## Small animal dosimetry Dosimetric models vs. specific dosimetry



## General dosimetric formalism

$$D(r_T, T_D) = \sum_{r_S} \tilde{A}(r_S, T_D) S(r_T \leftarrow r_S)$$

Absorbed dose calculation is a 3 step process:

- Quantitative imaging
- Time-integrated activity determination
- S factor calculation

Each step matters for the final result...

## General dosimetric formalism

$$D(r_T, T_D) = \sum_{r_S} \tilde{A}(r_S, T_D) S(r_T \leftarrow r_S)$$

Absorbed dose calculation is a 3 step process:

- Quantitative imaging
- Time-integrated activity determination
- S factor calculation

Optimizing one step means trying to optimize the others...

# ≠ possibilities

| $\tilde{A}(r_S,T_D)$ | $S(r_T \leftarrow r_S)$ | $D(r_T,T_D)$         |
|----------------------|-------------------------|----------------------|
| Group                | model                   | model                |
| Specific             | Model<br>± adjusted     | Model<br>± realistic |
| Specific             | Specific                | Specific             |

And this is true for preclinical or clinical experiments For humans (patients) or (small) animals



Is dosimetry relevant for small animal experiments?

Testing a new radiopharmaceutical: Assessing the biodistribution Derive / extrapolate human biodistribution Dosimetry on human model

Animal dosimetry: to put in evidence/evaluate an effect Efficacy/Toxicity

# Specific vs. Model



## Specific vs. Model





#### Early attempts:

Hui TE, Fisher DR, Kuhn JA, et al. A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates. *Cancer. 1994;73(suppl): 951–957.* 

Yoriyaz H, Stabin M. Electron and photon transport in a model of a 30 g mouse [abstract]. J Nucl Med. 1997;38:228P.

Muthuswamy MS, Roberson PL, Buchsbaum DJ. A mouse bone marrow dosimetry model. J Nucl Med. 1998;39:1243–1247. STOMACH INTESTINE RIGHT RIGHT APPENDIX APPENDIX LARGE INTESTINE CARGE

Flynn AA, Green AJ, Pedley RB, Boxer GM, Boden R, Begent RH.

A mouse model for calculating the absorbed beta-particle dose from 131I- and 90Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res. 2001;156:28–35.



Kolbert et al. THE JOURNAL OF NUCLEAR MEDICINE • Vol. 44 • No. 5 • May 2003



« We conclude that the mass and the shape of organs and their locations relative to each other have considerable effects on mouse dosimetry »

Hindorf et al 2004, J Nucl Med



Konijnenberg 2004

## More recently: voxel-based models





Stabin 2006

Larsson 2007

Bitar 2007



# **Experimental set-up**



# Experimental set-up



# **Experimental set-up**







## Segmenting images



# Reducing the number of voxels



104x317 (5.5x10<sup>6</sup> voxels)

111x220x450 (11x10<sup>6</sup> voxels)

221x880x1800 (350x10<sup>6</sup> voxels)

| Or                            | gane                          | Symbole | Densité $(g.cm^{-3})$ | Masse $(g)$ |
|-------------------------------|-------------------------------|---------|-----------------------|-------------|
| Nom français                  | Nom anglais                   |         |                       |             |
| Vessie (contenu)              | Bladder (content)             | BdC     | 1.02                  | 0.0144      |
| Vessie (paroi)                | Bladder (Wall)                | BdW     | 1.04                  | 0.0102      |
| Vessie (contenue+paroi)       | Bladder (content+Wall)        | Bdr     | 1.02/1.04             | 0.0245      |
| Os patte gauche               | Bone limb Left                | BoL     | 1.85                  | 0.0726      |
| Os patte droit                | Bone limb Right               | BoR     | 1.85                  | 0.0695      |
| Cerveau                       | Brain                         | Brn     | 1.04                  | 0.5159      |
| Carcasse                      | Carcass                       | Car     | 1.04                  | 20.8605     |
| Côlon                         | Colon                         | Col     | 1.03                  | 1.2395      |
| Graisse                       | Fat                           | Fat     | 0.95                  | 1.8587      |
| Coeur                         | Heart (blood filled)          | Hrt     | 1.06                  | 0.2816      |
| Rein gauche (Cortex)          | Left Kidney (Cortex)          | KLC     | 1.05                  | 0.0834      |
| Rein gauche (Medulla)         | Left Kidney (Medulla)         | KLM     | 1.05                  | 0.0979      |
| Rein gauche (Cortex+Medulla)  | Left Kidney (Cortex+Medulla)  | KdL     | 1.05                  | 0.1813      |
| Rein droit (Cortex)           | Right Kidney (Cortex)         | KRC     | 1.05                  | 0.0845      |
| Rein droit (Medulla)          | Right Kidney (Medulla)        | KRM     | 1.05                  | 0.1110      |
| Rein droit (Cortex+Medulla)   | Right Kidney (Cortex+Medulla) | KdR     | 1.05                  | 0.1955      |
| Foie                          | Liver                         | Lvr     | 1.06                  | 1.8305      |
| Poumon gauche                 | Left Lung                     | LgL     | 0.26                  | 0.0409      |
| Poumon droit                  | Right Lung                    | LgR     | 0.26                  | 0.0819      |
| Poumons (gauche+droit)        | Lungs (Left+Right)            | Lgs     | 0.26                  | 0.1228      |
| Moelle osseuse (patte gauche) | Left limb Marrow              | MrL     | 1.03                  | 0.0166      |
| Moelle osseuse (patte droite) | Right limb Marrow             | MrR     | 1.03                  | 0.0168      |
| Ovaire gauche                 | Left Ovary                    | OvL     | 1.05                  | 0.0093      |
| Ovaire droit                  | Right Ovary                   | OvR     | 1.05                  | 0.0088      |
| Pancréas                      | Pancreas                      | Pnc     | 1.04                  | 0.0895      |
| Crâne                         | Skull                         | Skl     | 1.85                  | 0.2965      |
| Intestin grêle                | Small Intestine               | SIn     | 1.03                  | 1.6874      |
| Moelle spinale                | Spinal Cord                   | SpC     | 1.04                  | 0.1121      |
| Rate                          | Spleen                        | Spn     | 1.06                  | 0.2164      |
| Estomac (paroi)               | Stomach (Wall)                | StW     | 1.05                  | 0.1616      |
| Estomac (contenu)             | Stomach (Contents)            | SCo     | 1.05                  | 0.2761      |
| Estomac (paroi+contenu)       | Stomach (Wall+Contents)       | Stc     | 1.05                  | 0.4378      |
| Surrénal gauche               | Left Suprarenal               | SRL     | 1.04                  | 0.0056      |
| Surrénal droit                | Right Suprarenal              | SRR     | 1.04                  | 0.0050      |
| Thyroïde                      | Thyroid                       | Tyd     | 1.05                  | 0.0052      |
| Utérus                        | Uterus                        | Uts     | 1.05                  | 0.0455      |
| Vertèbres                     | Vertebrae                     | Vtb     | 1.85                  | 0.6020      |

## Result: mouse dataset







## Calculation step



MCNP Input file

|   |            |          |          |          | ·<br>1   |          |          |          |           | OS<br>ORY | >             |             |
|---|------------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|---------------|-------------|
|   |            |          |          |          |          |          |          |          |           |           |               |             |
| - | Organes    |          |          |          | 0        |          |          |          |           |           |               |             |
|   | cibles     | Vessie   | Cerveau  | Carcasse | Coeur    | Reins    | Eoie     | Bourno   | Denest    | 1         | Facteurs S er | n Gy/(Bq.s) |
|   | Vessie     | 1,26E-10 | 4,42E-15 | 2,15E-13 | 1,58E-14 | 7.04E-14 | 3.92E-14 | 1.64E-14 | - ancreas | Hate      | Estomac       | Os          |
|   | Cerveau    | 4,57E-15 | 5,81E-11 | 1,03E-13 | 3,40E-14 | 8,01E-15 | 1,37E-14 | 3,08E-14 | 6,32E-13  |           | 3,75E-14      | 4,58E-14    |
|   | Carcasse   | 2,17E-13 | 1,02E-13 | 1,49E-12 | 1,45E-13 | 1,66E-13 | 1,27E-13 | 2,82E-13 | 3,36E-13  | 2,28E-13  | 1,28E-13      | 3,35E-13    |
|   | Yeux       | 5,75E-15 | 3,45E-13 | 5,20E-13 | 2,15E-14 | 2,75E-15 | 1,13E-14 | 1,73E-14 | 1,18E-13  | 5,43E-15  | 5,60E-15      | 1,18E-13    |
|   | Cœur       | 1,56E-14 | 3,40E-14 | 1,46E-13 | 1,05E-10 | 3,17E-14 | 2,60E-13 | 4,54E-12 | 1,19E-13  | 4,27E-14  | 7,13E-14      | 1,19E-13    |
|   | Reins      | 6,97E-14 | 7,67E-15 | 1,65E-13 | 3,13E-14 | 4,76E-11 | 2,60E-13 | 3,98E-14 | 4,39E-14  | 4,28E-13  | 1,50E-13      | 4,39E-14    |
|   | Foie       | 3,97E-14 | 1,35E-14 | 1,28E-13 | 2,65E-13 | 2,64E-13 | 1,21E-11 | 9,96E-13 | 1,21E-13  | 1,77E-13  | 7,02E-13      | 1,21E-13    |
|   | Poumons    | 1,67E-14 | 3,16E-14 | 2,88E-13 | 4,57E-12 | 4,01E-14 | 1,01E-12 | 1,57E-10 | 1,60E-12  | 4,67E-14  | 8,27E-14      | 1,60E-12    |
|   | Pancréas   | 5,67E-14 | 7,78E-15 | 2,65E-13 | 3,95E-14 | 2,90E-12 | 4,09E-13 | 4,35E-14 | 3,56E-14  | 4,48E-12  | 1,07E-12      | 3,56E-14    |
|   | Rate       | 4,09E-14 | 8,71E-15 | 2,31E-13 | 4,15E-14 | 4,35E-13 | 1,76E-13 | 4,86E-14 | 6,24E-14  | 1,5/E-10  | 2,02E-12      | 5.04E-14    |
|   | Estomac    | 3,72E-14 | 1,10E-14 | 1,28E-13 | 7,16E-14 | 1,50E-13 | 7,01E-13 | 0,13E-14 | 5.18E-14  | 2,12E-14  | 1,94E-14      | 5,18E-14    |
|   | Testicules | 1,81E-13 | 3,18E-15 | 2,55E-13 | 8,29E-15 | 2,97E-14 | 1,18E-13 | 1.51E-12 | 9,89E-12  | 6,08E-14  | 5,17E-14      | 9,89E-12    |
|   | Os         | 4,75E-14 | 6,05E-13 | 3,22E-13 | 1,188-13 | 4,000-14 | 1,000.70 | .,       |           |           |               |             |

**S** factor tables

## Calculation step



A Bitar et al. PMB 2007

#### Application to preclinical experiments

Gestin et al. J. Nucl. Med. 42; 146-, 2001



# Adding a tumour



# Results







131

A Bitar et al. QJNM 2007

# Question:

- Does that make a "dosimetric model" ?
  - NO: from a single mouse
  - YES It can be used for experiments...
- What are the differences between ≠ models?
  - Comparison of published voxel models
  - A Bitar -> S Boutaleb

## Mouse models

|        | Fisher 2005Stabin 2005 | Image: Constraint of the second sec | Bitar 2007       |
|--------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Atlas  | Stabin et al 2006      | Segars 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bitar et al 2007 |
| Strain | "Transgenic"           | C57BL/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Swiss Nude       |
| Mass   | 27-g                   | 33-g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30-д             |

#### New model



http://neuroimage.usc.edu/Digimouse.html

D.Dogdas et al 2007 Phys. Med. Biol 28g male nude mouse, 12 principal organs

+ MCNP -> MCNPX

# Validation: MCNP vs. MCNPX

| Organes | Versions de  | Organes sources                      |                        |                               |  |  |
|---------|--------------|--------------------------------------|------------------------|-------------------------------|--|--|
| cibles  | MCNP         | S en (Gy/Bq.s) pour <sup>131</sup> I |                        |                               |  |  |
|         |              | Foie                                 | Reins                  | Poumons                       |  |  |
| Foie    | MCNP4c2      | 1,60 10 <sup>-11</sup>               | 3,40 10 <sup>-13</sup> | 1,56 10 <sup>-12</sup>        |  |  |
|         | MCNPX        | 1,60 10 <sup>-11</sup>               | 3,41 10 <sup>-13</sup> | 1,53 10 <sup>-12</sup>        |  |  |
|         | Difference % | -0,18                                | -0,07                  | 1,77                          |  |  |
|         |              |                                      |                        |                               |  |  |
| Reins   | MCNP4c2      | 3,41 10 <sup>-13</sup>               | 7,48 10 <sup>-11</sup> | 4,93 10 <sup>-14</sup>        |  |  |
|         | MCNPX        | 3,42 10 <sup>-13</sup>               | 7,51 10 <sup>-11</sup> | 4,95 10 <sup>-14</sup>        |  |  |
|         | Difference % | -0,34                                | -0,43                  | -0,50                         |  |  |
|         |              |                                      |                        |                               |  |  |
| Poumons | MCNP4c2      | 1,58 10 <sup>-12</sup>               | 4,96 10 <sup>-14</sup> | <b>1,58 10</b> <sup>-10</sup> |  |  |
|         | MCNPX        | 1,55 10 <sup>-12</sup>               | 5,05 10 <sup>-14</sup> | <b>1,59 10</b> <sup>-10</sup> |  |  |
|         | Difference % | 1,73                                 | -1,91                  | -0,93                         |  |  |

### Various dosimetric voxel models



# Comparison of 2 models

| Organes | Modèles         | Organes sources                    |                        |                        |  |
|---------|-----------------|------------------------------------|------------------------|------------------------|--|
| cibles  | masse originale | S en (Gy/Bq.s) pour <sup>131</sup> |                        |                        |  |
|         |                 | Foie                               | Reins                  | Poumons                |  |
| Foie    | Femelle 30 g    | 1,60 10 <sup>-11</sup>             | 3,41 10 <sup>-13</sup> | 1,53 10 <sup>-12</sup> |  |
|         | Mâle 28 g       | 1,21 10 <sup>-11</sup>             | 2,64 10 <sup>-13</sup> | 9,96 10 <sup>-13</sup> |  |
|         | Différence %    | 32,23                              | 29,17                  | 53,61                  |  |
| Reins   | Femelle 30 g    | 3,42 10 <sup>-13</sup>             | 7,51 10 <sup>-11</sup> | 4,95 10 <sup>-14</sup> |  |
|         | Mâle 28 g       | 2,60 10 <sup>-13</sup>             | 4,76 10 <sup>-11</sup> | 3,98 10 <sup>-14</sup> |  |
|         | Différence %    | 31,54                              | 57,77                  | 24,37                  |  |
| Poumons | Femelle 30 g    | 1,55 10 <sup>-12</sup>             | 5,05 10 <sup>-14</sup> | 1,59 10 <sup>-10</sup> |  |
|         | Mâle 28 g       | 1,01 10 <sup>-12</sup>             | 4,01 10 <sup>-14</sup> | 1,57 10 <sup>-10</sup> |  |
|         | Différence %    | 53,47                              | 25,94                  | 1,27                   |  |

# Scaling problem?

- 2 Nude mice
- 28 vs. 30g
  - But VERY different results ...



# Adjusting for total mass

| Masses des organes (g) pour les modèles à 27 g |             |                 |               |  |  |  |
|------------------------------------------------|-------------|-----------------|---------------|--|--|--|
| Organes                                        | mâle adapté | Femelle adaptée | Stabin et al. |  |  |  |
| Foie                                           | 2,373       | 1,596           | 0,780         |  |  |  |
| Estomac                                        | 0,264       | 0,382           | 0,298         |  |  |  |
| Reins                                          | 0,586       | 0,338           | 0,334         |  |  |  |
| Poumons                                        | 0,121       | 0,107           | 0,125         |  |  |  |
| Coeur                                          | 0,264       | 0,246           | 0,143         |  |  |  |
| Rate                                           | 0,164       | 0,189           | 0,022         |  |  |  |
| Testicules                                     | 0,176       | 1               | 0,141         |  |  |  |

Table 3. Adaptation à 27g (équivalent Stabin et al.), des modèles mâle et femelle

# Adjusting for total mass

| Masses des organes (g) pour les modèles à 33 g |             |                 |                |  |  |  |
|------------------------------------------------|-------------|-----------------|----------------|--|--|--|
| Organes                                        | mâle adapté | Femelle adaptée | Larsson et al. |  |  |  |
| Foie                                           | 2,901       | 1,951           | 2,69           |  |  |  |
| Estomac                                        | 0,323       | 0,466           | /              |  |  |  |
| Reins                                          | 0,717       | 0,413           | 0,415          |  |  |  |
| Poumons                                        | 0,148       | 0,131           | 0,13           |  |  |  |
| Coeur                                          | 0,323       | 0,300           | 0,12           |  |  |  |
| Rate                                           | 0,201       | 0,231           | 0,13           |  |  |  |
| Testicules                                     | 0,215       | /               | 0,4            |  |  |  |

Table 4. Adaptation à 33g (équivalent Larsson et al.), des modèles mâle et femelle

#### AFs for 100 keV photons emitted in liver



#### AFs for 100 keV photons emitted in liver



#### AFs for 1 MeV electrons emitted in lungs



#### AFs for 1 MeV electrons emitted in lungs



# Back to the concept of "model"

- The MIRD phantoms are far from realty
- They can be used as a reference
- They can be adjusted (mass ratio)
- There can be other models (voxel-based)



#### Standard S values Vs. Specific S values for iodine 131



Chiavassa et al. EANM 2005; Divoli et al. J Nucl Med 2009; 50:316–323

#### **Organ Mass Variation**



#### Self-irradiation



#### **Cross irradiation**



# Conclusion/human dosimetry

- Patients ≠ phantoms
- S factors are therefore ≠
- Self-irradiation S factors can be adjusted as long as THE MASS of the organ is known (CT)
- Cross irradiation usually is << self irradiation
- AS LONG AS MEAN DOSE IS OK, it should be possible to adjust S factors for clinical dosimetry

### Back to mice...

$$S(r_{S} \leftarrow r_{S})_{exp} = S(r_{S} \leftarrow r_{S})_{mod} \cdot \left(\frac{M_{mod}}{M_{exp}}\right)$$
 131

| Organes | Organes sources |                                    |                        |                          |  |  |  |
|---------|-----------------|------------------------------------|------------------------|--------------------------|--|--|--|
| cibles  |                 | S en (Gy/Bq.s) pour <sup>131</sup> |                        |                          |  |  |  |
|         |                 | Foie                               | Reins                  | Poumons                  |  |  |  |
| Foie    | 28 g            | 1,21 10-11                         | 2,64 10 <sup>-13</sup> | 9,96 10 <sup>-13</sup>   |  |  |  |
|         | Ref Bitar       | 1,15 10 <sup>-11</sup> *           | 3,41 10 <sup>-13</sup> | 1,53 10 <sup>-12</sup>   |  |  |  |
|         | Difference %    | 4,91                               | -22,58                 | -34,90                   |  |  |  |
|         |                 | -                                  |                        |                          |  |  |  |
| Reins   | 28 g            | 2,60 10 <sup>-13</sup>             | 4,76 10 <sup>-11</sup> | 3,98 10 <sup>-14</sup>   |  |  |  |
|         | Ref Bitar       | 3,42 10 <sup>-13</sup>             | 4,64 10-11 *           | 4,95 10 <sup>-14</sup>   |  |  |  |
|         | Difference %    | -23,98                             | 2,49                   | -19,60                   |  |  |  |
|         |                 |                                    |                        | ,                        |  |  |  |
| Poumons | 28 g            | 1,01 10 <sup>-12</sup>             | 4,01 10 <sup>-14</sup> | 1,57 10 <sup>-10</sup>   |  |  |  |
|         | Ref Bitar       | 1,55 10 <sup>-12</sup>             | 5,05 10 <sup>-14</sup> | 1,50 10 <sup>-10</sup> * |  |  |  |
|         | Difference %    | -34,84                             | -20,59                 | 5,86                     |  |  |  |

<u>Table 5</u>. Pondération par la masse des S pour <sup>131</sup>I

### Back to mice...

$$S(r_{S} \leftarrow r_{S})_{exp} = S(r_{S} \leftarrow r_{S})_{mod} \cdot \left(\frac{M_{mod}}{M_{exp}}\right)$$
 90 $\gamma$ 

| Organes |              | Organes sources                     |                          |                          |  |  |
|---------|--------------|-------------------------------------|--------------------------|--------------------------|--|--|
| cibles  |              | S en (Gy/Bq.s) pour <sup>90</sup> Y |                          |                          |  |  |
|         |              | Foie                                | Reins                    | Poumons                  |  |  |
| Foie    | 28 g         | 4,11 10 <sup>-11</sup>              | 3,92 10 <sup>-12</sup>   | 9,64 10 <sup>-12</sup>   |  |  |
|         | Ref mâle     | 3,73 10-11 *                        | 4,60 10 <sup>-12</sup>   | 1,36 10 <sup>-11</sup>   |  |  |
|         | Difference % | 10,25                               | -14,94                   | -29,13                   |  |  |
|         |              |                                     |                          |                          |  |  |
| Reins   | 28 g         | 3,94 10 <sup>-12</sup>              | 1,36 10 <sup>-10</sup>   | 7,98 10 <sup>-16</sup>   |  |  |
|         | Ref mâle     | 4,62 10 <sup>-12</sup>              | 1,95 10 <sup>-10</sup> * | 2,29 10 <sup>-14</sup>   |  |  |
|         | Difference % | -14,53                              | -30,35                   | -96,51                   |  |  |
|         |              |                                     |                          | -                        |  |  |
| Poumons | 28 g         | 9,82 10 <sup>-12</sup>              | 7,03 10 <sup>-16</sup>   | 2,00 10 <sup>-10</sup>   |  |  |
|         | Ref mâle     | 1,42 10 <sup>-11</sup>              | 4,96 10 <sup>-14</sup>   | 1,85 10 <sup>-10</sup> * |  |  |
|         | Difference % | -30,84                              | -98,58                   | 8,15                     |  |  |

<u>Table 6</u>. Pondération par la masse des S pour <sup>90</sup>Y

# Conclusion / mice dosimetry

- Different mice strain, age, sex, weight...
- Different S factors
- The mass adjustment does not work for high energy emitters such as <sup>90</sup>Y...



# Back to ≠ possibilities / Mice



# Back to ≠ possibilities



## Current experiments

- Batches of mice of the same strain, age, sex
- Can one mouse from the batch serve as a reference?
  - Yes: OK
  - No: ...
    - Mean  $\tilde{A}(r_S, T_D)$
    - Use a model to get  $S(r_T \leftarrow r_S)$
    - Problem for absorbed dose / effect relationship?
    - WHICH MODEL?

# Back to ≠ possibilities



## Future experiments

• Full "mouse-specific" dosimetry?



NanoSPECT/CT; Bioscan

Inveon Module TEP; Siemens

# "mouse-specific" dosimetry?

- Activity: now obtained from counting and averaging on several mice, at several time points
- Longitudinal studies:
  - One batch of mice is imaged several times to provide for "mouse-specific"  $\tilde{A}(r_s, T_D)$

- Calculation of specific 
$$S(r_T \leftarrow r_S)$$

»Mouse-specific 
$$D(r_T, T_D)$$

# Problems to solve

- Anaesthesia -> OK
- Image fusion?
  - How to match images acquired at ≠ time-points
  - Use CT but CT-induced irradiation?
  - Scale (mm) ≠ from clinical imaging
- Time for mouse segmentation, S factor calculation, etc...
- Work in progress...

# Work plan





Quantitative imaging vs. dissection

# Thank you 😳