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Ionic projectiles



Ionic projectiles
electronic vs nuclear stopping

Stopping power: energy deposited per unit length (S=dE/dx)
– Nuclear: dominates at low energies
– Electronic:

Metals: for v→0, S ∼ v (e-h pairs). Decrease a large v (Bethe)
Insulators: Threshold due to band gap vth≈ 0.1−0.2 a.u. 
[First-principles on LiF:  M. Pruneda et al., Phys. Rev. Lett. 99, 235501 (2007)]

Schiefermuller et al., Phys. Rev. A 48, 4467 (1993)

Cabrera-Trujillo et al., Phys. Rev. Lett. 84, 5300 (2000)
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Ionic projectiles
Regions of interest for biomolecular systems

Water is an electronic insulator -- Eg (water) ∼ 10 eV.

– Threshold effects separate nuclear from electronic stopping. Low and high energy 
regimes can be treated separately

Low energy (v < 0.1 a.u., or 4 keV for C): adiabatic regime (GS electrons)
High energy (v > 0.1 a.u.): sudden regime (purely electronic dynamics)

Depending on the energy levels of the projectile:

– Electronic excitation, capture and ionization by low-energy ions is possible.

Intermediate energy: impact fragmentation coexists with electronic 
excitation. Combined electron-nuclear dynamics required.



Sudden regime
– Real-time electronic dynamics via TDDFT
– Adiabatic GGA (AGGA) approximation to time-dependent XC
– Fixed nuclei 
– Incident ion treated as a moving external potential
– Channeling to avoid direct impact

Time-dependent Kohn-Sham equations implemented in SIESTA 
[A. Tsolakidis, D. Sanchez-Portal and R. M. Martin, Phys. Rev. B 66, 235416 (2002)]

with Kohn-Sham orbitals expanded in atomic orbital basis

Computational methods
Real-time electronic dynamics
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Sudden regime
– Real-time electronic dynamics via TDDFT
– Adiabatic GGA (AGGA) approximation to time-dependent XC
– Classical MD for the nuclei
– Incident ion treated as another classical particle
– No channeling restrictions

Ehrenfest equations implemented into SIESTA 
[D. Sanchez-Portal, J. Kohanoff and E. Artacho (unpublished)]

Computational methods
Ehrenfest dynamics

t-Δ/2 t+Δ/2t t+Δ

r0=r1+ΔV-1/2 V1/2=V-1/2+ ΔF1/mV-1/2

δt

Leap-frog
Crank-Nic.
Projections



Electronic stopping in ice

H+ shooting through channels in hexagonal ice 
(24 and 40 water molecules – 3 and 5 units)



Non-adiabatic stopping
channeling of H+ through hexagonal ice

Energy transferred to electrons



Electronic stopping power
channeling of H+ through hexagonal ice

• Se through center of 
channel is about half 
that of LiF

• Channels in ice are 
more open  

• Se increases by a 
factor of 3 when proton 
travels closer to water 
molecules 



Electronic stopping power
channeling of H+ through hexagonal ice

Experiment: P. Bauer et al., NIMB 93, 132 (1994)
Peak at 90 keV/nucleon



Non-adiabatic stopping
Charge state of the proton

• At low speed the proton 
drags the electronic 
charge with it, forming 
H.

• At higher speed, 
electrons respond to the 
proton, but too late,  
creating a wake.

• Eventually, the 
electronic wake 
detaches and the proton 
travels as H+.



Electronic stopping in metals

SRIM stopping tables reproduced !



Nuclear materials: 
stopping of Fe in Fe

It is possible to compute Se for heavier projectiles

FM vs PM: influence of EDOS apart from ρ


