MAPPING AND SURVEYING USING GNSS

Olalekan Adekunle ISIOYE
Department of Geomatics Engineering, Ahmadu Bello University, Zaria, Nigeria
E-mail: lekkyside4u@yahoo.com,
Mobile: +2348036055824
Global Navigation Satellite Systems

- GPS = Global Positioning System (United States)
- GLONASS = Global Orbiting Navigation Satellite System (Russian Federation)
- Galileo = European (Commission’s) Proposed Satellite Navigation System
- Beidou/Compass = Satellite Navigation and Positioning System (People’s Republic of China)
- QZSS = Quasi-zenith Satellite System (Japan)
Satellite-based positioning

Satellite-based positioning is divided into three main categories:

- Transmitting and receiving optical signals to/from satellites (artificial and natural) SLR/LLR
- Transmitting radio signals to satellites (DORIS)
- Receiving radio signals from satellites (GNSS)
Advantages

- VLBI: very accurate determination of inter-station baselines, rotation rate of Earth, Earth’s axis wobble, only absolute system etc.
- SLR: very accurate determination of vertical component and ranges to satellites, no ionospheric refraction.
- DORIS: precise orbits for specific satellites and permanent tracking stations

Disadvantages

- Very expensive to set up and maintain.
- Not suitable for surveying applications.
VLBI instrumentation
SLR instrumentation
• Ancillary observations
• Resolving ambiguities
• Repairing cycle slips during the pre-processing stages of advanced GPS analysis

Pseudo-range (code range) measurement

• Noise level of a few millimeters and very precise
• High precision GPS positioning and GPS meteorology

Carrier phase measurement

GPS observations

Second Workshop on Satellite Navigation Science and Technology for Africa 6-24, April, 2010, Trieste, Italy
GPS observations (contd)

- \[ZD = L = R - \lambda N - \Delta\text{ion} + \Delta\text{trop} + \Delta\text{clk} + \Delta\text{hw} + \Delta\text{syn} + \Delta\text{orien} + \Delta\text{pcv} + \Delta\text{rel} + e \]

- Combined phase measurement can be written as
 \[L_{12} = a_1 L_1 + a_2 L_2 \]
 \[\sigma_{12} (\text{noise level}) = \sqrt{(a_1 \sigma_1)^2 + (a_2 \sigma_2)^2} = \sigma \sqrt{a_1^2 + a_2^2} = F_{\sigma} \sigma \]
Concept of Differential GPS

True coordinates = $x+0, y+0$

Correction = $x-5, y+3$

DGPS correction = $x+(30-5)$ and $y+(60+3)$

True coordinates = $x+25, y+63$

DGPS Receiver

Receiver

DGPS Site

x+30, y+60

x-5, y+3

x+5, y-3
Differential positioning

The motivation: *Most errors are spatially correlated and can be reduced or eliminated by differencing.*
Linear Combinations of the L1 and L2 Observations

<table>
<thead>
<tr>
<th>Carrier</th>
<th>a_1</th>
<th>a_2</th>
<th>λ(mm)</th>
<th>F_{ion}</th>
<th>F_σ</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>1</td>
<td>0</td>
<td>190</td>
<td>1</td>
<td>1</td>
<td>Original L1 signal</td>
</tr>
<tr>
<td>L_2</td>
<td>1</td>
<td>0</td>
<td>244</td>
<td>1.65</td>
<td>1</td>
<td>Original L2 signal</td>
</tr>
<tr>
<td>L_C</td>
<td>$f_1^2/(f_1^2-f_2^2)$</td>
<td>$-f_2^2/(f_1^2-f_2^2)$</td>
<td>862</td>
<td>-1.28</td>
<td>5.74</td>
<td>Wide lane</td>
</tr>
<tr>
<td>L_N</td>
<td>$f_1/(f_1+f_2)$</td>
<td>$f_2/(f_1+f_2)$</td>
<td>107</td>
<td>1.28</td>
<td>0.71</td>
<td>Narrow lane</td>
</tr>
<tr>
<td>L_G</td>
<td>1</td>
<td>0</td>
<td>190</td>
<td>2.98</td>
<td></td>
<td>Ionosphere free</td>
</tr>
</tbody>
</table>

Second Workshop on Satellite Navigation
Science and Technology for Africa 6-24, April, 2010, Trieste, Italy
Achievable accuracy with DGPS

<table>
<thead>
<tr>
<th>Sources of error</th>
<th>Error without DGPS</th>
<th>Error with DGPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeris data</td>
<td>2.1m</td>
<td>0.1m</td>
</tr>
<tr>
<td>Satellite clocks</td>
<td>2.1m</td>
<td>0.1m</td>
</tr>
<tr>
<td>Effect of ionosphere</td>
<td>4.0m</td>
<td>0.2m</td>
</tr>
<tr>
<td>Effect of troposphere</td>
<td>0.7m</td>
<td>0.2m</td>
</tr>
<tr>
<td>Multipath reception</td>
<td>0.5m</td>
<td>0.5m</td>
</tr>
<tr>
<td>Total RMS value</td>
<td>5.3m</td>
<td>1.5m</td>
</tr>
</tbody>
</table>
Requirement for GNSS network data exchange and processing

Second Workshop on Satellite Navigation Science and Technology for Africa 6-24 April, 2010, Trieste, Italy
Differences between near real time and post data processing

<table>
<thead>
<tr>
<th>Solution</th>
<th>Near real time processing</th>
<th>Post processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data organized and processed</td>
<td>Hourly</td>
<td>Daily</td>
</tr>
<tr>
<td>Orbits used</td>
<td>Ultra-rapid /predicted</td>
<td>Rapid/final</td>
</tr>
<tr>
<td>delay</td>
<td>1-2 hours</td>
<td>1-10 days</td>
</tr>
<tr>
<td>period</td>
<td>Last 24 hours</td>
<td>24 hours of current day</td>
</tr>
<tr>
<td>Solutions per day</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>ZTD resolution</td>
<td>5-30 minutes</td>
<td>5-30 minutes</td>
</tr>
<tr>
<td>Purpose</td>
<td>Rapid mapping, engineering, Meteorological applications</td>
<td>Geodetic and Climate applications</td>
</tr>
</tbody>
</table>
IGS DATA and products

Second Workshop on Satellite Navigation
Science and Technology for Africa 6-24, April, 2010, Trieste, Italy
IGS file naming conventions

GPS (30-second sampling) RINEX observation file:

- ssssdedd#.yyo
 (ssss = site code, ddd = day-of-year, yy = last 2 digits of year, # = code)

- for e.g. site “ABUZ”, 3rd April 2010, the filename is abuz1230.10o

- When downloaded, the naming convention typically is ssssdedd#.yyd.Z
 (use crz2rnx to uncompress to ordinary RINEX)
IGS file naming conventions

GPS 24-hour “combined” RINEX navigation file:
- brdcddd0.yyn or autoddd0.yyn
 (ddd = day-of-year, yy = last 2 digits of year)
- for e.g. 3rd April 2010, the filename is brdc1230.10n or auto1230.10n
- When downloaded, the naming convention typically is brdcddd0.yyn.Z or autoddd0.yyn.Z
 (use gunzip to uncompress to ordinary RINEX)
IGS file naming conventions

GPS 24-hour ECEF orbit and clock correction files:

- igxwwwwd.sp3 and igxwwwwwd.clk
 (x = orbit latency (u, r or s), wwww = GPS week, d = day-of-week (0 to 6))
- for e.g. Thursday 2 August 2007, the filename of the precise orbit is igs14384.sp3
- When downloaded, the naming convention typically is igxwwwwd.sp3.Z and igxwwwwd.clk.Z
 (use gunzip to uncompress)
More information about the RINEX and IGS file formats

Consult e.g. this website for more information about the format of the contents of the discussed files:

- http://igscb.jpl.nasa.gov/igscb/data/format/rinex211.txt
GPS Satellite Orbits Available from IGS

<table>
<thead>
<tr>
<th>Product</th>
<th>Accuracy</th>
<th>Latency</th>
<th>Updates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orbits: ~200 cm</td>
<td>Sat clocks: ~7 ns</td>
<td></td>
</tr>
<tr>
<td>Broadcast</td>
<td>~10 cm</td>
<td>Real time</td>
<td>-</td>
</tr>
<tr>
<td>Ultra-Rapid (predicted half)</td>
<td>< 5 cm</td>
<td>~5 ns</td>
<td>Real time</td>
</tr>
<tr>
<td>Ultra-Rapid (observed half)</td>
<td>< 5 cm</td>
<td>~0.2 ns</td>
<td>Real time</td>
</tr>
<tr>
<td>Rapid</td>
<td>< 5 cm</td>
<td>0.1 ns</td>
<td>17 hours</td>
</tr>
<tr>
<td>Final</td>
<td>< 5 cm< 5 cm</td>
<td>~0.2 ns< 0.1 ns</td>
<td>weekly</td>
</tr>
</tbody>
</table>
THE NEW NIGERIAN PERMANENT GNSS NETWORK OF NIGERIA (NIGNET)

- ITRF SOLUTION (2005)
- CONTRIBUTION TO AFREF
- RTK POSITIONING IN SINGLE AND NETWORK NODES
Second Workshop on Satellite Navigation Science and Technology for Africa 6-24 April,
CORS / VRS ADVANTAGES

- 3-dimensional.
- Users do not need to recontrol points.
- Users do not need to set up instruments at control points.
- CORS positional coordinates are more accurate than those of other control points.
- Direct tie to National Spatial Reference System.
- CORS positions and velocities are available in ITRF coordinate systems.
- CORS positions are continuously monitored and will be updated if the site moves.
Services from VRS

<table>
<thead>
<tr>
<th>SERVICES</th>
<th>METHOD SOLUTIONS</th>
<th>DATA TRANSFER</th>
<th>ACCURACY</th>
<th>DATA FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP</td>
<td>Network solution of code measurement in real time</td>
<td>Wireless internet (GPRS, UMTS) NTRIP protocol GSM</td>
<td>±0.3 to ±0.5m</td>
<td>RTCM</td>
</tr>
<tr>
<td>VPPS</td>
<td>Network solution of phase measurement in real time</td>
<td>Wireless internet (GPRS, UMTS) NTRIP protocol GSM</td>
<td>±2cm (2D) ±4cm (3D)</td>
<td>RTCM</td>
</tr>
<tr>
<td>GPPS</td>
<td>Post</td>
<td>Internet</td>
<td>± 1cm (2D, RINEX)</td>
<td>RINEX</td>
</tr>
</tbody>
</table>
ON-LINE GNSS PROCESSING SERVICES

Auto Gipsy (JPL) - service provided by JPL
http://milhouse.jpl.nasa.gov/ag/

AUSPOS (Geoscience Australia) - service provided by Geoscience Australia

OPUS - service provided by NGS, USA
http://www.ngs.noaa.gov/OPUS/

SCOUT (SOPAC) - service provided by SOPAC, USA
http://sopac.ucsd.edu/cgi-bin/SCOUT.cqi

CSRS-PPP (NRCAN GSD) - service provided by natural Resources of Canada
http://www.geod.nrcan.gc.ca/ppp_e.php
GPS HEIGHTING

Well established geodetic framework, apart from being the backbone of any national surveying and mapping systems, also enhances the reliability of geographic data used in spatial information systems for resource planning and enhancing sustainable development. One of the components of a geodetic framework is the height component. Orthometric height, a height component referred to the geoid, is required for engineering projects and other applications. The classical geodetic levelling method, used to determine this quantity is tedious, time consuming and expensive. The method is almost impracticable in some parts of Nigeria, where the terrain is swampy and hostile.
Importance of height

- **Geodetic/Topographic applications**: Heights are used for geodetic research such as gravity study; the study of gravity has many applications in sciences, secular upheaval or depression. Other applications include ground subsidence monitoring or deformation studies, tidal observations, study of mean sea level variations, change in the rotational axis of the earth, computing geoidal heights, evaluating global geopotential models, determining atmospheric parameters, and other geophysical investigations.
Importance of height (Contd)

- *Engineering uses*: Height information are usually required for engineering works which includes; the determination of the altitudes of different important points on a hill or to know the reduced levels of different points on or below the surface of the earth. These information are used to prepare contour map for fixing sites for reservoirs, dams, barrages, etc., and to fix the alignment of roads, railways, irrigation canals, sewer, pipelines and soon.

Errors sources affecting GNSS-determined heights

Error of the GNSS measurement
- Vertical dilution of precision (VDoP)
- Satellite ephemeris and GNSS baseline length
- Ionosphere delay
- Troposphere delay
- Multipath
- Electromagnetic interference and signal attenuation
- Error in measurement of the antenna height

Error due vertical datum

Error due available geoid model
Possibilities and limitations of GPS heights

Possibilities

- Deformation monitoring
- Machine monitoring and guidance

Limitations
Height system: physical vs. geometric

Height system: physical vs. geometric (Contd)

- Normal height
 - Molodenksy normal height

- Dynamic height

- Orthometric height
 - Helmert orthometric height
 - Ramsayer orthometric height
 - Vignal orthometric height
 - Baranov orthometric height
 - Ledersteger orthometric height

- Normal orthometric height
 - Rapp’s normal orthometric height

Relation between physically meaningful height (orthometric) height and geometric height
Relation between physically meaningful heights and geometric height (contd)

\[h - H - N = 0 \]
\[h - H_N - \eta = 0 \]
Random errors in the derived heights h, H, and N
Datum inconsistencies inherent among the height types, each of which usually refers to a slightly different reference surface
Systematic effects and distortions primarily caused by long-wavelength geoid errors, poorly modelled GPS errors (e.g., tropospheric refraction), and over constrained levelling network adjustments
Assumptions and theoretical approximations made in processing observed data, such as neglecting sea surface topography effects or river discharge corrections for measured tide gauge values in determining sea level. This category of errors is already known to exist at the Lagos tide gauge
Approximate or inexact normal/orthometric height corrections
Instability of reference station monuments over time due to geodynamic effects and land subsidence/uplift
Geoid models

- Geometric geoid models (modelling geoidal height using different trend surface algorithms i.e., The Inverse Distance to a Power Method, Kriging Method, Minimum Curvature Method, Modified Shepard’s Method, Nearest Neighbour Method, Natural Neighbour Method, Polynomial Regression Method (Simple Planar Surface, Quadratic Surface, Cubic Surface), Radial basis Function Method (Inverse Multiquadric function, multiquadric function, Natural Cubic Spline, Thin Plate Spline), Moving average Method, Triangulation with linear Interpolation Method, Method, local polynomial method (1st, 2nd, and 3rd Polynomials).

- Gravimetric geoid models (are computed from collocation or FFT techniques are computed by national bodies)

- Global geoid models (A GGM is typically computed as a series of spherical harmonic expansions to a maximum degree and order. The most recent GGM (EGM08) use an expansion to degree and order 2160. Other are OSU91A, EIGEN2/EGM96, GGM02s, PGM2000A, EGM96 to mention but a few)
organizations in obtaining orthometric height from GNSS

- American example
- Canadian example
- European proposal
- Australian example
- Global vertical datum and the concept CORS
- Lagos state mapping example
- Researches on obtaining orthometric from GNSS at Ahmadu Bello University
The Nigerian scenario

- Quality of existing conventional levelling data
- Multiple datum problem
- Insufficient or poor terrestrial gravity information
- Absence of a national gravimetric geoid for the country
- Absence of GPS/levelling collocated points at national scale
- Accuracies of global earth model
A proposed model for multimodal application of GNSS in Nigeria

UNIFIED CORS NETWORK
- Network Operators
- Data Custodians
- CORS management (Commercial, institutional, legal, operational)

SERVICES
- DSP, VPPS, GPS services for general users
- DSP, VPPS services (with appropriate interpolation software and prediction model).

GNSS CORS users (including others users apart from mapping applications)

Improved Infrastructure system

Application Development

GNSS Research

Revenue

Homogenous CORS

Network data
Future impact of CORS on mapping operation in Nigeria

- Geodetic control for cadastral mapping
- Cadastral boundary point measurements
- Crustal motion studies
- GIS database, fundamental data set for the NSDI
- National topographic GIS data
- Dynamic cadastre/ three dimensional cadastre
- Coordinate based cadastre
- Dawn of new surveying regulations
“GNSS is an enabling technology that can make major contributions to economic growth and societal betterment. It is a key to scientific exploration”

P. Doherty 2010