



2137-14

#### Joint ICTP-IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

12 - 23 April 2010

Elestronic stopping of ionic projectiles in ice and metals

J. Kohanoff The Queen's University of Belfast United Kingdom

# Elestronic stopping of ionic projectiles in ice and metals

### Jorge Kohanoff

Atomistic Simulation Centre Queen's University Belfast

Trieste, 13 April 2010

## **lonic projectiles**

### **lonic projectiles** electronic vs nuclear stopping

- Stopping power: energy deposited per unit length (S=dE/dx)
  - Nuclear: dominates at low energies
  - Electronic:
    - Metals: for  $v \rightarrow 0$ , S ~ v (e-h pairs). Decrease a large v (Bethe)
    - Insulators: Threshold due to band gap  $v_{th} \approx 0.1-0.2$  a.u.







Schiefermuller et al., Phys. Rev. A **48**, 4467 (1993) Cabrera-Trujillo et al., Phys. Rev. Lett. **84**, 5300 (2000)

### **lonic projectiles** Regions of interest for biomolecular systems

- Water is an electronic insulator --  $E_q$  (water) ~ 10 eV.
  - Threshold effects separate nuclear from electronic stopping. Low and high energy regimes can be treated separately
    - Low energy (v < 0.1 a.u., or 4 keV for C): <u>adiabatic regime</u> (GS electrons)
    - High energy (v > 0.1 a.u.): <u>sudden regime</u> (purely electronic dynamics)
- Depending on the energy levels of the projectile:
  - Electronic excitation, capture and ionization by low-energy ions is possible.
    - Intermediate energy: impact fragmentation coexists with electronic excitation. <u>Combined electron-nuclear dynamics required</u>.

### Computational methods Real-time electronic dynamics

- Sudden regime
  - Real-time electronic dynamics via TDDFT
  - Adiabatic GGA (AGGA) approximation to time-dependent XC
  - Fixed nuclei
  - Incident ion treated as a moving external potential
  - Channeling to avoid direct impact

### • Time-dependent Kohn-Sham equations implemented in SIESTA

[A. Tsolakidis, D. Sanchez-Portal and R. M. Martin, Phys. Rev. B 66, 235416 (2002)]

$$i\hbar \frac{\partial \Psi_i^{KS}}{\partial t} = H \Psi_i^{KS}$$

with Kohn-Sham orbitals expanded in atomic orbital basis

$$\Psi_i^{KS}(r,t) = \sum_{\mu} c_i^{\mu}(t) \phi_{\mu}(r)$$



### Computational methods Ehrenfest dynamics

#### <u>Sudden regime</u>

- Real-time electronic dynamics via TDDFT
- Adiabatic GGA (AGGA) approximation to time-dependent XC
- Classical MD for the nuclei
- Incident ion treated as another classical particle
- No channeling restrictions

#### Ehrenfest equations implemented into SIESTA

[D. Sanchez-Portal, J. Kohanoff and E. Artacho (unpublished)]

$$V_{-1/2} \qquad r_0 = r_1 + \Delta V_{-1/2} \qquad V_{1/2} = V_{-1/2} + \Delta F_1/m$$

$$t - \Delta/2 \qquad \delta t \qquad t \qquad t + \Delta/2 \qquad t + \Delta$$

Leap-frog Crank-Nic. Projections

## **Electronic stopping in ice**

H+ shooting through channels in hexagonal ice (24 and 40 water molecules – 3 and 5 units)



### **Non-adiabatic stopping** channeling of H<sup>+</sup> through hexagonal ice

#### Energy transferred to electrons





## Electronic stopping power channeling of H<sup>+</sup> through hexagonal ice



- S<sub>e</sub> through center of channel is about half that of LiF
- Channels in ice are more open
- S<sub>e</sub> increases by a factor of 3 when proton travels closer to water molecules

### Electronic stopping power channeling of H<sup>+</sup> through hexagonal ice





### Non-adiabatic stopping Charge state of the proton



- At low speed the proton drags the electronic charge with it, forming H.
- At higher speed, electrons respond to the proton, but too late, creating a wake.
- Eventually, the electronic wake detaches and the proton travels as H<sup>+</sup>.

## **Electronic stopping in metals**



## Nuclear materials: stopping of Fe in Fe

