Joint ICTP-IAEA Advanced School on Internal Dosimetry

12-16 april 2010

BASIC PLANAR DOSIMETRY

Carlo CHIESA PhD

Nuclear Medicine Division
Foundation IRCCS istituto Nazionale Tumori
Milan ITALY

Slide 1

Carlo.chiesa@istitutotumori.mi.it

Toxicity oriented vs efficacy oriented dosimetry

Toxicity oriented dosimetry

- The first organ which exhibits toxicity in activity escalation study is called the critical organ
- Red marrow is the critical organ in most treatments
- Administering the maximal activity under safety conditions for the critical organ is one possible planning stategy
- BUT maximizing the injected activity does not guarantee the therapeutic success

Efficacy oriented dosimetry

- Lesion destruction requires dose threshold overcoming
- Poor data about threshold values
- Necessity of imaging
- Lesion dosimetry alone is not safe

Ideally both approaches should be pursued

Pre/post treatment dosimetry

PRE-treatment

- Ideal treatment planning
- Mandatory in phaseI studies
- Possible mismatch between prevision & actual kinetics during therapy (data are lacking!)
- (Demanding for out patients)

POST-treatment

- No prevision
- Prevision in multiple administration therapies (not for tumor)
- Useful as a first historical step for data collection
- Exact kinetics during therapy
- Ethical when toxicity is known
- Dead time problems
- Easy for hospitalised patients

Activity Quantification

FIA(t)

Compartment Model

Residence Times $\tau = \int FIA(t) dt$

Target mass

MIRD S values (OLINDA)

 $D_t/A = \sum t_s S_{t \leftarrow s}$

Radiobiological parameters

Biological Effective Dose

Total Body dosimetry

Allows for TB quantification
Easiest to put in practice
For red marrow dose, additional blood sample are necessary

Planar imaging for dosimetry:

Allows for WB quantification
Easier to put in practice than SPET
Most often based on the conjugate views method

TB dosimetry: theory & methods

 $D_{TB} = \tilde{A}_{TB} S_{TB \leftarrow TB}$

very simple theory!

- Pre-treatment: spectroscopic probe, gammacamera WB counts
- Post-treatment: 10 mm Pb shielded spectroscopic probe with GBq of 131-I; low sensitivity Geiger
- Calibration:: 1st count without micturition after administration of known (measured) activity corresponds to FIA(0)=1
- Subsequent counts give activity proportional to cps
- Geometric mean of ANT/POST
- Fixed geometry (> 2 m distance) & background subtraction are mandatory
- Fixed biological conditions: count immediately after micturition (except 1st count)
- Choose proper count duration to get low statistical error (< 5%)

S_{TB←TB} values

Patient weight S values should be interpolated to provide patient specific values

TB dosimetry: Geiger counter fixed on ceiling

Easy to perform

Advantages: Imaging not necessary

Ward staff, carers can take measurements, without entering the shielded room

Courtesy of G. Flux - Royal Marsden Hospital - Sutton (UK)

TB counting: Geiger counter and ratemeter

Cost for high activity measurements - <€1000 (eg mini-instruments MC70 low sensitivity + scale ratemeter)

Courtesy of G. Flux - Royal Marsden Hospital - Sutton (UK)

TB dosimetry and urinary excretion

- If fecal excretion is negligible
- TB decay corrected activity and cumulative urinary decay corrected activity are complementary
- TB DC FIA(t) + URINE DC FIA(t) = 1
- The evaluation of urinary bladder residence time allows dosimetry to pelvic organ:
 - Urinary bladder wall
 - Uterus (fetus)
 - Ovaries
 - Lower large intestine

Gamma-camera is not meant to MEASURE activity

Calibration & Corrections are required MIRD 16: Siegel et al J Nucl Med 1999; 40:37S-61S

- 1. Photon attenuation in patient body
- 2. Background of overlapping structures
- 3. Scatter
- 4. Self absorption of source object
- 5. Partial volume effect for small objects
- 6. Dead time count losses (only after therapeutic activity)

Calibration of gammacamera

1.A Attenuation correction in a single view

$$I_A = I_0 \cdot e^{-\mu_e d}$$

$$A = I_0 \cdot \frac{1}{C}$$

$$A = I_A \cdot e^{\mu_e d} \cdot \frac{1}{C}$$

- Very critical dependence on d
- d is often unknown

1.B Attenuation correction in conjugate view technique

- Conjugate view technique was developed to remove the dependece on d
- G (geometrical mean) is independent on the depth of the source
- This is true is under ideal conditions (MIRD 16) of absence of scatter, conditions never met in reality

Conjugate view formula

$$I_A = I_0 e^{-\mu_e d}$$

$$I = I_0 e^{-\mu_e (T - d)}$$

$$I_0 = \sqrt{\frac{I_A I_P}{e^{-\mu_e T}}}$$

$$A = \sqrt{I_A I_P} \left(e^{\mu_e T/2} \right) \frac{1}{C}$$

Attenuation correction factor ACF

- This formula is valid for point sources
- It removes dependency on d
- Still requires μ_e , T, C

Slide 16

Attenuation correction in conjugate view Example with 131-I

We need the attenuation factor ACF

$$ACF(^{131}I) = I_0/I = exp(\mu(^{131}I) T/2)$$

- MIRD 16 asks a transmission with ¹³¹I, which is cumbersome
- A much more practical approach is to use a flood source (99mTc fillable source or even better, 57Co flood source)
- Perform a blank and a trasmission scan with 57Co

$$ACF(57Co) = I_0/I = exp(\mu(57Co) T/2)$$

Attenuation correction in conjugate view

57Co blank scan

57Co trasmission scan

Example of transmission scan

Slide 19

⁵⁷Co Attenuation correction in conjugate view

For Cobalt-57

Liver ACF = $\sqrt{7.1}$

Lung ACF = $\sqrt{3.3}$

57Co transmission scan

57Co blank scan

Example 131-I Liver attenuation correction in conjugate view

- ACF(57Co)= $\sqrt{7.1} = \exp(\mu(^{57}Co) T/2)$
- Known μ (⁵⁷Co) \rightarrow T
- Known $\mu(^{131}I) \rightarrow ACF(^{131}I)$
- The goal of the blank&trasm scan is to get the water equivalent patient thickness T averaged over the organ
- Equivalent relationship

```
ACF(^{131}I) = [ACF(^{57}Co)] \mu(^{131}I) / \mu(^{57}Co)
```

- μ(57Co) must be experimentally determined for each system
- μ (¹³¹I) must be experimentally determined for each system
- Two preliminary transmission calibration are necessary

Preliminary transmission calibration

- Cylindrical phantom positioned as a pot
- 57Co flood on the bottom head
- Add water at fixed step
- Draw ROI on the sequence of transmission images

Linear attenuation coefficients: never use tabulated data!

- Table values of $\mu(^{57}Co)$, $\mu(^{131}I)$, are always measured is good geometry conditions, i.e. narrow beam
- Gammacamera and extended organs give bad geometry, i.e. broad beam
- Build up effects (scatter) decrease the attenuation coefficient
- $\mu(^{57}Co)$, $\mu(^{131}I)$ must be measured for each equipment
- Additional problem: there is evidence of dependence upon shape and dimension of the used source
- This derives again from the presence of the SCATTER

2. Background of overlapping activity

- The second and potentially most serious drawback of quantification with planar images
- The amount of background activity is strongly dependent upon the kinetics of the radiopharmaceutical, and on the object/BKG ratio
- Worst case: antibodies (slowest kinetics)
- A ROI adjacent to the object gives the BKG counts
- Normalization for object and BKG ROI areas are necessary

ROI drawing method

- The method of ROI drawing, both on organs and their background, strongly affects the planar quantification
- Dependence upon operator is known
- In conjugate view technique, anterior and posterior ROIs should be identical and mirrored
- Background ROI should be a narrow C shaped border averaging background over the sources of high or low background

Practical scatter correction Dual Energy Window (DEW)

Counts in the triangular area are subtracted from the peak

•
$$I_{\text{sc corrected}} = I_{20\%} - k I_2$$

- K is usually ½ (rather arbitrary choice)
- Proper correction when there is nothing beyond the peak

Practical scatter correction Triple Energy Window (TEW)

- Counts in the trapezoidal area are subtracted from the peak
 - $I_{sc corrected} = I_{15\%} \frac{1}{2} Isc Wpeak/Wscatter$
- Isc is the sum of counts in the two lateral windows
- If the total scatter window amplitue Wscatter = 2 Wpeak
 - $I_{\text{sc corrected}} = I_{15\%} I_{\text{SC}}$
- Proper correction when there is something right of the peak

- Drawbacks: image noise amplification following images subtraction
- No problem in high statistics post therapy images
- Accurate scatter correction with multi peak emitters is more complicated

4. Self absorption.

$$A = \sqrt{I_A I_P} e^{\mu_e T/2} f \frac{1}{C}$$

- For larger sources:
- thickness t
- linear attenuation coefficient µ

$$f = \frac{(\mu t/2)}{\sinh(\mu t/2)}$$

And the effective linear attenuation coefficient μ_e is:

4. Self absorption important only for large objects

LUND DATA	μ (cm ⁻¹)
131 I	0.106
¹¹¹ In	0.11
^{99m} Tc	0.124

5. Partial volume effect

Max

Depends on:

Contrast
Object dimension
Spatial resolution
Structures <2-3 FWHM

Slide 35

5. Partial volume effect in planar

Reduced effect after scatter correction

6. Count losses caused by gammacamera dead time (DT) during therapy scans

Peri-therapy dosimetry in necessary as historical step: we must be sure to have identical diagnostic & therapy phase behaviors

131-I mIBG 6 h p.i. 8.9 GBq

1st DT naive correction method: standard source (point source)

- CF = N without DT / N with DT
- Quite simple method
- Inaccuracy: CF
 overestimates true counts of
 large objectes
- The error increases with activity
- Practical drawback: overlapping with patient's arm
- Problem of ROIs across 2 FOVs

A (MBq)	CF	$E\left(\%\right)$
37	1.00	0.00
190	1.04	0.74
373	1.11	2.18
557	1.17	3.39
750	1.26	6.77

2nd DT Correction method: modelling the count rate characteristic curve with phantom studies

Delpon G, Ferrer L, Lisbona A, Bardies M Phys Med Biol 47 (2002) N79-N90

- The goal is derive the true count rate from the observed count rate
- A preliminary calibration with high activity on phantom is necessary
- The characteristic curve depends upon the spectrum shape, i.e. on the scatter fraction, i.e. upon the geometry of the phantom vs patient
- The use of 2 energy window in demanding LIST mode gave the best results
- Not applicable beyond the peak
- Applicable only if WB step & shoot is available (GE gamma-cameras)

3rd: "Continuity" DT correction method: image manipulation to get continuos variations of counts

Chiesa C, Negri A, Albertini C et al Q J Nucl Med Mol Im (2009) vol 53 546-561

- Only image manipulation
- No need of high activity phantoms
- No need of list mode
- A sequential correction is applied to each FOV starting from feet, where no deadtime is present
- The ratio of counts the last rows of pixel in the n and n+1 FOV is taken as correction factor
- Applicable beyond the peak
- Applicable only if WB step & shoot is available (GE gamma-cameras)

RF Hobbs, S Baechler, S Senthamizhchlvan, AR Prideaux, CE Esaias, M Reinhardt, EC Frey, DM Loeb and G Sgouros

A gamma camera count rate saturation correction method for whole body planar imaging Phys Med Biol 55 (2010) 817-831

Applicable to WB continuos modality

Absolute gammacamera calibration MIRD 16 pseudoextrapolation number

- Different methods are proposed by MIRD 16
- Basically the main difference using a known source in air or water
- The latter approach (pseudoextrapolation number) is closer to the clinical condition

Absolute gammacamera calibration MIRD 16 pseudoextrapolation number Coniugate view formula resolved for C

$$C[T_n; \mu(^{131}I)] \exp(-\mu(^{131}I)/2 * T_n) = \sqrt{\frac{I_A(T_n) I_P(T_n)}{\Delta t}} \frac{f}{\Delta t} * 1/A$$

- Given A_0 (kBq), plot $\sqrt{I_A(Tn)I_P(Tn)}/\Delta t$
- $\Delta t = \text{static scan duration (min); } I_A(Tn)I_P(Tn) \text{ counts}$
- An exponential is obtained
- The value for T=0 is the extrapolated calibration factor in water, which includes the scatter contribution
- The value of $\mu(131I)$ is twice the exponent coefficient

Absolute gammacamera calibration

The sphere in air still is out of the curve:

TEW scatter correction cannot solve the scatter problem

Gammacamera relative calibration

- Some author obtain the calibration factor C as ratio between total cpm in the first scan (without micturition) and the known injected activity, without considering WB ACF
- WB ACF must be included, but.....
- This calibration factor depends on the biodistribution, through the attenuation
- Slow organ uptake (antibodies): arms & legs with low attenuation overestimate C to be applied to trunk
- Fast organ uptake (radiopeptides): dependence of C on the first scan time

Planar quantification: conclusions

- Main advantage: low cost (it's easy!)
- Corrections feasible by most centres
- Main limitations: overlapping activity

Slide 47

Manuel Bardies, Irène Buvat, INSERM, France

Thomas Carlier, CHU Nantes, France

Michael Ljungberg, Sven Erik Strand, Lund, Sweden

Slide 48