ø     23    25     32    45    48     55     Å 
[Dabbousi, 1997] 

CdSe/ZnS QDs 
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CdSe quantum dot assembly 

Scientific American, sept 2001 

Cd 

Se 

TOP 
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CdSe synthesis at UU 

Courtesy of Freek Suyver and Sander Wuister (Debye 
Institute, Condensed Matter and Interfaces, Utrecht 
University) 

•  in glovebox 

• mix 100 ml heptane      
and 3 g surfactant  
(igepal) 

• add 50 ml 1M Cd(ClO4)2 
stir 

•  inject (TMS)2Se             
stir 
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Absorption/emission spectra 
CdSe/ZnS QDs, QE=80% 
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Green emitting QDs 

CdSe/ZnS. Emission peak 488 nm. 
Nanoco Technologies 

Back to: Ray trace model 
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Orange emitting QDs 
CdSe/ZnS. Emission peak 605 nm   
Evident  

Ray trace model 
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‘NIR emitting’ QDs 

CdSe/CdS/CdZnS/ZnS 
(SYN1CSS, UU)  

Ray trace model 
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absorption efficiency (ηabs) fraction of 
incident photons absorbed by QDs 

All absorbed photons are emitted (QD 
QY=100%) 

Only (internal) loss mechanism is escape 
cone loss 

retention efficiency (ηret)= 1-total escape 
cone loss 

optical efficiency (ηopt): fraction of incident 
photons transmitted to PV 

ηopt= ηabs x  ηret 
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Optical efficiencies are much higher for NIR QDs 
than commercially-available visible emitting QDs 
- partly due to broader absorption range 
- more significantly due to lower re-absorption 
losses 
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Predicted 
Concentration 
Ratios using same 
QDs and more 
realistic 
parameters: 

attenuation 
coefficient; 4 m-1 

Mirror reflectance: 
0.94 

QD QY: 85% 

Re-absorption is 
less detrimental in 
NIR QDSC 

Ray trace model 
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Experiments 
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Experimental LSCs 

• Early work (Goetzberger’s group): 4% 
for 40x40 cm2 

• Goldschmidt [2009]:                      
stack of plates (2x2 cm2)                     
two different dyes                         
InGaP solar cells                                
 6.7% 

• When spectral range could be extended 
to infrared, 13.5% would be possible 
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Experimental LSCs 

• Currie [2008]: 
• stack of plates (2.5x2.5 cm2) 
•  films of organic dyes on glass 
• GaAs solar cell 
• Efficiency 6.8% 
• Projected 12-14.5%                          

for CdTe or                                       
Cu(In,Ga)Se2                                                  
solar cells 
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Experimental LSCs 

• Slooff [2008]: 
• Single plate (5x5 cm2) 
• Lumogen F Red 305 
• Yellow CRS040 
• PMMA (Plexit) 
• 4 GaAs cells 
• Efficiency 7.1% 
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Stability 
•  Outdoor test, dye doped LSCs 

70/12 

“stable” 
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Stability 
•  Outdoor test, quantum dot concentrators 
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Outdoor performance 
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Outdoor performance 
•  Ray trace model 
•  23x23 cm plate, 1 mm thickness 
•  Use actual spectra (modeled based on 

irradiation data, SEDES2), for the Netherlands 
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Four characteristic days 

summer, clear summer, cloudy 
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winter, clear winter, cloudy 

AM1.5-like 
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Outdoor performance 
•  Collected photons 

fraction 
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Outdoor performance 
•  efficiency  

•  lower than AM1.5G efficiency (4.2%) 
•  varies between 3% and 4 % 

•  energy yield follows spectral irradiance 
variation 
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Outdoor performance 
•  Collected photon fraction  linearly dependent on average 

photon energy 
•  The bluer the spectrum (diffuse) the more photons are 

collected 
•  APE 

 AM1.5G: 1.714 eV 

•  Annual energy yield:  
 41.3 kWh/m2 

•  Si: ~120 kWh/m2 

•  Cost?  
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LSC cost 
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• Relative cost 

• Relative power 

• Relative cost-per-unit-of-power: Cr/Pr 

Cost calculations 

= 0.04 4.33 · 1.06 · 1.01 · = 0.19 

1/15 
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Cost-per-unit-of-power 

 CRed =5.6·1024 m-3 , CYel =0 m-3,  , Specular mirror 

1 
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Cost-per-unit-of-power 

 CRed =5.6·1024 m-3 , CYel =0 m-3, cf=1/10 , Specular mirror 

0.61 

Van Sark, WCOE, ICTP, Triest, 16 Feb 2010    81/100 



 CRed =5.6·1024 m-3 , CYel =0 m-3, cf =1/15, Specular mirror 

0.42 

Cost-per-unit-of-power 
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 CRed =5.6·1024 m-3 CYel =0 m-3, cf =1/20, Specular mirror 

0.33 

Cost-per-unit-of-power 
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Outlook 
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Possible LSC structure 

•  Length 10-100 cm 
•  Thickness 1-5 mm 

length 

plate 

solar cell 
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•  Proposed to minimize re-absorption losses [Rapp, 1978] 
•  Thermodynamic modeling [Bose, 2007] 

•  Homogeneous 

•  Thin Film on glass substrate 

SAME! 

And probably cheaper! 

Thin film LSC 
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Large Stokes’ shift QDs 
•  Synthesis of type II CdTe/CdSe core/shell QDs 

with a large Stokes’-shift, high QE, and NIR 
emission (>900nm)  

•  Large Stokes’ shift prevents re-absorption 
•  Emission 900 nm perfect for Si cells attached to 

LSC sides 
•  Not air-stable yet 
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•  CdSe/CdS nanorods provided by CNR-INFM 
and UCB 

•  Reduce reabsorption losses 

•  LQE of 70% 

 NRs double % of photons emitted from the 
LSC edges 
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Nanorods 
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Matching emission with band gap 

•  Type II QDs with a-Si:H solar cells 
•  Tuning emission and tuning band gap 
•  Find optimum combination, project started at UU 
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Matching emission with band gap 

•  Band gap variation 1.1 – 1.8 eV 

90/12 Van Sark, WCOE, ICTP, Triest, 16 Feb 2010    90/100 



•  First attempt 600 nm 

LSC/a-Si:H 
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Spectral photon flux (#/m2/s/nm) 

LSC/a-Si:H 

•  Solar simulator 
•  Incident 693 W/m2 

•  Edge 321 W/m2 
•  Concentration effect:  

 higher flux in same 
wavelength region 
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LSC/a-Si:H 
•  State-of-the-art a-Si:H cells (8%) 
•  5x0.5 cm2, on 2 LSC edges 
•  3M silver foil on other 2 edges 
•  Efficiency 1%   [Van Sark, 2010] 

Silver foil   LSC plate       solar cell 
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Conclusion 
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Conclusion 

• Luminescent Solar Concentrator is a 
very good option to harvest cheap solar 
power, also at higher latitudes 

• Modeling allows for parametric studies 
to find optimum design 

• Many luminescent species          
available, nanoparticles are      
promising 
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Conclusion 

• LSC present drawbacks 
•  Spectral sensitivity 

•  Organic dyes available with high QE only for 
wavelengths < 600 nm (2 eV) 

•  Using c-Si (Eg=1.1 eV) leaves large part of 
spectral range (600-1100 nm) unused 

•  Stability 
•  Absorption matrix 
•  Nanoparticles too               

expensive 
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Conclusion 

• LSC challenges 
•  Need of full spectrum absorbers and NIR 

emitters, perhaps cascaded 
•  Stability of luminescent species in matrix 
•  Very low absorption matrix 
•  Low cost (nano) materials  
•  Abundant materials 
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