Maritime Navigation

Jim Doherty
15 April 2010
Trieste, Italy

Graphic: www.pbs.org
Objective

To learn the long tradition & some unique aspects of maritime navigation

- Emphasis on electronic navigation systems used by mariners
- Brief history of these systems
- And consideration for future
Outline

- Background
- Requirements & Standards
- Electronic Navigation History
- Break
- Current Radionavigation systems
 - eLoran, DGPS, e-Navigation
- Conclusions
Classic Reference Texts

Interesting Reading

Background

Navigation

- “Navigation is the process of directing the movements of a craft from one point to another. To do this safely is an art. …man has transformed that art into a science…”

 (Bowditch, p15)

- “Navigation is defined, formally, as the art or science of conducting a ship or aircraft from one position to another.”

 (Dutton’s, p1)
According to Dutton’s (p1)

- “Science is involved in the computation of navigational solutions and in the development of methods, instruments, devices, tables, and almanacs.”
- “The application of these aids and the interpretation of information received … constitute an art requiring skill, experience and judgment.”
Navigation Means

- Dutton’s defines four navigation divisions
 - Dead reckoning (DR)
 - Piloting
 - Electronic navigation
 - Celestial navigation
Dead Reckoning

- Approximate position
 - *Deducted from last known position*
 - *Based on direction & estimated speed*
- Originally “deduced reckoning”
 - *Shortened to “ded. reckoning”*
 - *And in English “ded.” became “dead”*
- Often abbreviated “DR”
Classic Navigation

- Piloting – navigation based on
 - Landmarks, charted aids, soundings
 - Used in close proximity to shore or harbor

- Celestial navigation – based on
 - Celestial objects – sun, stars, planets, moon
 - Used at sea – beyond line-of-sight to shore
Electronic Navigation

- In 1960s (Dutton’s et al)
 - Considered an extension of piloting
 - Using radio signals from charted terrestrial locations

- Today with GPS/GNSS
 - Satellites as new “celestial” objects
 - Extension of celestial using electronic systems
All Available Means – 1960s

USCGC Madrona
Navigator – LT(jg) Doherty

• Navigation by
 • Visual piloting
 • Radar
 • Radiobeacons
 • Loran-A
 • Celestial
 • Bottom contour & soundings
 • Dead reckoning

Photo: Historic American Engineering Record, National Park Service, 2003, p27
Electronic Navigation

1960s
- Radiobeacons
- Radar
- Loran-A

1970s
- Loran-C
- Omega
- Loran-A

1990s
- GPS
- DGPS
- Radiobeacons

Today
- eLoran
- Loran-C
All Available Means – today

- Coastal & restricted waters (piloting)
 - Visual – landmarks, aids – soundings
 - Electronic – radar, GPS, DGPS, eLoran
 - Dead reckoning

- At sea – beyond line-of-sight navigation
 - Celestial (sun, stars, planets, moon)
 - Electronic – GPS, eLoran
 - Dead reckoning
Requirements & Standards

- Recommended information sources
 - US Coast Guard Navigation Center
 - www.navcen.uscg.gov
 - International Maritime Organization (IMO)
 - www.imo.org
 - Radio Technical Commission for Maritime Services (RTCM)
 - www.rtcm.org
 - International Association of Lighthouse Authorities (IALA)
 - www.iala-aism.org
Accuracy Goals – 1960-70s

- At sea – best possible
 - ~ 1-2 nautical miles

- Coastal – 200 mile Exclusive Economic Zone (EEZ) limit
 - ¼ nautical mile

- Harbor entrance & approach – within 20 miles
 - 100 meters, improving to 10-20 meters
Accuracy Needed Today

Appendix to IMO Resolution A.953(23) of 5 December 2003

- Requirements for radionavigation systems
- Includes accuracy requirements for
 - Harbor entrance, approach, & coastal waters
 - 10 meters
 - Ocean waters
 - 100 meters
IMO Requirements

Categories

- Harbor entrance, approach, & coastal – high traffic volume or significant risk (HEA-H)
- Harbor entrance, approach, & coastal – low traffic volume or lower risk (HEA-L)
- Ocean areas (OCEAN)

Details next chart

Source: Appendix to IMO Resolution A.953(23) of 5 December 2003
IMO Requirements (cont.)

- Accuracy @ 95% probability
 - 10 meters for HEA-H/HEA-L
 - 100 meters for OCEAN

- Update rate for HEA-H, HEA-L, & OCEAN
 - 10 seconds for displays
 - 2 seconds for automated systems

- Availability & Reliability
 - HEA-H: 99.8% over 2 years; & 99.97% over 3 hours
 - HEA-L: 99.5% over 2 years; & 99.85% over 3 hours
 - OCEAN: 99.8% over 30 days; & no spec on reliability

- Non-availability warning
 - 10 seconds for HEA-H & HEA-L
 - As soon as practical for OCEAN
US Revenue Cutter Bear

Picture from www.uscg.mil
Aboard USRC Bear ~1895

Navigator’s toolkit

- Navigation charts
- Chart instruments
 - Parallel rules
 - Dividers
- Sextant
 - Almanacs & tables
- Compass
- Chronometer
- Speed log
- Angle measuring device

CAPT “Hell Roarin’ Mike” Healy & pet parrot
Navigation Charts

Nantucket, Massachusetts

www.roadstothefuture.com

www.weebsite.ca
Maritime Sextant

Measures angles in degrees, minutes & tenths (~10 seconds) of arc accuracy

Source: www.pbs.org
Maritime Sextant

Source: www.stanleylondon.com
Classic Navigation Tools

- **Binnacle & magnetic compass**
 - www.antequesofthesea.com

- **Alidade**
 - en.wikipedia.org

- **Cape Canaveral lighthouse plans**
 - www.uscg.mil
Celestial Navigator’s Day

0400-0800
- Navigator’s watch
- Morning stars & position fix

0800-1200 & 1200-1600
- Morning sun line & estimated position
- Local apparent noon & running fix
- Wind chronometers
- Afternoon sun line & running fix

1600-2000
- Evening stars & position fix
- Plan next day’s course & navigation

Backup plan – DR
“Shooting” Stars

- Prepare (navigator & assistant)
 - Select stars based on location & almanac
 - Synchronize watch with chronometer
- Identify & shoot each star or planet
 - Note time & angle
- Calculate & plot lines of position
 - Table look-up, interpolate, etc.
 - Compare “fix” with DR-estimated position
Electronic Navigation

• Navigation by
 • Visual piloting
 • Radar
 • Radiobeacons
 • Loran-A
 • Celestial
 • Bottom contour & soundings
 • Dead reckoning

Photo: Historic American Engineering Record, National Park Service, 2003, p27
Loran-A

■ World War II development
 ○ Goal: accuracy of 1000 feet @ 200 miles
 ○ 1750-1950 kHz band, pulsed system

■ Master-secondary paired transmitters
 ○ Two pairs (at least 3 transmitters) for fix
 ○ Difference in time (TD) received between master & secondary pulse in each pair for line of position (LOP)

Reference: http://www.jproc.ca/hyperbolic/loran_a.html
Loran-A User Equipment

APN-4 Loran-A shipboard receiver

Plot indicated time difference (TD) on chart with preprinted Loran-A lines of position (LOP)

Reference: http://www.jproc.ca/hyperbolic/loran_a.html
Loran-A Coverage

Coverage 1950s & 1970s

Reference: http://www.jproc.ca/hyperbolic/loran_a.html
Loran-A Limitations

- Limited range
 - Many transmitters needed
 - Propagation of \(~2\) MHz groundwave

- Limited accuracy
 - Best accuracy required groundwave reception; often hindered by skywaves
 - Propagation disturbances between master & secondary stations
Enter Loran-C

- Same basic TD concept, better design
 - Low frequency – 100 kHz
 - Longer range groundwave propagation
 - More stable – enabled envelope (pulse leading edge) and carrier cycle matching for higher accuracy (coarse-fine) TD measurements
 - Multiple pulses (8) – improved SNR
 - Designed improve skywave rejection
- Master & multiple secondary “chains”
Loran-C Design Concepts

- Loran-C system design
 - Master & 2-5 secondary transmitters per chain
 - 8-pulse group from each
 - Designed to arrive in order throughout chain coverage

- Pulse design
 - Precise leading edge
 - Envelope match, then cycle match at 30 µs point (before earliest skywave arrival)

Reference: http://www.jproc.ca/hyperbolic/loran_c.html
Loran-C User Equipment

- Loran-C shipboard receivers (1970s-80s)
 - Decca 1024 (top)
 - TI 9000 (bottom)
- Plot TDs on preprinted Loran-C charts

Reference: http://www.jproc.ca/hyperbolic/loran_c.html
Loran-C Coverage

- **Coverage 1990s-2000s**
 - Systems operated by host countries
 - Includes Russia’s Chayka – Loran-C equivalent

- **February 2010**
 - USCG terminated Loran-C operations in US
 - Infrastructure remains for potential upgrade to eLoran
Omega

- First global radionavigation system
 - Sequentially timed pulses in VLF band
 - 10.2 kHz, 11.33 kHz, 13.6 kHz, 11.03 kHz
 - Global coverage from 8 transmitters operated by US (2) & 6 partner nations
 - Norway, Liberia, Hawaii, North Dakota, LaReunion, Argentina, Australia, Japan
 - Generally about 1-2 mile accuracy
- Operations ended 30 September 1997
Now to Today … Break

Source for USCGC Bear: www.fredsplace.org
Back to Today

USRC Bear

USCGC Bear

Source for USCGC Bear: www.fredsplace.org

CAPT Healy

USCGC Healy
Maritime Navigation

- Accuracy requirements (IMO)
 - 100 meters at sea
 - 10 meters harbor entrance et al

- Major electronic navigation aids
 - GPS
 - Differential GPS (DGPS)
 - eLoran
 - e-Navigation
Maritime DGPS Service

- Meets IMO requirements for harbor entrance, approach, coastal navigation
 - 10 meter accuracy, 10 second alarm time, availability, etc.
 - Typically much better – 1-2 meters and 5 seconds to alarm
 - Coverage to at least 20 miles from coast
 - Generally dual coverage for all major ports & high volume coastal areas
DGPS – USCG’s Beginning

Post-Exxon Valdez – 1989
USCG need to track ships throughout Prince William Sound

Used cooperative surveillance
- Ships report GPS data
- VTS applies corrections & displays on radar screen
- Local USCG buoytender requests same service
 - *Faster, more accurate way to position buoys*
- USCG plans DGPS buoy positioning system
 - *Upgrades to full navigation system concept*

Photo: earthhopenetwork.net
How DGPS Works

Local Area System

- Receive GPS at fixed reference stations
- Calculate correction for each SV used
- Broadcast corrections to users (rover receiver)
- Validate corrections using integrity monitor
- Record site performance data for legal purposes

DGPS Signal Spec: US Coast Guard
COMDTINST M16577.1 April 1993

Picture: www2.ocgi.okstate.edu
USCG DGPS Coverage

NDGPS Coverage

January 2007

www.navcen.uscg.mil
Typical DGPS Sites

- **Modified radiobeacon site**
 - 80-100 foot top-loaded monopole radiobeacon broadcast antenna
 - Modified radiobeacon transmitter

- **Modified GWEN site**
 - 300 foot TLM antenna
 - Modified GWEN transmitter

- **Both**
 - Two receiving antenna masts
 - Each with reference station & integrity monitor antennas
 - Two each reference station & integrity monitor receivers

Photo: www.navcen.uscg.gov
Drawing: en.wikipedia.org

DGPS – Advantages & Not

Advantages

- Improved accuracy & integrity
- Under “sovereign control” in each port
- Inexpensive (modify existing radiobeacon)
- Common global standard (RTCM SC104)

Disadvantage

- Not independent system but augmentation
 - If GPS reception is lost, there is no DGPS
eLoran

- True PNT service
 - Maritime accuracy 10-20 meters
 - Time accuracy 50 ns & Stratum 1 frequency stability
 - Aviation integrity

- True backup to GPS
 - Independent of & compatible with GPS
 - Different propagation & failure modes
eLoran Is NOT Loran-C

- Upgraded transmitter equipment
 - All solid state, UPS, modern time system
 - Largest cost – upgrades completed in US

- New operations concepts
 - Time of transmission (TOT) control
 - Data channel for differential & integrity services

- Modern user equipment
 - Digital, all-in-view, seamless with GPS operations
 - Compact H-field antennas, integrated with GPS
Data Channel Messages

- Differential corrections
 - Compensate for variation in signal propagation for improved accuracy
- Integrity
 - Validates that signals are safe to use
- Other
 - Time of day
 - Transmitter identifier
eLoran in US (fall 2009)

• All 18 operational sites in CONUS upgraded
• 2 of 6 operational sites in Alaska upgraded
• Equipment for 2 sites in Alaska purchased, awaiting installation
New eLoran Technology
eLoran Worldwide

- Existing Loran-C transmitters upgradable to eLoran
- RTCM Special Committee 127 (RTCM SC127) – Standards for Enhanced Loran (eLoran) Systems
- Southern hemisphere currently without eLoran infrastructure
- Opportunity to expand in
 - Africa
 - Australia
 - South America
e-Navigation

Problem
- Larger & faster ships with smaller crews
- Tighter schedules & crowded waterways

Solution – electronic navigation
- Electronic charts
- Positioning system inputs
- Display system

Special thanks to Dr. Sally Basker & Dr. Nick Ward, Trinity House, UK for photos & e-Navigation information
Today’s Ships & Waterways
IMO considers e-Navigation to be

“...the harmonised collection, integration, exchange, presentation and analysis of maritime information onboard and ashore by electronic means to enhance berth to berth navigation and related services, for safety and security at sea and protection of the marine environment”
Modern Ship’s Bridge

- Integrated electronics systems
- Tighter space & fewer crew
- Rely on systems, need
 - Standards
 - Reliable performance
 - Carefully designed redundancy
 - Seamless shift to backups

How different is this from aircraft flight deck?
e-Navigation Tools

- Electronic hydrographic charts
 - Provided by government authorities
 - Database of soundings, channels, buoys & other aids, obstructions & hazards, charted objects, etc.

- Positioning systems
 - At least 2, compatible & interoperable, but with dissimilar failure modes
e-Navigation Tools (cont.)

- Electronic Charting & Display Systems (ECDIS)
 - Uses chart database, positioning systems, other inputs to display own ship position, course, hazards, et al
 - Can be integrated with radar, automated information system (AIS), other sensors to display other vessels in area
Electronic Chart Display

Typically includes:
- Own ship position, course, speed, track line, etc.
- Other vessels in area & their similar info
- Hazards, buoys, other charted objects
- Positioning system(s) & other systems in use
- Warnings
- Other info useful to interpret situation
Positioning Systems

- Coastal & restricted waters (piloting)
 - **Visual** – landmarks, aids – soundings
 - **Electronic** – radar, GPS, DGPS, eLoran
 - **Dead reckoning**

- At sea – beyond line-of-sight navigation
 - **Celestial** (sun, stars, planets, moon)
 - **Electronic** – GPS, eLoran
 - **Dead reckoning**
Positioning Systems

- Coastal & restricted waters (piloting)
 - Visual – landmarks, aids – soundings
 - Electronic – radar, GPS, DGPS, eLoran
 - Dead reckoning

- At sea – beyond line-of-sight navigation
 - Celestial (sun, stars, planets, moon)
 - Electronic – GPS, eLoran
 - Dead reckoning
Conclusions

- Long history of maritime navigation
 - Today, however, increasingly automated & reliant on electronic systems

- Electronic positioning systems
 - GPS & DGPS, plus eLoran, radar
 - Supplemented with visual & DR

- e-Navigation concept
 - Electronic charts & integrated display, etc.
Information Sources

Recommended information sources

- **US Coast Guard Navigation Center**
 - www.navcen.uscg.gov

- **International Maritime Organization (IMO)**
 - www.imo.org

 - www.rtcmb.org

- **International Association of Lighthouse Authorities (IALA)**
 - www.iala-aism.org
Questions

Contact information

James T. Doherty
Institute for Defense Analyses (IDA)
4850 Mark Center Drive, Attn: STD
Alexandria, VA 22311
USA
+1 703-578-2710
jdoherty@ida.org

Opinions & information presented is that of author, not of IDA.