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Chapter 1

The problem of the structure of
matter

The microscopic description of the physical and chemical properties of a material system is
a complex problem. In general, we have a collection of atoms interacting with forces that
derive from some potential field. This ensamble of particles may be isolated (molecules
and clusters), extended (solids, surfaces, wires, and liquids), or a combination of both
(molecules in solution). However, in all cases we can unambiguously describe the system
by a number of nuclei and electrons interacting through Coulombic (electrostatic) forces.
Formally, we can write the hamiltonian of such a system in the following general form:

Ĥ = −
P
∑

I=1

h̄2

2MI

∇2
I −

N
∑

i=1

h̄2

2m
∇2

i +
e2

2

P
∑

I=1

P
∑

J 6=I

ZIZJ

| RI − RJ | + (1.1)

+
e2

2

N
∑

i=1

N
∑

j 6=i

1

| ri − rj |
− e2

P
∑

I=1

N
∑

i=1

ZI

| RI − ri |
(1.2)

where R = {RI}, I = 1...P, is a set of P nuclear coordinates, and r = {ri}, i = 1...N,
is a set of N electronic coordinates. ZI and MI are the P nuclear charges and masses,
respectively. Electrons are fermions, so that the total electronic wave function must be
antisymmetric with respect to exchange of two electrons. Nuclei can be fermions, bosons
or distinguishable particles, according to the particular problem under examination. All
the ingredients are perfectly known and, in principle, all the properties can be derived by
solving the following Schrödinger equation:

Ĥ Ψi(r, R) = Ei Ψi(r, R) (1.3)

In practice, this problem is almost impossible to treat in a full quantum mechanical
framework. Only in a few cases a complete analytic solution is available, and numerical
solutions are also limited to a very small number of particles. There are several features
that contribute to this difficulty. First, this is a multicomponent many-body system, where
each component (each nuclear species and the electrons) obbey a particular statistics.
Moreover, the complete wave function cannot be easily factorized because of Coulombic
correlations. In other words, the full Schrödinger equation cannot be easily decoupled into

4



a set of equations so that, in general, we have to deal with (3P + 3N) coupled degrees
of freedom. The dynamics is an even more difficult problem, and very few and limited
numerical techniques have been devised to solve it. The usual choice is to resort to some
sensible approximations.

1.1 Adiabatic approximation (Born-Oppenheimer)

The first observation is that the time scale associated to the motion of the nuclei is
usually much slower than that associated to electrons. In fact, the small mass of the
electrons as compared to that of the protons (the most unfavoralbe case) is about 1 in
2000, meaning that their velocity is much larger. In this spirit, it was proposed in the early
times of quantum mechanics that the electrons can be adequately described as following
instantaneously the motion of the nuclei, staying always in the same stationary state of the
electronic hamiltonian [1]. This stationary state will vary in time because of the Coulombic
coupling of the two sets of degrees of freedom but, if the electrons were, e.g. in the (many
electron) ground state, they will remain there forever. In other words, as the nuclei follow
their dynamics, the electrons instantaneously adjust their wave function according to the
nuclear wave function. This approximation ignores the possibility of having non-radiative
transitions between different electronic eigenstates. Transitions can only arise through the
coupling with an electromagnetic field, and these will not be addressed in the following.

All this can be cast in a formal mathematical framework by proposing a solution to
Eq. (1.1) of the following form:

Ψ(R, r, t) =
∑

n

Θn(R, t)Φn(R, r) (1.4)

where Φn(R, r) are the eigenstates of the electronic hamiltonian

ĥe = T̂e + V̂ee + V̂ne = Ĥ − T̂n − V̂nn (1.5)

i.e.

ĥeΦn(R, r) = εn(R)Φn(R, r) . (1.6)

In this partial differential equation on the r variables, R enters as a parameter. This
expansion, which is always mathematically possible, is called the expansion in the adia-
batic basis, because Φn(R, r) are solutions of the time-independent electronic Schrödinger
equation, corresponding to a particular nuclear configuration. Eq. (1.6) has to be solved
for all nuclear configurations R where the nuclear wave function is non-zero.

By replacing the above ansatz into the full Schrödinger equation we obtain:

[

ih̄
∂

∂t
+

P
∑

I=1

h̄2

2MI

∇2
I − εq(R)

]

Θq(R, t) =
∑

n

P
∑

I=1

h̄2

2MI

〈

Φq

∣

∣

∣∇2
I

∣

∣

∣Φn

〉

Θn(R, t) +

+2
∑

n

P
∑

I=1

h̄2

2MI

~∇IΘn(R, t) ·
〈

Φq

∣

∣

∣

~∇I

∣

∣

∣Φn

〉

(1.7)
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which constitutes a set (infinite, in principle) of coupled partial differential equations
containing off-diagonal terms.

Therefore, the reduction of the full wave function to an expression of the type

Ψ(R, r, t) = Θn(R, t) Φn(R, r) (1.8)

is not completely correct because, even if the system was initially prepared in a pure
state like the above one, the off-diagonal terms will mix (excite) the different electronic
eigenstates along the temporal evolution. These are precisely the non-radiative transitions
alluded above. If this is the case, then the dynamics is said to be non-adiabatic. However,
if the off-diagonal terms can be neglected, then an expression like (1.8) is valid because the
nuclear dynamics has no means to cause electronic transitions, and the electrons remain
always in the same (n) adiabatic state (ground or excited). In this case, the dynamics is
said to be adiabatic.

When is it possible to neglect the non-adiabatic couplings ? The condition is that

∣

∣

∣

∣

∣

P
∑

I=1

h̄2

MI

〈

Θq

∣

∣

∣

~∇I

∣

∣

∣Θn

〉

·
〈

Φq

∣

∣

∣

~∇I

∣

∣

∣Φn

〉

∣

∣

∣

∣

∣

≪ |εq(R) − εn(R)| (1.9)

or, equivalentely,

m

M

∣

∣

∣

∣

∣

h̄ Ωv

εq(R) − εn(R)

∣

∣

∣

∣

∣

≪ 1 (1.10)

where Ωv is the maximum frequency of rotation of the electronic wave function due to
the nuclear motion, and the energies in the denominator correspond to the electronic
adiabatic eigenstates (the energy gap if q = 1 and n = 0). Notice that the mass ratio
m/M is always smaller than 5× 10−4, thus justifying the adiabatic approximation unless
a very small gap occurs [2]. Typical electronic excitations are of the order of 1 eV, while
typical nuclear excitations (phonons) are of the order of 0.01 eV. This indicates that there
is a clear separation of energy (and consequently time) scales.

There are situations in which this approximation is not adequate, but they are more
the exception than the rule. In metallic systems, for instance, it can be argued that
the adiabatic approximation breaks down because the energy gap is zero, and electronic
excitations of vanishing energy are possible. However, since typical temperatures (at most
a few thousand degrees) are usually much smaller than the electronic Fermi temperature,
then the width of the region where the electronic Fermi-Dirac distribution varies (i.e.
region associated with transport porperties) is very small. This means that the excitations
are confined to a narrow region around the Fermi surface, and that most properties are not
affected by neglecting non-adiabatic contributions due to these few electrons. The usual
treatment of transport phenomena in metals is to start from the adiabatic description, and
to introduce non-adiabatic terms (in the form of electron-phonon interactions) afterwards,
perturbatively. In terms of the ratio of energy scales, it can also be realized that the
relevant excitations in metals at small wave numbers are not electron-hole pairs which,
besides being very few, carry a small oscillator strength. The relevant energy scale is
dictated by the plasmon (collective charge excitation), which is again typically of the
order of a few eV.
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1.2 Classical nuclei approximation

Therefore, according to the adiabatic approximation, the total wave function can be
written in the form of expression (1.8), where Θn(R, t) is the nuclear wave function. At
room temperature the thermal wavelength is λT = (e2/kBT ) ≈ 0.1 Å, so that regions of
space separated by more than λT do not present quantum phase coherence. Interatomic
distances are normally of the order of 1 Å and, then, the total nuclear wave function can
be considered as an incoherent superposition of individual nuclear wave packets:

Θn(R, t) = ΠI Θ(I)
n (RI , R

(c)
I (t), t) (1.11)

where R
(c)
I (t) are the centers of the individual wave packets. The details of the decoherence

process, i.e. the quantum-to-classical transition, are a field on its own, and are still
matter of debate [3]. This approximation receives the name of time-dependent Hartree
approximation, and implies that there are no quantum correlations between the wave
functions of the different nuclei. Exchange effects are also absent in this expression,
although they could be recovered by proposing a total wave function in the form of
a Slater determinant (for odd-spin nuclei), thus leading to the so-called time-dependent
Hartree-Fock approximation. However, atomic nuclei exhibit exchange effects only at very
low temperatures, e.g. below 5 K in the case of H. On the other hand, nuclear masses
are typically large enough that the individual nuclear wave packets are quite localized,
provided that the curvature of the potential felt is sufficiently strong. For instance, a
proton in a typical molecular bonding environment has a width of about 0.25 Å. The
combination of these two observations allows us to propose that, in most cases, atomic
nuclei can be treated as classical particles.

The time-dependent (adiabatic) Schrödinger equation

ih̄
∂Θn(R, t)

∂t
=

(

−
P
∑

I=1

h̄2

2MI
∇2

I + εn(R)

)

Θn(R, t) (1.12)

implies, through Ehrenfest theorem, the following evolution equation for the mean values
of the position and momentum operators:

ih̄
d 〈R〉
dt

= 〈[H,R]〉 = ih̄
〈P 〉
M

=⇒M
d 〈R〉
dt

= 〈P 〉 (1.13)

ih̄
d 〈P 〉
dt

= 〈[H,P ]〉 = −ih̄ 〈∇εn(R)〉

which combined give rise to the following Newtonian equation of motion:

M
d2 〈R〉
dt2

= −〈∇εn(R)〉 (1.14)

In principle, this expression is valid only for the mean value of the position operator.
The classical nuclei approximation consists of identifying this mean value with the carte-
sian coordinates of the classical particle. This can be easily understood if the nuclear
wave function is represented as a product of Dirac’s delta functions whose centers are
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located at the classical positions. In that case, 〈R〉 = Rcl(t) and 〈∇εn(R)〉 = ∇εn(Rcl).
This latter is strictly valid only for δ-functions or for harmonic potentials. In the general
case, the leading error of this approximation is proportional to the anharmonicity of the
potential and to the spatial extension of the wave packet. The expression for the classical
equation of motion becomes, then:

M
d2Rcl(t)

dt2
= −∇εn(Rcl) (1.15)

where εn(Rcl) is the nth adiabatic potential energy surface (PES), and there is one equation
of motion for each different PES.

The final expression for the equation of motion is achieved by using Hellmann-Feynman
theorem [4]:

∂εn(λ)

∂λ
=

〈

Φn(R)

∣

∣

∣

∣

∣

∂ĥe(λ)

∂λ

∣

∣

∣

∣

∣

Φn(R)

〉

(1.16)

and therefore

MI
d2R

(n)
I (t)

dt2
= −

〈

Φn(R(n))

∣

∣

∣

∣

∣

∂ĥe(R
(n))

∂R
(n)
I

∣

∣

∣

∣

∣

Φn(R(n))

〉

− ∂Vnn(R(n))

∂R
(n)
I

(1.17)

where

ĥe(R, r) = −
N
∑

i=1

h̄2

2m
∇2

i +
e2

2

N
∑

i=1

N
∑

j 6=i

1

| ri − rj |
− e2

P
∑

I=1

N
∑

i=1

ZI

| RI − ri |
(1.18)

and

Vnn(R) =
e2

2

P
∑

I=1

P
∑

J 6=I

ZIZJ

| RI − RJ | . (1.19)

The numerical integration of the above Newtonian equation of motion receives the
name of first-principles Molecular Dynamics, and εn(R) is the first-principles potential.
The solution of the stationary problem, i.e. ∇εn(R) = 0 is also an important issue, usually
called geometry optimization. In either case, in order to obtain εn(R) and its gradient it
is necessary to solve the time-independent electronic Schrödinger equation (1.6). This is
a field on its own, and has traditionally received the name of electronic structure.
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Chapter 2

The electronic problem

This is, then, the key problem in the structure of matter: to solve the Schrödinger equa-
tion for a system of N interacting electrons in the external Coulombic field created by a
collection of atomic nuclei (and may be some other external field, e.g. electromagnetic).
This is a very difficult problem in many-body theory and, in fact, the exact solution is
known only in the case of the homogeneous electron gas, for atoms with a small number
of electrons, and for a few small molecules. These exact solutions are always numerical.
At the analytical level, one always has to resort to approximations. However, the effort
of devising schemes to solve this problem is really worth, because the knowledge of the
electronic ground state of a system gives access to many of its properties, e.g. relative
stability of different structures, equilibrium structural information, mechanical stability
and elastic properties, pressure-temperature (P-T) phase diagrams, dielectric properties,
lattice vibrations and spectral functions, (non-electronic) transport properties like dif-
fusivity, viscosity, ionic conductivity, etc. Excited electronic states give also access to
another wealth of measurable phenomena like electronic transport and optical properties.

2.1 The physical origin of many-body effects

As early as in 1903-1913, Gouy and Chapman considered the problem of the variation
in the electronic charge distribution at the electrodes of a battery, upon varying the
potential difference between the electrodes (see Fig. 2.1). This was one the first many-
body problems addressed in the literature. Two main concepts were identified in this
context. One is the screening length, which is a measure of the distance at which the
charge at the electrode, is counteracted – or screened – by charges of the opposite sign
in the electrolytic solution that are attracted towards the electrode. The second is the
plasma frequency, which measures the frequency of colective charge oscillations appearing
due to the restoring force generated by the displaced charge density. The theoretical
solution to this problem, which is essentially the electronic many-body problem, i.e. an
electron interacting with the electric field of other electrons, has been discussed by Debye
and Hückel in 1923.

Consider a system of interacting electrons and write Poisson’s equation for the poten-
tial generated by the charge at the origin plus the charge distribution n(r), in a uniform
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Figure 2.1: Schematics of an electrochemical cell.

positive background:

∇2vH(r) = −4π{−eδ(r) − en(r) + en} , (2.1)

where n is the average charge density.
Defining the electron-electron pair distribution (or correlation) function g(r) = n(r)/n,

it can be seen that g(r) represents the probability of finding an electron at r given that
there is an electron at the origin. Clearly, the presence of this electron discourages the
other electrons to approach the origin, because of the Coulomb repulsion. Typically,
the pair distribution function will interpolate from zero at the origin to 1 at infinity, as
schematically shown in Fig. 2.3. This is the physical meaning of what is usually called
correlation.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

g(
r)

r

Figure 2.2: Schematic pair correlation function.

In terms of g(r) Poisson’s equation (for the potential energy VH) reads:
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∇2VH(r) = −4πe2{δ(r) + n[g(r) − 1]} . (2.2)

The essence of the many-body problem consists of finding an appropriate expression
for the pair correlation function. Notice that this is a general physical concept, which
is not confined to quantum systems. For instance, in systems of classical charged par-
ticles (imagine classical macroions), the probability of finding two particles too close is
much smaller than if they are far away. The quantum character will introduce additional
elements into the pair distribution function.

Coming back to classical ions, g(r) can be calculated at different levels of approxima-
tion. The simplest possibility is to consider that the probability of finding an electron
at r given that there is another electron at the origin, is given by Boltzmann’s thermal
distribution

g(r) ≈ exp

(

−VH(r)

kBT

)

. (2.3)

This is the so-called Poisson-Boltzmann approximation, which is widely used for de-
scribing the electrostatics of classical fluids. Linearization of the above expression is
possible as long as the exponent is small, what is not valid at small r. However, at
reasonably large distances the linearized Poisson-Boltzmann equation reads:

∇2VH(r) = −4πe2δ(r) +

(

4πne2

kBT

)

VH(r) , (2.4)

whose analytic solution is a potential of the Yukawa form

VH(r) =
e2

r
exp(−r/lDH) , (2.5)

where lDH =
√

kBT/4πne2 is the Debye-Hückel screening length. This approximation is
sometimes also called Debye-Hückel, or linear screening.

The expression for the screening length arises as a consequence of Boltzmann’s ap-
proximation. Let us now assume that linearization is still possible, but that the pair
correlation function is not necessarily given by the above expression. In that case we
can use the equilibrium condition that the electrostatic potential is compensated by the
chemical potential, to obtain the following expression for the screening length:

ls =

√

(∂µ/∂n)T

4πe2
, (2.6)

which for an ideal Fermi gas (µ = EF = αn2/3) becomes lTF =
√

EF/6πne2, and receives
the name of Thomas-Fermi screening length. This is the ideal Fermi gas version of linear
screening, and it is a reasonably good approximation for describing simple metals.

However, linear screening is not all, and we would like to extend this theory to more
general situations. We consider then a system of interacting electrons that verify the
Schrödinger equation
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{

− h̄2

2m
∇2 + vext(r) + vH(r) + vscr(r)

}

ψk(r) = εk ψk(r) (2.7)

where vH is the Hartree potential satisfying Poisson’s equation (2.1), and vscr is a screening
potential which takes into account the fact that our test electron is just one more amongst
the other electrons instead of being an infinitesimal perturbation. In other words, what
happens is that the presence of this electron modifies (or displaces) the charge density in
a non trivial way. The screening potential is then due to the displaced electronic charge,
and this is intimately related to the pair correlation function.

By transforming the above into a scattering-like integral equation

ψk(r) = eik·r +
2m

h̄2

∫

[

− 1

4π

eik·(r−r′)

|r− r′|

]

vH(r′) ψk(r
′) dr′ , (2.8)

and constructing the charge density for the Fermi system as

n(r) =
∑

k≤kF

|ψk(r)|2 , (2.9)

where kF is the Fermi momentum, it is possible to find the expression for the displaced
charge density. It is interesting to remark that in the above integral equation the wave-
function appears in the integrand. This can be viewed in the following way: the test
electron (the impurity) is screened by the other electrons. This screening affects the scat-
tering between electrons and impurity, which in turn affects again the screening, and so
on until scattering and screening are consistent with each other in the sense that input
and output wavefunctions are the same. This property is called self-consistency. Solving
this self-consistent problem is the main goal of many-body theory, and is equivalent to
finding the pair correlation function g(r).

The solution of this problem is extremely difficult, as it involves the calculation of
an infinite series of corrections of higher and higher order to the scattering problem.
However, approximations are aboundant. For instance, by replacing the wave function in
the integrand with ψk(r

′) = exp(ik · r′) the displaced charge density becomes:

δn(r) = − mk2
F

2π3h̄2

∫

vH(r′)
j1(2kF |r − r′|)

|r − r′|2 dr′ , (2.10)

where j1(x) is the spherical Bessel function of order 1.
This equation can be solved in conjunction with Poisson’s equation by transforming

both to reciprocal space. The resulting Hartree potential can be written in the following
way: vH(k) = 4πe2/k2ε(k), where ε(k) is the dielectric function which relates the screened
and the bare potential (or the electric field and the polarization). This is called the
Random Phase Approximation (RPA), or sometimes also Lindhard approximation. The
corresponding dielectric function is:

εRPA(k) = 1 +
2mkFe

2

πh̄2k2

{

1 +
kF

k

(

k2

4k2
F

− 1

)

ln

∣

∣

∣

∣

∣

k − 2kF

k + 2kF

∣

∣

∣

∣

∣

}

. (2.11)
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There are two interesting limits of equation (2.11). One is for small values of k, where
εRPA(k) → 1+k2

F/k
2, and therefore vH , when transformed back to real space, corresponds

to the result of Thomas-Fermi or linear screening theory. The other is for k → 2kF , where
Lindhard’s function exhibits a logarithmic singularity. While the small k limit gives a
short-range contribution of the Yukawa type (exponentially decreasing), this singularity
gives rise to a long-range (large r) contribution of the type vH(r) → −2Ae2 cos(2kF r)/r

3.
This damped oscillatory behavior of spatial frequency 2kF receives the name of Friedel
oscillations, and is very important in metals.

In the above we have not taken into account the exchange interaction between elec-
trons. The particles were, however, treated as fermions for constructing the electronic
density. In addition, dynamical fluctuations were completely ignored, and we have treated
only the static limit. Lindhard’s theory can be extended to time-dependent phenomena in
a fairly simple way. Now the dielectric function will have in addition a frequency depen-
dency, and thus will provide information about electronic excitations. The main features
of εRPA(k, ω) are the existence of a continuum of single-particle excitations (electron-hole

pairs), and a collective excitation of frequency ω = ωp + αk2, where ωp =
√

4πe2n/m
is the plasma frequency mentioned at the beginning of this section. Therefore, plasma
oscillations are a dynamical many-body effect.

This is the very basic quantum many-body theory for electronic systems. In the
following we are going to discuss different approaches to the problem of many electrons
in the presence of an external electrostatic field. We first introduce quantum chemical
approaches like Hartree-Fock, and then focus on density functional theory, describing the
different approximations to exchange and correlation that have been proposed, including
some recent developments.

2.2 Quantum many-body theory: chemical ap-

proaches

The simplest approximation may be considered the one proposed by Hartree (as early as
in 1928, in the beginnings of the age of quantum mechanics) [5]. It consists of postulating
that the many-electron wave function can be written as a product of one-electron wave
functions. Each of these latter verifies a one-particle Schrödinger equation where the
potential is actually an effective potential that takes into account the interaction with the
other electrons in a mean field way:

Φ(R, r) = Πi ϕi(R, ri) (2.12)

(

− h̄2

2m
∇2 + V

(i)
eff(R, r)

)

ϕi(R, r) = ǫi ϕi(R, r) (2.13)

with

V
(i)
eff(R, r) = Vext(R, r) +

∫

∑N
j 6=i ρj(r

′)

|r − r′| dr′ (2.14)
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where

ρj(r) = |ϕj(R, r)|2 (2.15)

is the electronic density associated with particle j. The second term in the RHS of (2.14)
is the classical electrostatic potential generated by the charge distribution

∑N
j 6=i ρj(r).

Notice that this charge density does not include the charge associated with particle i, so
that the Hartree approximation is (correctly) self-interaction free. In this approximation,
the energy of the many-body system is not just the sum of the eigenvalues of Eq. (2.13)
because the formulation in terms of an effective potential makes the electron-electron
interaction to be counted twice. The correct expression for the energy is:

EH =
N
∑

n=1

ǫn − 1

2

∫ ∫

ρ(r) ρ(r′)

|r − r′| dr dr′ . (2.16)

The set of N coupled partial differential equations (2.13) can be solved by minimizing
the energy with respect to some variational parameters in a trial wave function or, alter-
natively, by re-calculating the electronic densities with the solutions of (2.13) as in (2.15),
casting them back into the expression for the effective potential (2.14), and solving again
the Schrödinger equation. This procedure is repeated several times, until self-consistency
in the input and output wave function (or potential) is achieved. This procedure is called
self-consistent Hartree (or self-consistent field, or simply SCF) approximation.

The Hartree approximation treats the electrons as distinguishable particles. A step
forward is to introduce Pauli exclusion principle (Fermi statistics for electrons) by propos-
ing a many-electron wave function in the form of a Slater determinant:

Φ(R, r) = SD {ϕj(R, ri)} =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1(R, r1) ϕ1(R, r2) · · · ϕ1(R, rN)
ϕ2(R, r1) ϕ2(R, r2) · · · ϕ2(R, rN)

...
...

. . .
...

ϕN(R, r1) ϕj(R, r2) · · · ϕN(R, rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.17)

This wave function introduces particle exchange in an exact manner [6, 7]. The ap-
proximation is called Hartree-Fock (HF), and has been for a long time the way of choice
of chemists for calculating the electronic structure of molecules. In fact, it provides a
very reasonable picture for atomic systems and, although many-body correlations (aris-
ing from the fact that, due to the two-body Coulomb interactions, the total wave function
cannot necessarily be separated as a sum of products of single-particle wave functions) are
completely absent, it also provides a reasonably good description of interatomic bonding.
Hartree-Fock equations look similar to Hartree equations — notice that also in HF the
self-interaction cancels exactly because ρj(r) = ϕ∗

j(r)ϕj(r) —, except for the fact that the
exchange integrals introduce additional coupling terms in the differential equations:

(

− h̄2

2m
∇2 + Vext(R, r) +

∫

∑N
j=1 ρj(r

′)

|r− r′| dr′
)

ϕi(R, r) −

−
N
∑

j=1

(

∫ ϕ∗
j (r

′)ϕi(r
′)

|r − r′| dr′
)

ϕj(R, r) =
N
∑

j=1

λij ϕj(R, r) (2.18)
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which is typically solved by a canonical transformation of the orbitals such that the matrix
of Lagrange multipliers λij becomes diagonal, i.e. HHF (R)ϕ̃i(R, r) = εiϕ̃i(R, r)

Nowadays, the HF approximation is routinely used as a starting point for more elab-
orated calculations like Møller-Plesset perturbation theory of second (MP2) or fourth
(MP4) order, or by configuration interaction methods (CI) that use a many-body wave
function made of a linear combination of Slater determinants, as a means for introducing
electronic correlations. Several CI schemes have been devised during the past 40 years,
and this is still an active area of research. Coupled clusters (CC) and complete active
space (CAS) methods are currently two of the most popular ones [8].

Parallel to the development of this line in electronic structure theory, Thomas and
Fermi proposed, at about the same time as Hartree (1927-1928), that the full electronic
density was the fundamental variable of the many-body problem, and derived a differ-
ential equation for the density without resorting to one-electron orbitals [9, 10]. The
Thomas-Fermi approximation was actually too crude because it did not include exchange
and correlation effects, and was also unable to sustain bound states because of the ap-
proximation used for the kinetic energy of the electrons. However, it set up the basis for
the later development of Density Functional Theory (DFT), which has been the way of
choice in electronic structure calculations in condensed matter physics during the past
20 years and, recently, it also became accepted by the quantum chemistry community
because of its computational advantages compared to wave function methods [11].

2.3 Density Functional Theory

The total energy of an inhomogeneous system composed by N interacting electrons is
given by the following expectation value:

E =
〈

Φ
∣

∣

∣T̂ + V̂ext + V̂ee

∣

∣

∣Φ
〉

=
〈

Φ
∣

∣

∣T̂
∣

∣

∣Φ
〉

+
〈

Φ
∣

∣

∣V̂ext

∣

∣

∣Φ
〉

+
〈

Φ
∣

∣

∣V̂ee

∣

∣

∣Φ
〉

where | Φ〉 is the N -electron wave function, which has neither the form given by the
Hartree approximation (2.12) nor the Hartree-Fock form (2.17). In fact, this wave function
has to include correlations amongst electrons, and its general form is basically unknown.
T̂ is the kinetic energy operator, V̂ext is the interaction with an external field, and V̂ee is
the electron-electron interaction. We are going to concentrate now on this latter, which
is the one that introduces many-body effects.

Vee =
〈

Φ
∣

∣

∣V̂ee

∣

∣

∣Φ
〉

=

〈

Φ

∣

∣

∣

∣

∣

∣

1

2

N
∑

i=1

N
∑

j 6=i

1

|ri − rj|

∣

∣

∣

∣

∣

∣

Φ

〉

=
∫ ρ2(r, r

′)

|r − r′| dr dr
′ (2.19)

with

ρ2(r, r
′) =

1

2

〈

Φ
∣

∣

∣Ψ†(r) Ψ†(r′) Ψ(r′) Ψ(r)
∣

∣

∣Φ
〉

(2.20)

the two-body density matrix expressed in real space, being Ψ and Ψ† the destruc-
tion and creation operators for electrons, which obbey the anticonmutation relations
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{

Ψ(r),Ψ†(r′)
}

= δ(r − r′) . We define now the two-body direct correlation function

g(r, r′) in the following way:

ρ2(r, r
′) =

1

2
ρ1(r, r) ρ1(r

′, r′) g(r, r′) (2.21)

where ρ1(r, r
′) =

〈

Φ
∣

∣

∣Ψ†(r) Ψ(r′)
∣

∣

∣Φ
〉

is the one-body density matrix (in real space), whose

diagonal elements ρ(r) = ρ1(r, r) are simply the electronic density. With this definition,
the electron-electron interaction is written:

Vee =
1

2

∫

ρ(r) ρ(r′)

|r − r′| dr dr′ +
1

2

∫

ρ(r) ρ(r′)

|r − r′| [g(r, r′) − 1] dr dr′ . (2.22)

The first term is the classical electrostatic interaction energy corresponding to a charge
distribution ρ(r) . The second term includes correlation effects of both, classical and
quantum origin. Basically, g(r, r′) takes into account the fact that the presence of an
electron at r excludes the possibility that a second electron comes to a position r′ very
close to r, because of the Coulomb repulsion. In other words, it says that the probability
of finding two electrons (two particles with charges of the same sign, in the general case)
is reduced with respect to the probability of finding them at infinite distance. This is
so already at the classical level, and it is further modified at the quantum level. Purely
quantum exchange further decreases this probability in the case of electrons having the
same spin projection.

To understand the effect of exchange, let us imagine that we stand on an electron with
spin ↑, and we look at the density of the other (N − 1) electrons. Pauli principle forbids
the presence of electrons with spin ↑ at the origin, but it says nothing about electrons
with spin ↓, which can be at the origin without any inconvenient. Therefore:

gX(r, r′) −→ 1

2
for r → r′ (2.23)

If we postulate a total wave function of the form of a Slater determinant, as in Hartree-
Fock theory (2.17), we can rewrite the electron-electron interaction as

Vee =
1

2

∫

ρ(r) ρ(r′)

|r − r′| dr dr′ − 1

2

∫

ρ(r) ρ(r′)

|r − r′|

[

− ρ2
1(r, r

′)

2ρ(r) ρ(r′)

]

dr dr′ (2.24)

meaning that the exact expression for the exchange depletion (also called exchange hole)
in the HF limit is:

gX(r, r′) = 1 − 1

2

ρ2
1(r, r

′)

ρ(r) ρ(r′)
(2.25)

The calculation of the correlation hole — gC(r, r′) — is a major problem in many-
body theory and, up to the present, it is an open problem in the general case of an
inhomogeneous electron gas. The exact solution is know numerically, and also in some
analytic derivations, for the homogeneous electron gas. There are several approximations
that go beyond the homogeneous limit by including slowly varying densities through its
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spatial gradients (gradient corrections), and recently also expressions for the exchange-
correlation energy that aim at taking into account very weak, nonlocal interactions of the
van der Waals type [12].

We can say, then, that the energy of a many-body electronic system can be written in
the following way:

E = T + Vext +
1

2

∫ ρ(r) ρ(r′)

|r − r′| dr dr′ + EX + EC (2.26)

where

Vext =
P
∑

I=1

〈

Φ

∣

∣

∣

∣

∣

N
∑

i=1

vext(ri −RI)

∣

∣

∣

∣

∣

Φ

〉

=
P
∑

I=1

∫

ρ(r) vext(r − RI) dr , (2.27)

T =

〈

Φ

∣

∣

∣

∣

∣

− h̄2

2m

N
∑

i=1

∇2
i

∣

∣

∣

∣

∣

Φ

〉

= − h̄2

2m

∫

[

∇2
r ρ1(r, r

′)
]

r′=r
dr . (2.28)

and EX and EC are the exchange and correlation energies, respectively.

2.3.1 Thomas-Fermi theory

Thomas and Fermi (1927) gave a prescription for constructing the total energy in terms
only of the electronic density [13]. They used locally the expression for the kinetic,
exchange and correlation energies of the homogeneous electron gas to construct the same
quantities for the inhomogeneous system in the following way Eα =

∫

εα[ρ(r)] dr, where
εα[ρ(r)] is the energy density (corresponding to the piece α), calculated locally for the
value of the density at that point in space. For the homogeneous electron gas we have

ρ =
1

3π2

(

2m

h̄2

)3/2

ǫ
3/2
F (2.29)

where ǫF is the Fermi energy, or the kinetic energy of the electron that occupies the
highest occupied eigenstate. The kinetic energy of the homogenous gas is T = 3/5 ρ ǫF ,
meaning that the kinetic energy density is:

t[ρ] =
3

5

h̄2

2m
(3π2)2/3ρ5/3 (2.30)

Then, the kinetic energy is written TTF = Ck

∫

ρ(r)5/3dr, with Ck = 3(3π2)2/3/10 =
2.871 atomic units. The inhomogeneous system is thought of as if it was locally homo-
geneous. This is the same approximation that has been used later in the framework of
modern DFT, with the name of local density approximation (LDA), but here applied to
the kinetic energy. Neglecting exchange and correlation in expression (2.26) we arrive to
Thomas-Fermi theory:

ETF [ρ] = Ck

∫

ρ(r)5/3dr +
∫

vext(r) ρ(r) dr +
1

2

∫ ∫

ρ(r) ρ(r′)

|r − r′| dr dr′ (2.31)
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It can be seen that ETF depends only on the electronic density. This equation has
to be solved by minimizing the energy functional with respect to ρ(r), subjected to the
constraint that the total integrated charge be equal to the number of electrons:

∫

ρ(r) dr =
N . This can be put in terms of functional derivatives:

δ

δρ(r)

(

ETF [ρ] − µ
∫

ρ(r) dr
)

= 0 (2.32)

or, equivalently,

µ =
5

3
Ck ρ(r)

2/3 + vext(r) +
∫

ρ(r′)

|r − r′| dr (2.33)

with µ the chemical potential. This equation can be inverted to obtain the density as a
unique function of the external potential. This integral form is somewhat inconvenient,
but it can be easily done by Fourier transforming the equation to obtain ρ(g).

Exchange can be easily added to the expression above by considering Slater’s expres-
sion for the homogeneous electron gas: εX [ρ] = −CX ρ4/3dr, with CX = 3(3/π)1/3/4, such
that (2.33) is modified by adding the term −(4/3)CX ρ(r)

1/3. This level of approximation
is called Thomas-Fermi-Dirac theory.

Correlation can also be easily added by using any approximation to the homogeneous
electron gas, for instance the one proposed by Wigner: εC [ρ] = −0.056 ρ4/3/[0.079+ρ1/3].

This is the best that can be done at the local level. Additional corrections to the
kinetic, exchange, and correlation energies due to nonlocality have been postulated in the
form of gradient corrections, e.g. as given by the von Weiszäcker functional [14]:

TvW =
1

8

∫ |∇ρ|2
ρ

dr . (2.34)

Also terms that correct the linear response properties of the functional have been
proposed [15, 16], and even the second order response functions have been incorporated
to this approach [17]. This has been developed in the optics that an ultimate explicit
expression for the energy in terms of the electronic density does really exist. But ... what
guarantees us that the energy can be written as a functional purely dependent on the
density ?

2.3.2 Hohenberg-Kohn theorem

In 1964, P. Hohenberg and W. Kohn [18] formulated and proved a theorem which put on
a solid mathematical basis the former ideas, which were first proposed by Thomas and
Fermi. The theorem is divided into two parts:

Theorem: The external potential is univocally determined by the electronic density,
except for a trivial additive constant.

Proof : Let Ĥ = T̂ + Û + V̂ , and E0 =
〈

Ψ
∣

∣

∣Ĥ
∣

∣

∣Ψ
〉

the minimum possible energy for this

hamiltonian. Due to the variational principle, for any Ψ′ 6= Ψ :
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E0 <
〈

Ψ′
∣

∣

∣Ĥ
∣

∣

∣Ψ′
〉

=
〈

Ψ′
∣

∣

∣Ĥ ′
∣

∣

∣Ψ′
〉

+
〈

Ψ′
∣

∣

∣Ĥ −H ′
∣

∣

∣Ψ′
〉

= E ′
0 +

∫

ρ(r) (v(r) − v′(r)) dr ,

where T̂ + Û depends only on the electronic subsystem, and is the same for both H and
H ′. Now we can simply reverse the situation of Ψ and Ψ′ (H and H ′), and we readily
obtain:

E ′
0 <

〈

Ψ
∣

∣

∣Ĥ ′
∣

∣

∣Ψ
〉

=
〈

Ψ
∣

∣

∣Ĥ
∣

∣

∣Ψ
〉

+
〈

Ψ
∣

∣

∣Ĥ ′ −H
∣

∣

∣Ψ
〉

= E0 −
∫

ρ(r) (v(r) − v′(r)) dr .

Therefore: E0 < E′
0 + A and, simultaneously, E ′

0 < E0 − A. Adding these two
inequalities, it turns out that E0 + E ′

0 < E′
0 + E0, which is absurd.

=⇒ There are no v(r) 6= v′(r) that correspond to the same electronic density for the
ground state.

Corollary: Since ρ(r) univocally determines v(r), then it also determines the ground
state wave function ΨGS.

Theorem: Let ρ̃(r) be a non-negative density normalized to N . Then: E0 < Ev[ρ̃], for

Ev[ρ] = T [ρ] + U [ρ] +
∫

ρ(r) v(r) dr

with

U [ρ] =
1

2

∫ ∫

ρ(r) ρ(r′)

|r − r′| dr dr′ + EX [ρ] + EC [ρ]

Proof : Let Ψ̃ be the wave function corresponding to ρ̃. Then,

〈

Ψ̃
∣

∣

∣Ĥ
∣

∣

∣ Ψ̃
〉

= T [ρ̃] + U [ρ̃] +
∫

ρ̃(r) v(r) dr = Ev[ρ̃] ≥ Ev[ρ] = E0 =
〈

Ψ
∣

∣

∣Ĥ
∣

∣

∣Ψ
〉

.

The inequality follows from Rayleigh-Ritz’s variational principle for the wave function,
but applied to the electronic density.

Therefore, the variational principle says

δ
{

Ev[ρ] − µ
(∫

ρ(r) dr −N
)}

= 0

so that a general Thomas-Fermi-like equation is obtained:

µ =
δEv[ρ]

δρ
= v(r) +

δF [ρ]

δρ

where F [ρ] = T [ρ] +U [ρ]. The knowledge of F [ρ] implies the solution of the ground state
density. It has to be remarked that F [ρ] is a universal functional which does not depend
explicitly on the external potential. It depends only on the electronic density. In the
Hohenberg-Kohn formulation, F [ρ] =

〈

Ψ
∣

∣

∣T̂ + Û
∣

∣

∣Ψ
〉

, where Ψ is the ground state wave
function. This two theorems are the basis of density functional theory.

19



In Hohenberg-Kohn theorem, the electronic density determines the external potential.
But ... it is also needed that the density corresponded to some antisymmetric wave
function deriving from a potential, and this is not always the case. However, density
functional theory can be reformulated in such a way that this is not necessary [19]. We
define

F [ρ] = min
{Ψ}→ρ

{〈

Ψ
∣

∣

∣T̂ + Û
∣

∣

∣Ψ
〉}

for non-negative ρ such that
∫

ρ(r) dr = N and
∫

∣

∣

∣∇ρ1/2(r)
∣

∣

∣

2
dr < ∞, arising from an

antisymmetric wave function. In other words, the search is performed in the subspace of
all the antisymmetric Ψ that give rise to the same density ρ.

DFT is exact for the electronic ground state provided that F [ρ] is known. However,
it does not say anything about (many-body) excited states. A similar theory can be
formulated for excitations of symmetry different to that of the ground state, by resorting
to an orthogonal subspace variational principle [20], but in general this is a very hard
problem that only now is beggining to be approached with some degree of success [21].

2.3.3 Kohn-Sham equations

We have already briefly discussed about the electron-electron interaction potential U ,
and we have seen that we can have a reasonably good description by separating the
electrostatic (classical Coulomb energy), exchange and correlation contributions. The
biggest difficulty is to deal with the correlation. This is, in fact, an active field of research
which has produced significant improvements in the past decade. We shall discuss this
later on but, for the moment being, let us mention that this issue is quite under control
for most systems of interest. On the contrary, there is a problem with the expression of
the kinetic energy

〈

Ψ
∣

∣

∣T̂
∣

∣

∣Ψ
〉

in terms of the electronic density. The only expression we
have seen up to now is the one proposed by Thomas and Fermi, which is local in the
density. This is a severe shortcoming because this model does not hold bound states, and
also the electronic shell structure is absent. The main problem with it is that the kinetic
operator is inherently non-local, though short-ranged.

In 1965, W. Kohn and L. Sham [22] proposed the idea of replacing the kinetic energy
of the interacting electrons with that of an equivalent non-interacting system, because
this latter can be easily calculated. Any density ρ(r) that derives from an antisymmetric
wave function can be written:

ρ(r) =
∞
∑

i=1

2
∑

s=1

ni,s |ϕi,s(r)|2 (2.35)

where {ϕi,s(r)} are natural spin orbitals, and {ni,s} are the occupation numbers of these
orbitals. In that case, the kinetic energy can be written as

T =
2
∑

s=1

∞
∑

i=1

ni,s

〈

ϕi,s

∣

∣

∣

∣

∣

−∇2

2

∣

∣

∣

∣

∣

ϕi,s

〉

. (2.36)

These occupation numbers are actually an artifact arising from the fact that we write
the density in terms of a set of single-particle orbitals associated with non-interacting
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fermions. The interacting many-body wave function has to be identified with an occu-
pation N , and not with a set of occupation numbers. However, bearing in mind this
conceptual difference, we can always think of ni,s as the occupation of orbital i and spin
s. For the moment being we shall suppose that the equivalent non-interacting system, i.e.
a system of non-interacting fermions whose density coincides with that of the interacting
system, does exist. We shall call this the non-interacting reference system of density ρ(r),
which is described by the hamiltonian

ĤR =
Ns
∑

i=1

2
∑

s=1

(

−∇2
i

2
+ vR(r)

)

(2.37)

This hamiltonian has no electron-electron interactions and, thus, its eigenstates can be
expressed in the form of Slater determinants

Ψs(r) =
1√
N !
SD [ϕ1,s(r1) ϕ2,s(r2) · · · ϕNs,s(rNs)]

where we have choosen, at T = 0, the occupation numbers to be 1 for i ≤ Ns(s = 1, 2),
and 0 for i > Ns(s = 1, 2). This means that the density is written as

ρ(r) =
Ns
∑

i=1

2
∑

s=1

|ϕi,s(r)|2 (2.38)

while the kinetic term is

TR[ρ] =
2
∑

s=1

Ns
∑

i=1

〈

ϕi,s

∣

∣

∣

∣

∣

−∇2

2

∣

∣

∣

∣

∣

ϕi,s

〉

. (2.39)

The single-particle orbitals {ϕi,s(r)} are the Ns lowest eigenfunctions of ĥR = −∇2

2
+vR(r),

i.e. ĥR ϕi,s(r) = εi,sϕi,s(r).
With this definition, we can rewrite the density functional in the following form:

EKS[ρ] = TR[ρ] +
∫

ρ(r) v(r) dr+
1

2

∫ ∫

ρ(r) ρ(r′)

|r − r′| dr dr′ + EX [ρ] + ẼC [ρ] (2.40)

where the fact that TR[ρ] is the kinetic energy of the non-interacting reference system
implies that the correlation piece of the true kinetic energy has been ignored, and has to
be taken into account somewhere else. In practice this is done by redefining the correlation
energy functional in such a way as to include kinetic correlations.

In this way we have expressed the density functional in terms of N = N↑ + N↓ or-
bitals. If we now vary these orbitals over the space of functions in 3-dimensions that give
reasonable densities (density and gradient of integrable square), we are sure that we are
covering also the densities which are in the domain of definition of E[ρ]. In other words,
we have parametrized the electronic density with a set of N orbitals, and now we will try
to minimize the energy functional by applying the variational principle on the orbitals
instead of the density. In principle these orbitals are a mathematical object constructed
in order to render the problem more tractable, and do not have a sense by themselves,
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but only in terms of the density. In practice, however, it is customary to think them as
single-particle physical eigenstates, but in general they are not. Only in the case that
correlations are weak, this can have a real sense.

Now we have to minimize expression (2.40) with respect to {ϕi,s(r)}, but taking into
account that the orbitals have to be orthogonal, i.e.

∫

ϕ∗
i,s(r)ϕj,u(r) dr = δijδsu, because

they are the N lowest eigenfunctions of a unique potential. This constraints enter into
the minimization problem as Lagrange multipliers:

ΩKS [{ϕi,s(r)}] = EKS [{ϕi,s(r)}] −
2
∑

s=1

Ns
∑

i=1

Ns
∑

j=1

εij,s

∫

ϕ∗
i,s(r)ϕj,s(r) dr (2.41)

Minimizing this functional with respect to each ϕi,s(r) gives the following set of coupled
differential equations:

δΩKS [{ϕi,s(r)}]
δϕ∗

i,s(r)
=

{

−∇2

2
+ v(r) +

∫

ρ(r′)

|r − r′| dr
′ +

δEXC [ρ]

δρ

}

ϕi,s(r)−
Ns
∑

j=1

εij,sϕj,s(r) = 0

(2.42)
The effective potential (see below) is hermitian and, therefore, the matrix εij,s is sym-

metric and can be diagonalized by a unitary transformation that keeps invariant the total
wave function (the Slater determinant), and thus the density. Such a procedure brings us
to the final result, which are the well-known, self-consistent Kohn-Sham equations:

{

−∇2

2
+ veff (r)

}

ϕi,s(r) = εi,sϕi,s(r) (2.43)

where the effective potential veff (r) is defined as:

veff(r) = v(r) +
∫

ρ(r′)

|r − r′| dr
′ + µXC [ρ] (2.44)

and the electronic density is constructed with the solutions of Kohn-Sham equations

ρ(r) =
Ns
∑

i=1

2
∑

s=1

|ϕi,s(r)|2 (2.45)

The exchange correlation potential µXC [ρ] defined above is simply the functional derivative
of the exchange-correlation energy δEXC [ρ]/δρ.

The solution of Kohn-Sham equations has to be obtained by an iterative procedure,
in the same way as we have seen for Hartree and Hartree-Fock equations. As in these
methods, the total energy cannot be written simply as the sum of the eigenvalues εi,s, but
double counting terms have to be substracted:

EKS[ρ] =
Ns
∑

i=1

2
∑

s=1

εi,s −
1

2

∫ ∫ ρ(r) ρ(r′)

|r − r′| dr dr′ +
{

EXC [ρ] −
∫

ρ(r) µXC [ρ] dr
}

(2.46)
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Interpretation

By introducing the non-interacting reference system we were able to take into account
the most important part of the kinetic energy. The missing part (correlations) is due
to the fact that the full many-body wave function is not a single Slater determinant
(otherwise Hartree-Fock theory would be exact). If we think of a true non-interacting
system, then DFT is exact while Thomas-Fermi theory is quite a poor approximation,
which is reasonably good only when the electronic density is very smooth, like in alkali
metals.

The price we have to pay for having a good description of the kinetic energy is that,
instead of solving a single equation for the density in terms of the potential, we have to
solve a system of N Euler equations. It can be easily seen that Kohn-Sham equations
are very similar to Hartree equations, with the difference that the effective potential
includes exchange and correlation, which are absent in Hartree theory. Therefore, the
computational cost is of the same order of Hartree, but much less than Hartree-Fock
which includes the exact non-local exchange. Now let us make some observations:

• The true wave function is not the Slater determinant of Kohn-Sham orbitals, al-
though it is determined by the density.

• The correlation functional has to be modified to account for the missing part in the
kinetic energy TR[ρ], which corresponds to a non-interacting system. The exchange
functional remains unchanged.

• Nothing ensures that the non-interacting reference system will always exist. In fact,
there are examples like the carbon dimer C2, which do not satisfy this requirement.
However, this is not an unsurmountable shortcoming. In that case we can always
consider a linear combination of Slater determinants that include single-particle
eigenstates ϕi,s(r) with i > Ns. This is equivalent to extend the domain of definition
of the occupation numbers ni,s from the integer values 0 and 1, to a continuum
between 0 and 1. In such a way we are including excited single-particle states in the
density. At this point, minimization of the energy functional has to be carried out
not only with respect to Kohn-Sham orbitals, but also with respect to the occupation
numbers [23]. The introduction of excited single-particle states does not mean that
the system is in a true excited state. This is only an artifact of the representation.
The true wave function is the correlated ground state.

• Janak’s theorem is valid [24]. The ionization energy is given by: I = −µ = −εmax (if
the effective potential vanishes at long distances), while the eigenvalues are defined
as the derivatives of the total energy with respect to the occupation numbers: εi,s =
∂E/∂ni,s.

• In DFT there is no Koopman’s theorem which would allow us to calculate excitation
energies as the difference between the ground state energy of an (N + 1)-electron
system and that of an N -electron system. Excitations in DFT are still an open issue
because DFT is a ground state theory, not valid for excited states. Nevertheless,
it has been possible to devise some extensions which made possible to deal with
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excited states within a DFT-like framework, in addition to the traditional many-
body scenarios.

Summary

We have described a theory that is able to solve the complicated many-body electronic
ground state problem by mapping the many-body Schrödinger equation into a set of N
coupled single-particle equations. Therefore, given an external potential, we are in a
position to find the electronic density, the energy, and any ground state property we want
to (e.g. stress, phonons, etc.). The density of the non-interacting reference system is
equal to that of the true interacting system. Up to now the theory is exact. We have not
introduced any approximation into the electronic problem. All our ignorance about the
many-fermion problem has been displaced to the ẼC [ρ] term, while the remaining terms
in the energy are well-known.

In the next section we are going to discuss the exchange and correlation functionals.
But now, we would like to know how far is TR[ρ] from T [ρ]. Both are the expectation
values of the kinetic operator, but in different states. The non-interacting one corresponds
to the expectation value in the ground state of the kinetic operator, while the interacting
one corresponds to the ground state of the full hamiltonian. This mean that TR[ρ] ≤ T [ρ],
implying that ẼC [ρ] contains a positive contribution arising from the kinetic correlations.

2.4 Exchange and correlation

We have displaced the ignorance about the quantum many-body problem towards the
exchange and correlation functional EXC [ρ]. If we knew the exact expression for the
kinetic energy including correlation effects, i.e. T [ρ], then

EXC [ρ] =
1

2

∫ ∫

ρ(r)ρ(r′)

|r − r′| [g(r, r′) − 1] dr dr′ (2.47)

Since we are using the uncorrelated expression for the kinetic energy, i.e. the one for
non-interacting fermions TR[ρ], we have to use a slightly different expression: ẼXC [ρ] =
EXC [ρ] + T [ρ] − TR[ρ]. It can be shown that the kinetic contribution to the correlation
energy (the kinetic contribution to exchange is just Pauli’s principle, which is already
contained in TR[ρ] and in the density when adding up the contributions of the N lowest
eigenstates) can be taken into account by averaging the pair correlation function g(r, r′)
over the strength of the electron-electron interaction, i.e.

ẼXC [ρ] =
1

2

∫ ∫

ρ(r)ρ(r′)

|r − r′| [g̃(r, r′) − 1] dr dr′ (2.48)

where

g̃(r, r′) =
∫ 1

0
gλ(r, r

′) dλ (2.49)

and gλ(r, r
′) is the pair correlation function corresponding to the hamiltonian Ĥ = T̂ +

Û + λV̂ee [25]. If we separate the exchange and correlation contributions, then we have:
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g̃(r, r′) = 1 − 1

2

ρ2
1(r, r

′)

ρ(r)ρ(r′)
+ g̃C(r, r′) (2.50)

with ρ1(r, r
′) the one-body density matrix, which in general is a non-diagonal operator.

The diagonal elements of it constitute the electronic density. For the homogeneous elec-
tron gas the expression for ρ1 is well-known, so that the exchange pair correlation assumes
the analytic closed form

gX(r, r′) = gX(|r − r′|) = 1 − 9

2

(

j1(kF |r − r′|)
kF |r − r′|

)2

(2.51)

where j1(x) = [sin(x) − x cos(x)]/x2 is the spherical Bessel function of order 1. We are
now going to define the exchange-correlation hole ρ̃XC(r, r′) in the following form:

ẼXC [ρ] =
1

2

∫ ∫

ρ(r)ρ̃XC(r, r′)

|r − r′| dr dr′ (2.52)

or ρ̃XC(r, r′) = ρ(r′) [g̃(r, r′)−1] . This means that ẼXC [ρ] can be written as the interaction
between the electronic charge distribution and the charge distribution that has been
displaced by exchange and correlation effects, i.e. by the fact that the presence of an
electron at r reduces the probability for a second electron to be at r′, in the vicinity of
r. Actually, ρ̃XC(r, r′) is the exchange-correlation hole averaged over the strength of the
interaction, which takes into account kinetic correlations. The properties of g̃(r, r′) and
ρ̃XC(r, r′) are very interesting and instructive:

1. g̃(r, r′) = g̃(r′, r) (symmetry)

2.
∫

g̃(r, r′) ρ(r′) dr′ =
∫

g̃(r, r′) ρ(r) dr = N − 1 (normalization)

3.
∫

ρ̃XC(r, r′) dr′ =
∫

ρ̃XC(r, r′) dr = −1

This means that the exchange-correlation hole contains exactly one displaced electron.
This sum rule is very important, and it has to be verified by any approximation used for
ρ̃XC(r, r′). If we separate the exchange and correlation contributions, it is easy to see that
the displaced electron comes exclusively from the exchange part, and it is a consequence
of the form in which the electron-electron interaction has been separated. In the Hartree
term we have included the interaction of the electron with itself. This unphysical con-
tribution is exactly cancelled by the exchange interaction of the full charge density with
the displaced density. However, exchange is more than that. It is a nonlocal operator
whose local component is minus the self-interaction. On the other hand, the correlation
hole integrates to zero

∫

ρ̃C(r, r′) dr′ = 0 so that the correlation energy correponds to the
interaction of the charge density with a neutral charge distribution.

A general discussion on DFT and applications can be found in Ref. [26].
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2.4.1 The Local Density Approximation (LDA)

This has been for a long time the most widely used approximation to the exchange-
correlation energy. It has been proposed in the seminal paper by Kohn and Sham, but
the philosophy was already present in Thomas-Fermi theory. The main idea is to consider
the general inhomogeneous electronic systems as locally homogeneous, and then to use
the exchange-correlation hole corresponding to the homogeneous electron gas for which
there are very good approximations and also exact numerical (quantum Monte Carlo)
results. This means:

ρ̃LDA
XC (r, r′) = ρ(r)

{

g̃h [|r − r′| , ρ(r)] − 1
}

(2.53)

with g̃h [|r − r′| , ρ(r)] the pair correlation function of the homogeneous gas, which depends
only on the distance between r and r′, evaluated at the density ρh which locally equals
ρ(r). Within this approximation, the exchange-correlation energy density is defined as:

ǫLDA
XC [ρ] =

1

2

∫

ρ̃LDA
XC (r, r′)

|r − r′| dr′ (2.54)

and the exchange-correlation energy becomes

ELDA
XC [ρ] =

∫

ρ(r) ǫLDA
XC [ρ] dr . (2.55)

In general, the exchange-correlation energy density is not a functional of ρ. From its
very definition it is clear that it has to be a non-local object, because it reflects the fact
that the probability of finding an electron at r depends on the presence of other electrons
in the surroundings, through the exchange-correlation hole.

Looking at expression (2.53), it may seem that there is an inconsistency in the defi-
nition. The exact expression would indicate to take ρ(r′) instead of ρ(r) . However, this
would make of ǫLDA

XC [ρ] a non-local object which would depend on the densities at r and
r′, and we want to parametrize it with the homogeneous gas, which is characterized by
only one density, and not two. This is the essence of the LDA, and it is equivalent to
postulate:

g̃(r, r′) = g̃h[|r − r′| , ρ(r)]
(

ρ(r)

ρ(r′)

)

(2.56)

Therefore, there are in fact two approximations embodied in the LDA:

1. The exchange-correlation hole is centered at r, and interacts with the electronic
density at r. The true XC hole is actually centered at r′ instead of r.

2. The pair correlation function (g) is approximated by that of the homogeneous elec-
tron gas of density ρ(r) corrected by the density ratio ρ(r)/ρ(r′) to compensate the
fact that the LDA XC hole is centered at r instead of r′.
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2.4.2 The Local Spin Density Approximation

In magnetic systems or, in general, in systems where open electronic shells are involved,
better approximations to the exchange-correlation functional can be obtained by intro-
ducing the two spin densities , ρ↑(r) and ρ↓(r), such that ρ(r) = ρ↑(r) + ρ↓(r), and
ζ(r) = (ρ↑(r) − ρ↓(r)) / ρ(r) is the magnetization density. The non-interacting kinetic
energy (2.39) splits trivially into spin-up and a spin-down contributions, and the external
and Hartree potential depend on the full density ρ(r), but the approximate XC func-
tional — even if the exact functional should depend only on ρ(r) — will depend on both
spin densities independently, EXC = EXC [ρ↑(r), ρ↓(r)]. Kohn-Sham equations then read
exactly as in (2.43), but the effective potential veff(r) now acquires a spin index:

v↑eff (r) = v(r) +
∫ ρ(r′)

|r − r′| dr
′ +

δEXC [ρ↑(r), ρ↓(r)]

δρ↑(r)
(2.57)

v↓eff (r) = v(r) +
∫

ρ(r′)

|r − r′| dr
′ +

δEXC [ρ↑(r), ρ↓(r)]

δρ↓(r)

The density given by expression (2.45) contains a double summation, over the spin
states and over the number of electrons in each spin state, Ns. These later have to
be determined according to the single-particle eigenvalues, by asking for the lowest N =
N↑+N↓ to be occupied. This defines a Fermi energy εF , such that the occupied eigenstates
have εi,s < εF .

In the case of non-magnetic systems ρ↑(r) = ρ↓(r), and everything reduces to the
simple case of double occupancy of the single-particle orbitals, and then the calculations
spare half of the computer time.

The equivalent of the LDA in spin-polarized systems is the local spin density approx-
imation (LSDA), and it basically consists of replacing the XC energy density with a
spin-polarized expression:

ELSDA
XC [ρ↑(r), ρ↓(r)] =

∫

[ρ↑(r) + ρ↓(r)] ε
h
XC [ρ↑(r), ρ↓(r)] dr , (2.58)

obtained, for instance, by interpolating between the fully-polarized and fully-unpolarized
XC energy densities using an appropriate expression that depends on ζ(r). The standard
practice is to use von Barth and Hedin’s interpolation formula [27]:

f(ζ) =
(1 + ζ)4/3 + (1 − ζ)4/3 − 2

24/3 − 2
, (2.59)

or a more realistic formula based on the RPA, given by Vosko, Wilk and Nussair [28].
A thorough discussion of the LDA and the LSDA can be found in Ref. [29]. In the

following we reproduce the main aspects related to these approximations.

Why does the LDA work so well in many cases ?

1. It satisfies the sum rule that the XC hole contains exactly one displaced electron:
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∫

ρ̃LDA
XC (r, r′) dr′ =

∫

ρ(r) g̃h[|r − r′| , ρ(r)] dr′ = −1 (2.60)

because for each r, g̃h[|r − r′| , ρ(r)] is the pair correlation function of the homoge-
neous gas at density ρ(r), and then the second integral above is nothing but the
integral of the XC hole of the homogeneous gas, for which the approximations and
numerical results available, carefully take into account that the integral has to be
-1.

2. Even if the exact ρ̃XC has no spherical symmetry, in the expression for the XC
energy what really counts is the spherical average of the hole:

EXC [ρ] = −1

2

∫

ρ(r)

(

1

R(r)

)

dr

with
1

R(r)
=
∫

ρ̃XC(r, r′)

|r − r′| dr′ = 4π
∫ ∞

0
s ρ̃SA

XC(r, s) ds

and

ρ̃SA
XC(r, s) =

1

4π

∫

Ω
ρ̃XC(r, r′) dΩ .

This spherical average ρ̃SA
XC(r, s) is reproduced to a good extent by the LDA, whose

ρ̃XC is already spherical.

The LDA exhibits the following general trends:

• It favours more homogeneous systems.

• It overbinds molecules and solids.

• Chemical trends are usually correct.

• For “good” systems (covalent, ionic, and metallic bonds): geometries are good, bond
lengths, bond angles and phonon frequencies are within a few %, while dielectric
and piezoelectric constants are about 10% too large.

• For ”bad” systems (weakly bound) bond lengths are too short (overbinding).

• In atoms, the XC potential does not decay as −e2/r, thus affecting the dissociation
limit and ionization energies.

What do we normally use for the LDA ?

For the exchange energy density it is adopted the form deduced by Dirac [30]:

ǫX [ρ] = −3

4
(
3

π
)1/3ρ1/3 = −3

4
(

9

4π2
)1/3 1

rs

= −0.458

rs

a.u. (2.61)
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where ρ−1 = 4πr3
s/3, and rs is the radius of the sphere that, on average, contains one

electron.
For the correlation, a widely used approximation is Perdew and Zunger’s parametriza-

tion [23] of Ceperley and Alder quantum Monte Carlo, essentially exact results [31]:

ǫC [ρ] =

{

A ln rs +B + C rs ln rs +D rs, rs ≤ 1
γ / (1 + β1

√
rs + β2rs), rs > 1

(2.62)

For rs ≤ 1 the expression arises from the the Random Phase Approximation (RPA)
— calculated by Gell-Mann and Brückner [32] — which is valid in the limit of very
dense electronic systems. For very weak densities, Perdew and Zunger have fitted a
Padé approximant to the Monte Carlo results. Another popular parametrization is that
proposed by Vosko, Wilk and Nusair [33].

When does the LDA fail ?

• In atomic systems, where the density has large variations.

• In weak molecular bonds, e.g. hydrogen-bonds, because in the bonding region the
density is very small and the binding is rather dominated by the inhomogeneities.

• In van der Waals — closed shell — systems, because the nonlocality of the exchange
interaction becomes important when the binding is due to dynamical fluctuations
of the charge density of neutral objects.

• In metallic surfaces, because the XC potential decays exponentially while it should
follow a power law.

• In negatively charged ions, because the LDA fails to cancel exactly the electronic
self-interaction, due to the approximative character of the exchange. Self-interaction
corrected functionals have been proposed [23], although they are not satisfactory
from the theoretical point of view because the potential depends on the electronic
state, while it should be the same for all states.

• The energy band gap in semiconductors turns out to be very small. The reason is
that when one electron is removed from the ground state, the exchange hole becomes
screened, and this is absent in the LDA. On the other hand, also Hartree-Fock has
the same shortcoming, and the band gap turns out to be too large.

How can the LDA be improved ?

Once the extent of the approximations involved in the LDA has been understood,
then one can start constructing better approximations. The amount of work done into
that direction is really overwhelming. Sometimes is difficult even to cope with the new
developments, simply because there is not a unique and obvious way of improving the
LDA.

One of the key observations is that the true pair correlation function – g(r, r′) – actually
depends on the electronic density at two different points, r and r′. The homogeneous
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g(r, r′) is quite well-known (see Eq. (2.51) for the exchange part, and [34] for correlation),
but it corresponds to a density which is the same everywhere. Therefore, the question is
which of the two densities to use in an inhomogeneous environment. Early efforts went
into the direction of calculating the pair correlation function at an average density ρ̄(r),
which in general is different from ρ(r), and incorporates information about the density
at neighboring points. Clearly there is no unique recipe for the averaging procedure,
but there is at least a crucial condition that this averaging has to verify, namely the
normalization condition [35, 36]:

∫

ρ̃WDA
XC (r, r′) dr′ =

∫

ρ(r′) g̃h[|r − r′| , ρ̄(r)] dr′ = −1 . (2.63)

Approach of this type receives the name of weighted density approximations (WDA).
There is still a lot of freedom in choosing the averaging procedure, provided that nor-
malization is verified and, indeed, several different approximations have been proposed
[35, 36, 37, 38]. One problem with this approach is that the r → r′ symmetry of g(r, r′) is
now broken. These efforts went along the direction of improving the location of the center
of the XC hole. An exploration in the context of realistic electronic structure calculations
was carried out by D. Singh but the results reported were not significantly better the
LDA [39].

Actually, it can be done better than this by attacking the problem with the correct
many-body tools. For instance, one could try to solve Dyson’s equation for the electronic
Green’s function, starting from the LDA solution for the bare Green’s function (see section
XXXX below). Another possibility proposed in the context of strongly correlated systems,
e.g. exhibiting narrow d or f bands, where the limitation of the LDA is at describing
strong on-site correlations of the Hubbard type, is to introduce these features a posteriori.
The LDA+U approach of Anisimov et al. [40] considers the mean-field solution of the
Hubbard model on top of the LDA solution, where the Hubbard on-site interaction U are
computed for the d or f orbitals by differentiating the LDA eigenvalues with respect to
the occupation numbers.

Undoubtedly, and probably because of its computational efficiency and its similarity
to the LDA, the most popular approach has been to introduce semilocally the inhomo-
geneities of the density, by expanding EXC [ρ] as a series in terms of the density and its
gradients. This approach, known as generalized gradient approximation (GGA), is easier
(and cheaper) to implement in practice than full many-body approaches, and has been
quite successful in improving some features over the LDA.

2.4.3 Generalized Gradient Approximations

The exchange-correlation energy has a gradient expansion

EXC [ρ] =
∫

Axc[ρ] ρ(r)
4/3 dr +

∫

Cxc[ρ] | ∇ρ(r) |2 /ρ(r)4/3 dr + · · · (2.64)

which is asymptotically valid for densities that vary slowly in space. The LDA retains
only the leading term of Eq. (2.64). It is well-known that a straigthforward evaluation of
this expansion is ill-behaved, in the sense that it is not monotonically convergent, and it
exhibits singularities that cancel out only when an infinite number of terms is resummed,
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like in the random phase approximation (RPA). In fact, the first-order correction worsens
the results, and the second order correction is is plagued of divergencies [41]. The largest
errors of this approximation actually arise from the gradient contribution to the correlation
term. Provided that the problem of the correlation term can be cured in some way, as
the real space cutoff method proposed by Langreth and Mehl [42], the biggest problem
remains with the exchange energy.

Many papers have been devoted to the improvement of the exchange term within
DFT. The early work of Gross and Dreizler [43] provided a derivation of the second-order
expansion of the exchange density matrix, which was later re-analyzed and extended by
Perdew [44]. This expansion contains not only the gradient, but also laplacian of the
density. The same type of expansion was obtained, using Wigner distribution – phase
space – techniques, by Ghosh and Parr [45].

One of the main lessons learnt from these works is that the gradient expansion has
to be carried out very carefully in order to retain all the relevant contributions to the
desired order. The other important lesson is that these expansions easily violate one or
some of the exact conditions required for the exchange and the correlation holes. For
instance the normalization condition, the negativity of the exchange density, and the self-
interaction cancellation (the diagonal of the exchange density matrix has to be minus
a half of the density). Perdew has shown that imposing these conditions to functionals
that originally do not verify them, results in a remarkable improvement of the quality
of exchange energies [44]. On the basis of this type of reasoning, a number of modified
gradient expansions have been proposed along the years, mainly between 1986 and 1996.
These have received the name of generalized gradient approximations (GGA).

GGA are either based on theoretical developments that reproduce the exact results in
some known limits – 0 and ∞ density, or the correlation potential in the He atom –, or
that are generated by fitting a number of parameters to a molecular database (training
set). Normally, these improve some of the drawbacks of the LDA. The basic idea of GGAs
is to express the exchange-correlation energy in the following form:

EXC [ρ] =
∫

ρ(r) εXC[ρ(r)] dr +
∫

FXC [ρ(r),∇ρ(r)] dr (2.65)

where the function FXC is asked to satisfy a number of formal conditions for the exchange-
correlation hole, like sum rules, long-range decay, etc. This cannot be done by considering
directly the bare gradient expansion (2.64). What is needed from the functional is a form
that mimicks a resumation to infinite order, and this is the main idea of the GGA,
for which there is not a unique recipe. Naturally, not all the formal properties can be
enforced at the same time, and this differentiates one functional from another. A thorough
comparison of different GGA can be found in Ref. [46]. In the following we quote a number
of them:

1. Langreth-Mehl exchange-correlation functional [42].

εX = εLDA
X − a

| ∇ρ(r) |2
ρ(r)4/3

(

7

9
+ 18 f 2

)

εC = εRPA
C + a

| ∇ρ(r) |2
ρ(r)4/3

(

2e−F + 18 f 2
)
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where F = b | ∇ρ(r) | / ρ(r)7/6, b = (9π)1/6f , a = π/(16(3π2)4/3), and f = 0.15.

2. Perdew-Wang ’91 exchange functional [47].

εX = εLDA
X

(

1 + a1s sinh−1(a2s) + (a3 + a4e
−100s2

)s2

1 + a1s sinh−1(a2s) + a5s4

)

where a1 = 0.19645, a2 = 7.7956, a3 = 0.2743, a4 = −0.1508, and a5 = 0.004.

3. Perdew-Wang ’91 correlation functional [47].

εC = εLDA
C + ρH [ρ, s, t]

with

H [ρ, s, t] =
β

2α
ln

(

1 +
2α

β

t2 + At4

1 + At2 + A2t4

)

+ Cc0 [Cc(ρ) − Cc1] t
2e−100s2

and

A =
2α

β

[

e−2αεC [ρ] / β2 − 1
]−1

where α = 0.09, β = 0.0667263212, Cc0 = 15.7559, Cc1 = 0.003521, t =
|∇ρ(r)| / (2ksρ) for ks = (4kF/π)1/2, and ρ εC [ρ] = εLDA

C [ρ].

4. Becke ’88 exchange functional [48].

εX = εLDA
X

(

1 − β

21/3Ax

x2

1 + 6βx sinh−1(x)

)

for x = 2(6π2)1/3s = 21/3 | ∇ρ(r) | / ρ(r)4/3, Ax = (3/4)(3/π)1/3, and β = 0.0042.

5. Closed-shell Lee-Yang-Parr correlation functional [49].

εC = −a 1

1 + dρ−1/3

{

ρ+ bρ−2/3
[

CFρ
5/3 − 2tW +

1

9

(

tW +
1

2
∇2ρ

)]

e−cρ−1/3

}

where

tW =
1

8

(

|∇ρ|2
ρ

−∇2ρ

)

and CF = 3/10(3π2)2/3, a = 0.04918, b = 0.132, c = 0.2533, and d = 0.349.
This correlation functional is not based on the LDA as the others, but it has been
derived as an extension of the Colle-Salvetti expression for the electronic correlation
in Helium, to other closed-shell systems.

6. Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [50].

We define first the enhancement factor FXC over the local exchange:

EXC [ρ] =
∫

ρ(r) εLDA
X [ρ(r)]FXC(ρ, ζ, s) dr
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where ρ is the local density, ζ is the relative spin polarization, and s =
|∇ρ(r)| / (2kFρ) is the dimensionless density gradient, as in Perdew-Wang ’86. We
first concentrate on the exchange enhancement factor

FX(s) = 1 + κ− κ

1 + µs2/κ
,

where µ = β(π2/3) = 0.21951, where β = 0.066725 is related to the second order
gradient expansion [47]. This form: a) satisfies the uniform scaling condition, b)
recovers the correct uniform electron gas limit because Fx(0) = 1, c) obeys the spin-
scaling relationship, d) recovers the LSDA linear response limit for s→ 0 (FX(s) →
1 + µs2), and e) satisfies the local Lieb-Oxford bound [51], εX(r) ≥ −1.679ρ(r)4/3,
i.e. FX(s) ≤ 1.804, for all r, provided that κ ≤ 0.804. PBE choose the largest
allowed value κ = 0.804. Other authors have proposed the same form, but with
values of κ and µ fitted empirically to a database of atomization energies [52, 53].
The proposed values of κ violate Lieb-Oxford inequality.

The correlation energy is written in a form similar to Perdew-Wang ’91 [47], i.e.

EGGA
C =

∫

ρ(r)
[

εLDA
C (ρ, ζ) +H [ρ, ζ, t]

]

dr

with

H [ρ, ζ, t] = (e2/a0)γφ
3 ln

{

1 +
βγ

t

2
[

1 + A t2

1 + At2 + A2t4

]}

.

Here, t = |∇ρ(r)| / (2φksρ) is a dimensionless density gradient, ks = (4kF/πa0)
1/2

is the Thomas-Fermi screening wave number, and φ(ζ) = [(1 + ζ)2/3 + (1 − ζ)2/3]/2
is a spin-scaling factor. The quantity β is the same as for the exchange term β =
0.066725, and γ = (1− ln 2)/π2 = 0.031091. The function A has the following form:

A =
β

γ

[

e−εLDA
C [ρ] / (γφ3e2/a0) − 1

]−1
.

So defined, the correlation correction term H satisfies the following properties: a)
it tends to the correct second-order gradient expansion in the slowly-varying (high
density) limit (t → 0), b) it approaches minus the uniform electron gas correlation
−εLDA

C for rapidly varying densities (t → ∞), thus making the correlation energy
vanish (this results from the correlation hole sum rule), c) it cancels the logarithmic
singularity of εLDA

C in the high density limit, thus forcing the correlation energy to
scale to a constant under uniform scaling of the density.

This GGA retains the correct features of LDA (LSDA), and combines them with
the nonlocality features which are supposed to be the most energetically important.
It sacrifices a few correct, but less important features, like the correct second-order
gradient coefficients in the slowly-varying limit, and the correct nonuniform scaling
of the exchange energy in the rapidly varying density region.
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Becke ’88 exchange functional is usually combined with Lee-Yang-Parr correlation to
form the popular BLYP approach. Being some of the coefficients obtained by optimizing
the agreement of certain structural and energetic quantities, the BLYP functional is not
well-justified from a theoretical point of view. On the contrary, the PBE functional [50]
is very satisfactory because it verifies many of the exact conditions for the XC hole, and
it does not contain any fitting parameters. In addition, its quality is better than that of
BLYP [54].

The different recipies for GGAs verify only some of the mathematical properties known
for the exact exchange-correlation hole. In the following table we show which properties
are verified by some popular functionals.

Property ELDA
XC ELM

XC EPW91
XC EB88

X ELY P
C

1 ρX(r, r′) ≤ 0 y - y - -
2

∫

ρX(r, r′) dr′ = −1 y - y - -
3

∫

ρC(r, r′) dr′ = 0 y - y - -
4 EX [ρ] < 0 y y y y -
5 EC [ρ] ≤ 0 y n n - n
6 EX [ρ], EXC [ρ] ≥ −c ∫ ρ4/3dr (a) y n y y -

7 EX [ρλ] = λEX [ρ] (b) y y y y -
8 EC [ρλ] < λEC [ρ], λ < 1 (e) y n y - n
9 limλ→∞EC [ρλ] > −∞ n y(f) y(f) - y
10 limλ→0

1
λ
EC [ρλ] > −∞ y n y - y

11 limλ→∞EX [ρx
λ] > −∞ (c) n n y n -

12 limλ→0EX [ρx
λ] > −∞ y n y y -

13 limλ→∞
1
λ
EX [ρxy

λλ] > −∞ (d) y n y y -
14 limλ→0

1
λ
EX [ρxy

λλ] > −∞ n n y n -
15 limλ→∞ λEC [ρx

λ] > −∞ n y(f) y - n
16 limλ→0

1
λ
EC [ρx

λ] = 0 n n y - n
17 limλ→∞EC [ρxy

λλ] = 0 n n y - n
18 limλ→0

1
λ2EC [ρxy

λλ] > −∞ n y(f) y - n

19 ǫX(r) → − 1
2r
, r → ∞ n n n yn(g) -

20 vX(r) → −1
r
, r → ∞ n n n n -

21 vX(r), vC(r) → finite, r → 0 y n n n n
22 LDA limit for constant ρ(r) y n y y n

(a) 1.44 < c < 1.68
(b) ρλ(r) = λ3ρ(λr); (c) ρx

λ(r) = λρ(λx, y, z); (d) ρxy
λλ(r) = λ2ρ(λx, λy, z)

(e) Note that EC [ρλ] < λEC [ρ], λ < 1 is equivalent to EC [ρλ] > λEC [ρ], λ > 1.
(f) But it diverges to +∞
(g) ”y” for exponential ρ(r), but ”n” in general, e.g. ǫB88

X (r) → −1/r for a gaussian.

The general trends of GGAs concerning improvements over the LDA are the following:

1. Improves binding energies (they give better atomic energies)
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2. Improves bond lengths of IIA and IIB homonuclear dimers

3. Improves energetics, geometries and dynamical properties of water, ice and water
clusters. BLYP seems to have the best agreement with experiment. In general, they
improve the description of hydrogen-bonded systems, although this is not very clear
for the case of the F · · ·H bond.

4. Si, Ge, GaAs are better described in the LDA, except for the binding energies.

5. For 4d-5d transition metals it is not clear whether GGA improves over LDA or not.

6. There is no improvement for the gap problem (and consequently for the dielectric
constant), because this feature has to do with the description of the screening of
the exchange hole when one electron is removed, and this is usually not taken into
account by GGA. An exception is PBE.

7. They do not satisfy the known asymptotic behaviour, e.g. for isolated atoms:

• vXC(r) ∼ −e2/r for r → ∞, while vLDA,GGA
XC (r) vanish exponentially.

• vXC(r) → const for r → 0, while vLDA
XC (r) → const, but vGGA

XC (r) → −∞.

There seems, then, to exist a limit in the accuracy that GGAs can reach. The main
responsibility for this is of the exchange term, whose non-locality is not fully taken into
account. A particularly problematic issue is that GGA functionals still do not compensate
completely the self-interaction.

This has motivated the development of approximations which combine gradient cor-
rected functionals with exact, Hartree-Fock-type exchange. An example is the approxi-
mation known as B3LYP, which reproduces very well the geometries and binding energies
of molecular systems, at the same level of correlated quantum chemistry approches like
second order Møller-Plesset perturbation theory (MP2) or even at the level of coupled
cluster and CI methods, although at a significantly lower computational cost [55]. Even
if the idea is appealing and physically sensible, the derivation is not rigorous and the
functional also involves a number of fitting parameters. An alternative approach are
screened exchange functionals, where the exact exchange interaction is reduced by using
an empirical screening function, e.g. an error function.

In the past few years there have been serious attempts to go beyond the GGA. Some,
like the meta-GGA described in the following Section, are simple and more or less suc-
cessful, although not completely satisfactory from the theoretical point of view. Another,
better-founded approach is the so-called exact exchange (EXX), where the Kohn-Sham
potential contains a local exchange term obtained from the exact Hartree-Fock exchange.
This tends to be rather expensive computationally.

2.4.4 Meta-GGA

The second order gradient expansion of the exchange energy introduces a term propor-
tional to the squared gradient of the density. If this expansion is further carried out to
fourth order, as originally done by Gross and Dreizler [43] and later resumed by Perdew
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[44], it also appears a term proportional to the square of the Laplacian of the density.
The Laplacian term was also derived using a different route by Ghosh and Parr [45],
although it was then dropped out when considering the gradient expansion only up to
second order. More recently, a general derivation of the exchange gradient expansion up
to sixth order, using second order density response theory, was given by Svendsen and
von Barth [56]. The fourth order expansion of that paper was then used by Perdew et al.
[57] to construct a practical meta-generalized gradient approximation (meta-GGA) that
incorporates additional semilocal information in terms of the Laplacian of the density.
The philosophy for constructing the functional is the same as that of PBE, namely to
retain the good formal properties of the lower level approximation (the PBE GGA in this
case), while adding others.

The gradient expansion of the exchange enhancement factor FX is

FX(p, q) = 1 +
10

81
p+

146

2025
q2 − 73

405
qp+Dp2 + 0(∇6) , (2.66)

where
p = |∇ρ| / [4(3π2)2/3ρ8/3]

is the square of the reduced density gradient, and

q = ∇2ρ / [4(3π2)2/3ρ5/3]

is the reduced Laplacian of the density.
The first two coefficients of the expansion are exactly known. The third one is the

result of a difficult many-body calculation, and has only been estimated numerically by
Svendsen and von Barth, to an accuracy better than 20%. The fourth coefficient D has
not been explicitly calculated to the date.

In the same spirit of PBE, Perdew, Kurth, Zupan and Blaha (PKZB) proposed an
exchange enhancement factor which verifies some of the formal relations, and reduces to
the gradient expansion (2.66) in the slowly-varying limit of the density. The expression
is formally identical to that of PBE:

FMGGA
X (p, q̄) = 1 + κ− κ

1 + x/κ
, (2.67)

where

x =
10

81
p+

146

2025
q̄2 − 73

405
q̄p+

[

D +
1

κ
(
10

81
)2
]

p2

is a new inhomogeneity parameter that replaces 0.21951p in PBE. The variable q in the
gradient expansion (the reduced Laplacian) is also replaced by a new variable q̄ defined
as

q̄ = 3τ / [2(3π2)2/3ρ5/3] − 9/20 − p/12 ,

which reduces to q in the slowly-varying limit, but remains finite at a nucleus while q
diverges. In the above expression τ [ρ] = τ↑ + τ↓ is the kinetic energy density for the
noninteracting system, with

τσ =
1

2

occup
∑

α

|∇ψασ(r)|2
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σ =↑, ↓. The connection between τ and the density is give n by the second-order gradient
expansion

τGEA =
3

10
(3π2)2/3ρ5/3 +

1

72

|∇ρ|2
ρ

+
1

6
∇2ρ .

The formal conditions requested for this functional are: a) the spin-scaling relation, b)
the uniform density-scaling relation [58], and the Lieb-Oxford inequality [51]. Actually,
a value of κ = 0.804, corresponding to the largest value ensuring that the inequality is
verified for all possible densities, is chosen in [57] (exactly as in [50]). The coefficient D
still remains undetermined. In the absence of theoretical estimations, PKZB proposed
to fix D by minimizing the absolute error in the atomization energies for a molecular
data set. The value so obtained is D = 0.113. The meta-GGA recovers the exact linear
response function up to fourth order in k/2kF . This is not the case of PBE-GGA (and
other GGA’s), which recovers only the LSDA linear response, and at the expenses of
sacrificing the correct second-order gradient expansion (the coefficient of p is larger than
10/81 by a factor of 1.778).

The correlation part of the meta-GGA retains the correct formal properties of PBE
GGA correlation, such as the slowly-varying limit and the finite limit under uniform
scaling. In addition, it is required that the correlation energy be self-interaction free, i.e.
to vanish for a one-electron system. PKZB proposed the following form:

EMGGA
C [ρ↑, rho↓] =

∫

{ρεGGA
C (ρ↑, ρ↓,∇ρ↑,∇ρ↓)



1 + C

(

∑

σ τ
W
σ

∑

σ τσ

)2


−

− (1 + C)
∑

σ

(

τW
σ

τσ

)2

ρσε
GGA
C (ρσ, 0,∇ρσ, 0)} , (2.68)

where εGGA
C is the PBE-GGA correlation energy density, and τW

σ is the von Weiszäcker
kinetic energy density given by expression (2.34) above, which is exact for a one-electron
density. Therefore, the correlation energy vanishes for any one-electron density, irrespec-
tively of the value of the parameter C. For many-electron systems the self-interaction
cancellation is not complete, but the error is shifted to fourth order in the gradient, thus
having no effect on systems with slowly-varying density. As for the exchange term, there
is no theoretical estimate available for the parameter C. Perdew et al. obtained a value
of C = 0.53 by fitting it to PBE-GGA surface correlation energies for jellium. Atomic
correlation energies also agree, but are less accurate. Just as an example, the correlation
energy for He is -0.84 Hartree in LSDA, -0.68 H in PBE-GGA, and -0.48 H in MGGA,
which basically coincides with the exact value [59].

Unlike the PBE-GGA, the meta-GGA has two fitted parameters, C and D. The
reason for them is actually the unavailability of first-principles theoretical estimates for
them. Other authors have proposed similar expansions containing the kinetic energy
density in addition to the density gradients. These, however, took the road of constructing
the functional in a semiempirical way, by fitting a large number of parameters (of the
order of 10 or 20) to chemical data, instead of using well-founded theoretical values [60,
61]. The quality of the results of different meta-GGA functionals is quite similar. An
assesment of the general quality of the PKZB meta-GGA in comparison to GGA and
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hybrid exact exchange - GGA models of the B3LYP type, has been published very recently
[62]. The conclusion is that the kinetic energy density is a useful additional ingredient.
Atomization energies are quite improved n PKZB meta-GGA with respect to PBE-GGA,
but unfortunately geometries and frequencies are worsened. In particular, bond lengths
are far too long. Adamo et al. [62] argued that a possible reason could be that in this
functional the long-range part of the exchange hole, which would help to localize the
exchange hole, thus favoring shorter bond lengths, is missing. Intriguingly enough, one of
the semiempirical meta-GGA functionals [61] gives very good geometries and frequencies.
According to the preceeding discussion, this effect on geometries is due to the non-local
properties of the exchange functional, a factor that the kinetic energy density, being still
a semilocal object, cannot account for. Therefore, this agreement has to be originated in
error cancellations between exchange and correlation.
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Figure 2.3: A global view of density functional theory.
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Chapter 3

A brief review of solid state theory

Atoms can arrange in many different ways: molecules are constituted by a finite (small)
number of atoms, typically combining more than one element, and have a specific com-
position and ordering that defines univocally its properties. Clusters are pretty much like
molecules, but the composition and ordering is not well defined as in molecules. They
are typically made of one or two (binary clusters) elements. Solids, on the other hand,
are macroscopic objects constituted by a a huge number of atoms, of the order of the
Avogadro number (6 × 1023). This justifies the standard approach of describing solids as
an infinite collection of atoms. Crystalline solids are those in which a small number of
atoms (a basis) is infinitely replicated along d different directions in space, where d is the
dimensionality of space. Bulk solids are replicated in three dimensions, surfaces in two,
and wires in one. These directions are defined by d linearly independent vectors.

There are infinitely many ways of characterizing a crystalline solid, depending on the
choice of the set of atoms that are replicated. However, there is only one choice with the
minimal number of atoms that contains the whole symmetry of the system. This is called
the unit (or Wigner-Seitz) cell, and it contains all the information about the point group
symmetry underlying the crystalline structure. The vectors that serve to reconstruct
the infinite solid from the unit cell are also unique, and are called unit (or primitive)
vectors. The set of points in space defined as integer combinations of the primitive vectors
receives the name of Bravais lattice, of which there are only 32 (in 3 dimensions). The
combination of the translational symmetry emboddied in the Bravais lattice plus the point
group symmetry of the basis, gives rise to 132 space groups, which are sufficient to classify
all the known crystalline solids. Sometimes it is convenient to describe the solid in terms
of a cell containing more atoms than the unit cell (conventional cell) in order to simplify
the description of the symmetry properties, e.g. to have orthogonal lattice vectors. For
instance a body centered cubic (bcc) unit cell can be also described as a simple cubic cell
containing two atoms in the basis, and a face centered cubic cell (fcc) is equivalent to a
simple cubic cell with a 4-atom basis. We shall call {ai}i=1,2,3 the unit vectors, and the
volume of the unit cell is going to be Ω = a1 · (a2 × a3). The Wigner-Seitz cell can be
constructed by drawing a line perpendicular to each unit vector exactly at its mid point.

The properties of the infinite system are connected to those of the unit cell by means
of Bloch’s theorem:
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Theorem(Bloch): the wave function of an electron in an external periodic potential
V (r) = V (r + ai) can be written as the product of a function with the same periodic-
ity of the potential, and a purely imaginary phase factor arising from the translational
symmetry, i.e.

Ψk(r) = ei k·r uk(r) (3.1)

with uk(r) = uk(r + ai). This implies that:

Ψk(r + ai) = ei k·ai Ψk(r) . (3.2)

The reciprocal lattice vectors are defined by the relation ai · bj = 2πδij, such that
ei ai·bj = 1. This implies:

b1 = 2π
a2 × a3

Ω
; b2 = 2π

a3 × a1

Ω
; b3 = 2π

a1 × a2

Ω
(3.3)

and the volume of the reciprocal cell is: b1 · (b2 × b3) = (2π)3/Ω. The cell defined by
the reciprocal vectors corresponding to the primitive vectors is called the first Brillouin
zone, or Brillouin zone for short (BZ). The idea is that any vector outside the BZ can be
written as k = k′ +G with k′ inside the BZ and G = n1b1 +n2b2 +n3b3, with ni integer
numbers. In other words, the whole reciprocal space can be covered by translating the
BZ with vectors of the reciprocal lattice. It is clear that ei G·ai = 1 ⇒ ei k·ai = ei k′·ai.

Such a periodic wave function obbeys the Schrödinger equation

(

− h̄2

2m
∇2 + V (r)

)

Ψk(r) = εk Ψk(r) (3.4)

where εk is the energy of the wave. It is easy to see that there is a family of solutions
Ψk+G(r) and Ψk′+G′(r) with the same energy, provided that |k + G| = |k′+G′|, for
instance k′ = k+ (G −G′). It is then clear that for every vector k′ we can always find
another vector k in the first BZ such that εk = εk′. Since wave functions of identical
energy mix together, then the solutions of the eigenvalue problem have to be searched in
the degenerate subspaces {Ψk+G(r)} with G all the reciprocal lattice vectors. Therefore,
we can focus on the solution of the eigenvalue problem for k vectors in the first BZ, and
then obtain trivially the solution for any vector outside the first BZ that is connected
with k through a lattice vector G.

In conclusion, the calculation of the wave function for each of the infinite number of
electrons in the infinite solid, is mapped — via Bloch theorem — onto the calculation of
the wave function for a finite number of electrons in the unit cell, at an infinite number
of k vectors in the first BZ.

A more detailed treatment of solid state theory can be found in any specific book on
the subject [63].

3.1 Brillouin Zone sampling

Let us consider a supercell of length L, periodically replicated, which contains N unit cells
(a = L/N). The BZ of the supercell will have dimensions 2π

Li
= 2π

N
N
Li

= 2π
N ai

= 1
N

(

2π
ai

)

, so
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that it will be contained N times inside the BZ of the unit cell. If the supercell is infinite
— as it is the case of perfect crystalline structures —, then its BZ will be contained infinite
times in 2π/a. Notice that a wave vector k = j2π/L will correspond to the periodicity
of a supercell of length L/j. In this way we can take into account periodicities that go
beyond the size of the supercell just by considering the appropriate k vectors in the BZ.

Let us consider two electrons in the unit cell. Periodic boundary conditions (PBC)

imply that only the lowest state Ψ
(1)
0 (r) in the box will be occupied by the two electrons

with opposite spins. The electronic density will be ρ(r) = 2
∣

∣

∣Ψ
(1)
0 (r)

∣

∣

∣

2
, and will be periodic

in the box ρ(r + a) = ρ(r). The wave function must also verify Ψ
(1)
0 (r + a) = Ψ

(1)
0 (r), but

including the exponential phase factor. Let us now construct a supercell by doubling the
unit cell along one of the primitive vectors. There are 4 electrons, so that two states will be
occupied, Ψ

(2)
0 (r) and Ψ

(2)
1 (r), which verify the periodic boundary conditions Ψ

(1)
0 (r+2a) =

Ψ
(1)
0 (r) and Ψ

(1)
0 (r + 2a) = Ψ

(1)
0 (r). Since the supercell consists of the replication of two

identical units, then one of the two states should correspond to the replication of state
Ψ

(1)
0 (r), which in addition verifies the periodicity condition at r + a. The other state does

not need to verify the PBC on the wave function, but it must do it on the density, which

now is written ρ(r) = 2
(

∣

∣

∣Ψ
(2)
0 (r)

∣

∣

∣

2
+
∣

∣

∣Ψ
(2)
1 (r)

∣

∣

∣

2
)

.

We are going to define now ρ̃(1)(r) as the part of the charge density of the doubled
system that belongs to the original unit cell. Since in that part there are only 2 electrons,
it has to be normalized dividing by the number of replications (2 in this case). But a wave
function with period 2a and a density of period a is equivalent to a wave function with
wave vector k = π/a (just replace N = 2 in the first expression of this section). Therefore,

Ψ̃
(2)
0 (r) = Ψ

(1)
k=0(r) and Ψ̃

(2)
1 (r) = Ψ

(1)
k=π/a(r), where the tilde indicates the restriction to

the original unit cell. The density then reads:

ρ̃(1)(r) = 2
(

1

2

∣

∣

∣Ψ
(1)
k=0(r)

∣

∣

∣

2
+

1

2

∣

∣

∣Ψ
(1)
k=π/a(r)

∣

∣

∣

2
)

(3.5)

If we now replicate the doubled box, so that we have 4 replicas of the unit cell, then
it is easy to realize that we are introducing states with k = π/2a and k = −π/2a. The
wave functions associated to these two wave vectors have a period 4a, while the wave
function of period 2a obtained for the doubled supercell (corresponding to k = π/a) is
also periodic in 4a. This means that the density restricted to the original unit cell is:

ρ̃(1)(r) = 2
(

1

4

∣

∣

∣Ψ
(1)
k=0(r)

∣

∣

∣

2
+

1

4

∣

∣

∣Ψ
(1)
k=π/a(r)

∣

∣

∣

2
+

1

2

∣

∣

∣Ψ
(1)
k=π/2a(r)

∣

∣

∣

2
)

(3.6)

where we have used the trivial fact that Ψk=π/2a(r) = Ψ∗
k=−π/2a(r).

The generalization to an arbitrary number of replications and to 3 dimensions is
straightforward, and leads to the following well-known expression for the electronic den-
sity:

ρ(r) =
∑

k

ωk |Ψk(r)|2 . (3.7)

In 2 and 3 dimensions, the symmetry of the unit cell can be exploited to reduce the
portion of the BZ that has to be sampled in the summation above. This introduces the
concept of the irreducible wedge of the BZ as the minimal portion that contains all the
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necessary information to describe the whole BZ. In a simple cubic unit cell, it will be
an octant. The k-points at the boundaries of the irreducible wedge count less, because
they are shared with other wedges. The multiplicity factor is 1/M , with M the number
of different irreducible wedges that share this point. Points inside the wedge count 1,
and the Γ-point ( k = 0) counts 1/Mmax, with Mmax the total number of wedges needed
to fill the whole BZ. This is the way to calculate the weights ωk. In practice, a finite
number of k-points is used to represent the full BZ integration (integration because the
summation becomes an integral for the infinite system). The number needed will depend
on the size of the supercell and on the specific features of the system. For instance metals
need a very fine sampling, while semiconductors can be reasonably represented with a
few, carefully selected k-points. Sets of special k-points for the different symmetries,
whose use accelerates the convergence of the BZ summation with the number of points,
have been worked out by Baldereschi [64], and Chadi and Cohen [65]. A more general,
unbiased recipe for all symmetries, and specially for metallic systems, has been proposed
by Monkhorst and Pack [66].

It is interesting to remark that the individual wave functions of wave vector k 6=0 do
not fullfil the PBC because of the phase factor. They do verify PBC, but in a larger
supercell of size π/ k. By varying the wave vector from 0 to π/a, we scan different
boundary conditions in the unit cell from periodic to antiperiodic. The electronic density,
however, is always periodic because the phase factor is irrelevant.

The magnitude of the errors introduced by sampling the BZ integral with a finite
number of k-points can always be reduced by using a denser set of points.

Let us consider now a supercell contaning just a few unit cells. The larger BZ of the
unit cell can be reproduced by transporting the smaller BZ of the supercell with reciprocal
lattice vectors G. Suppose that the supercell was sampled with the Γ-point only. When
transported with the BZ of the supercell, the Γ-point will refold onto a set of k-points
other from Γ, but inside the BZ of the unit cell. This means that the choice of a larger
supercell is equivalent to consider the unit cell, but with a finer sampling of its BZ. The
correspondence is, however, not perfect because there refolded k-points cannot be choosen
at will, as in the case of true k-points. They are univocally determined by the shape of the
supercell. In the limit of an infinitely large supercell, its BZ becomes a point (the Γ-point,
in fact), and its transportation is equivalent to a uniform and infinitely fine sampling of
the BZ of the unit cell.

3.1.1 BZ sampling for aperiodic systems

At finite temperatures the point group symmetry of a bulk solid is broken, and all the
discussion of the Brillouin zone becomes less evident. If the temperature is such that the
system remains in a well-defined crystal structure, and thermal vibrations of the atoms are
circumscribed to the vicinity of their equilibrium positions, then the concepts of discrete
translational invariance, unit cell, Brillouin zone, and k-points, hold.

If the system becomes diffusive (solid or fluid), it has point defects, presents a surface,
or it is a molecule — amongst other possibilities — then, strictly speaking, the replication
of a relatively small supercell is not the correct description of the infinite system, which
is intrinsically aperiodic. For instance in liquids, PBC break the homogeneity property.
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This description, however, is much better than to consider isolated clusters as models for
such aperiodic systems, and it represents a very valid alternative to costly, large supercells.
This for what concerns the PBC on the atomic nuclei, but ... what about the electronic
wave functions ? It is clear that if there is no translational invariance at all, the whole
machinery derived from Bloch’s theorem breaks down. However, the spurious periodicity
introduced by the use of PBC, implies a fictitious translational invariance and, given that
this invariance exists anyway, then the solid state machinery is restored. The difference
with bulk solids is that the periodic replication of the supercell is not a physical fact, but
an artifact which is useful to accelerate convergence with respect to the size of the system.
In this perspective, the use of a BZ sampling in the case of aperiodic systems is correct
because it takes into account the electronic periodicities at the same level as the nuclear
periodicities, which were introduced through PBC.

The most important point of the supercell approach is that, in order to be meaningful,
physical properties have to be converged with the respect to the size of the supercell.
This means, e.g. in the case of molecules or point defects, that the images corresponding
to adjacent replicas of the supercell should not interact significantly. In some cases,
this might be difficult to achieve, particularly in polar (or charged) systems with large
electrostatic (long-range) fields.
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Chapter 4

Solving the electronic problem in
practice

The central problem in electronic structure at the single-particle approximation level
is, then, to self-consistently solve a set of N coupled, 3-dimensional, partial differential
equations. In the Kohn-Sham formulation of DFT for infinite systems, this set of equations
reads:

ĤKS Ψk,i(r) =

(

−∇2

2
+ vext(r) +

∫

ρ(r′)

|r − r′|dr
′ + µXC [ρ]

)

Ψk,i(r) = εk,i Ψk,i(r) (4.1)

where the electronic density is expressed as a BZ average,

ρ(r) =
∑

k∈BZ

ωk

Nk
∑

i=1

|Ψk,i(r)|2 (4.2)

and Nk is the number of electronic states that are occupied at that particular k-point. If
the system is insulating, then this number is independent of k and equal to the number
of electrons N (if there is spin degeneracy the number of independent eigenfunctions
is N/2, so that the sum is performed up to N/2, and the result multiplied by 2. For
metallic systems the occupation numbers Nk are determined by asking that the associated
eigenvalues {εk,i; i = 1 · · ·Nk} be smaller than a certain value ǫF (the Fermi level). This
latter is self-consistently adjusted to fulfill the normalization condition:

∑

k∈BZ Nkωk = N .
The external potential vext(r) represents the interaction between the electrons and the

nuclei, and can is expressed in the following way:

vext(r) = −e2
P
∑

I=1

ZI

|r − RI |
(4.3)

At this stage, the solution of Kohn-Sham equations requires two important choices:

1. How to represent the single-particle wave functions

2. How to treat the electron-nuclear interactions
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The representation of the wave functions implies the choice of a basis set. Many
possibilities have been explored since the early times of solid state theory and quantum
chemistry, which can be divided into four main groups:

1. Extended basis sets: basis functions are delocalized, floating or centered at the
nuclear positions.

2. Localized basis sets: basis functions are localized, mainly centered at the nuclear
positions, but not uniquely.

3. Mixed basis sets: a combination of extended and localized basis functions.

4. Augmented basis sets: an extended or localized basis set is augmented with atomic-
like wave functions in some region around the nuclei.

When dealing with extended systems (solids or liquids), it has to be ensured that
Bloch’s theorem is verified, in the sense that the combination of basis orbitals representing
a solution to the Schrödinger equation must have the periodicity of the supercell.

Expanding the wave functions on some generic basis set | φ(m)
k >:

Ψk,j(r) = ei k·r
M
∑

n=1

C
(n)
k,j φ

(n)
k (r) , (4.4)

the Schrödinger equation becomes a matrix equation (secular equation):

M
∑

m=1

(

Hk
nm − εk,jS

k
nm

)

C
(m)
k,j = 0 (4.5)

where Hk
nm =< φ

(n)
k

∣

∣

∣Ĥ
∣

∣

∣φ
(m)
k > and Sk

nm =< φ
(n)
k | φ(m)

k >. In the above expressions, M
is the size of the basis set and j is a band index which labels the eigenvalues at fixed
k according to their energy. The number of occupied bands is N/2 (in the following we
focus on the spin unpolarized case) with N the number of electrons in the unit cell. The
overlap matrix Sk

nm appears in the secular equation because the basis functions do not
need to be mutually orthogonal. In fact, in many electronic structure methods the basis
set is non-orthogonal.

The electron-nuclear interaction is given by the bare Coulomb interaction. A first
class of methods deals with all the electrons in the system, both those participating in
the chemical bonding (valence electrons) and those tightly bound to the nuclei, which are
almost unchanged with respect to the atomic case (core electrons). These are generically
named all-electron methods. They can be constructed in a straightforward way by using
finely tuned localized basis sets, like in quantum chemistry methods, or by separating the
space in atomic spheres (as closely packed as possible) plus an interstitial region. In this
latter, the wave functions of the valence electrons are expanded in some basis set in the
interstitial region, and are augmented with atomic-like solutions inside the spheres (Muffin
Tins – MT) while the wave functions for the core electrons are obtained as solutions of the
atomic problem but taking into account the perturbation produced by the presence of the
other atoms. The augmentation is done in such a way that the logarithmic derivatives of
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the radial part of the wave functions at the MT radius, d ln[Rl(E, rc)]/dE, are continuous.
The matching conditions depend on the eigenvalue associated to that wave function. In
principle, these can be fulfilled by recalculating the logarithmic derivatives at the correct
eigenvalue every self-consistent iteration. Another possibility which is faster and more
stable is to linearize the matching conditions around a reference energy (or a few reference
energies) which is (are) representative of the eigenvalue that the wave function assumes
in that particular environment. These are called linear methods [67].

Since core electrons usually do not participate in chemical bonding, it is possible to
integrate out the corresponding degrees of freedom by considering a screened interaction
between the valence electrons and the ionic cores, i.e. nuclei plus core electrons. Because
of orthogonalization to the core wave functions the valence wave functions typically have
several nodes, and when there are no core electrons of the same symmetry, then the
valence wave function peaks very strongly close to the nucleus. These two features are
quite inconvenient from the point of view of the representation of these wave functions.
In principle, a matching procedure as in all-electron methods can be adopted. Another
possibility is to realize that a good description of the valence wave functions inside the
ionic cores is, in most cases, unnecessary, because one is usually concerned with bonding
properties. In that case, there is no lack of crucial information if the inner solution
(inside the core radius) is replaced with a smooth, nodeless pseudo-wave function, which
behaves much better from the numerical point of view. This pseudo-wave function is
not the solution of the original atomic problem, but the solution of a pseudo-atomic
problem where the true potential has been replaced by a pseudopotential. This type of
approximations receive the name of pseudopotential methods. Pseudopotential theory
will be discussed in detail below.

4.1 All-electron methods

There are three main all-electron methodologies according to the basis set used in the
interstitial region:

• Localized basis sets: This methodology is the most widely used in the quantum
chemistry community, which basically aims at describing molecular systems instead
of solids. Bloch’s theorem and periodicity of the potential are irrelevant issues in
those cases. The most popular, because it makes it possible to calculate matrix
elements analytically, is the Gaussian-type orbitals basis set (GTO – Boys 1950,
McWeeny 1953). Two other basis sets which are widely used are Slater-type orbitals
(STO) and atomic orbitals (LCAO). These methods deal with all the electrons,
core and valence, at the same level.

• Muffin Tin Orbitals (MTO): the wave functions in the interstitial region are
expanded in spherical Hankel functions centered at the nuclear positions. Hankels
are solutions of the spherically symmetric Schrödinger equation in the absence of a
potential (as it is the case in the interstitial region) which are regular at the origin,
rapidly varying inside the Muffin Tin (MT), and exponentially decaying outside.
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The method using nonlinear matching conditions [68], although originally formu-
lated in a different form in terms of Green functions, is due to Korringa, Kohn and
Rostocker (KKR) [69]. The linear method, or LMTO, was originally proposed by
O. K. Andersen [67]. The LMTO is one the most popular all-electron methods be-
cause it is very fast. The fastness arises from the fact that the basis functions can be
finely tuned so that a small number of them is enough to have a reasonable descrip-
tion of the system. The treatment of the potential in the interstitial region is an ex-
pensive part of the calculation with MTO’s. Methods that inlcude self-consistently
this contribution receive the name of full-potential (e.g. FP-LMTO [70]). A much
faster method, although not very accurate, consists of approximating the potential
in the interstitial region with a constant value, and increasing the size of the MT
spheres until they touch each other (optimal close packing). This method is known
as the atomic sphere approximation (LMTO-ASA), and has been very widely used
in the past. Nowadays, FP methods have superseeded it. MTO have a drawback
when they are used to study open structures. The interstitial vaccum is poorly
described unless empty spheres (MT spheres wth zero charge) to fill the emty space
are included in the basis set. However, this renders more difficult the comparison of
different structures at the level of the energetics, and forces on the nuclei cannot be
computed. Modern developments along the LMTO line have very recently overcome
these difficulties.

• Augmented Plane Waves (APW): the wave functions in the interstitial region
are expanded in (floating) plane waves, which are the solutions of the Schrödinger
equation for free electrons in a box (see below), and matched to atomic-like solutions
inside the spheres. Only the lowest angular momenta (l = 0, 1, 2, ..., lmax) are present
inside the spheres, so that only these projections of the plane waves (PW) are
matched [71]. The components of the PW with angular momentum l > lmax are
allowed to penetrate inside the spheres without forcing any matching condition. This
is the full-potential version of the APW (FP-APW) method. The wave functions
are written as:

A(p, r) =
∞
∑

l=0

l
∑

m=−l

alm Ylm(θ, ϕ)Rl(E, r) η(rc − r) + eip·r η(r − rc) , (4.6)

so that the secular equation becomes

〈Ak,i |H −E| Ak,j〉 = (4.7)

=

(

h̄2

2m
ki · kj − E

)

δij +
4πr2

c

Ω

(

h̄2

2m
ki · kj − E

)

j1 (|ki − kj | rc)

|ki − kj|
+ (4.8)

+
4πr2

c

Ω

∞
∑

l=0

(2l + 1)Pl(cos θij) jl(kirc) jl(kjrc)

[

R′
l(E, rc)

Rl(E, rc)
− j′l(kjrc)

jl(kjrc)

]

.

The version which linearizes the logarithmic derivatives is called Linearized aug-
mented plane waves (LAPW), and is presently the most accurate electronic struc-
ture method available. The expansion of the wave functions in the interstitials in
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PW gives a great flexibilitiy because there is no need of empty spheres as in LMTO
methods. Forces on the nuclear degrees of freedom can be calculated, and relaxation
and/or molecular dynamics simulations become then possible [72, 73].

4.2 Pseudopotential methods

Pseudopotential methods differentiate from each other basically on the basis set which is
used in conjunction with them. Four classes of methods have been proposed in the past:

1. Extended basis sets: normally plane waves (PPW). This is the most popular ap-
proach, and the one we are going to explain in detail here [74, 75, 76].

2. Localized basis sets: the same types of basis sets as in all-electron methods can be
used in conjunction with pseudopotentials, e.g. GTO, LCAO, STO. Recently, also
pseudo-atomic orbitals (PAO), which are atomic-like orbitals but strictly localized
inside a cutoff radius, have been introduced by Sankey and Niklevsky [77]. These
was then implemented in conjunction with an Order N (linear scaling with the
number of atoms) method, into the SIESTA package [78].

3. Mixed basis sets: combination of plane waves and gaussians have been used in the
past, particularly in the times when computers were not powerful enough.

4. Projected augmented waves (PAW): it is very similar in spirit to the APW all-
electron method, but the core electrons are replaced by a pseudopotential. There is
an augmentation sphere [79].

4.3 The plane wave basis set

The fact that, according to Bloch theorem, uk(r) = uk(r + ai), can be used to introduce
the natural (for solid state applications) basis of plane waves (PW). We can always write

uk(r) =
∫

ei g·r ũk(g) dg (4.9)

but since uk(r + aj) = uk(r), then the only allowed values of g are those that verify
ei g·aj = 1, i.e. g · aj = 2nπ for j = 1, 2, 3 the three lattice vectors. This implies that
g = n1b1 + n2b2 + n3b3, where

bi = 2π
aj × ak

ai · (aj × ak)
(4.10)

and n = (n1, n2, n3) is a vector of integer numbers. Therefore, the g vectors in the Fourier
transform (4.9) are restricted precisely to the reciprocal lattice vectors G defined by Eq.
(3.3), so that the general expression for the wave function is:

Ψk(r) = ei k·r
∞
∑

G=0

Ck(G) ei G·r (4.11)
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which is the expansion of the wave function in a plane waves
{

eiG·r
}

basis set. This
restriction to the reciprocal lattice vectors implies that PBC are authomatically verified.

Notice that the prefactor eik·r involves a wave vector k in the first BZ, while the
reciprocal lattice vectors G entering the PW expansion stay always outside the BZ. Wave
functions corresponding to different k vectors obbey different Schrödinger equations. In
the case of non-interacting electrons these are completely independent, but in the case of
DFT (or any other many-body theory) the equations couple in the sense of self-consistency
through the electronic density, which is expressed as the average over the whole BZ (see
above).

If we choose the PW basis set, then the basis functions are φ
(G)
k (r) = ei (k+G)·r/

√
Ω,

and the matrix elements in (4.5) are very simple to calculate: Firstly, Sk
G,G′ =

δG,G′because the PW are orthogonal, and Hk
G,G′ = T k

G,G′ + V k
G,G′ with

T k
G,G′ =

〈

k + G

∣

∣

∣

∣

∣

− h̄2

2m
∇2

∣

∣

∣

∣

∣

k + G′
〉

=
h̄2

2m
|k + G|2 δG,G′ (4.12)

V k
G,G′ = 〈k + G |V (r)|k + G′〉 =

1

Ω

∫

V (r) ei (G−G′)·rdr = Ṽ (G −G′) (4.13)

where Ṽ (G −G′) is the Fourier transform of the potential, and the kinetic term is diag-
onal.

4.3.1 Energy cutoff

Summarizing, Bloch’s theorem implies that the wave function of an electron in a periodic
potential can be expanded in a plane-wave (PW) basis set. The G vectors allowed in the
PW expansion are the reciprocal lattice vectors and, in principle, an infinite number of
plane waves is required by the theory. However, the Fourier coefficients Ψk(G) of the wave
functions decrease with increasing |k + G|, so that the PW expansion can be effectively
truncated at a finite number of terms, e.g. limited to all waves with kinetic energy lower
than some particular energy cutoff Ecut. The truncation of the basis set leads to an error
in the computed physical quantities, but this error can be easily handled by increasing
the cutoff. Since this implies to increase the size of the basis set without modifying the
hamiltonian, then the energy should decrease variationally with Ecut. This is at variance
with other types of basis sets (localized, for example), where the fact of increasing the
basis size does not necessarily mean that the energy will decrease.

Large G vectors are associated with the description of short-range features in real
space. Therefore, a spatial scale must exist such that the wave functions become so smooth
that decreasing the spatial grid spacing does not introduce any relevant information. In
that case, it is said that the system is at convergence in plane waves. If the BZ of the
supercell is sampled with many k-points, then the energy cutoff will depend on k through
the relation: Ek

cut = |k + Gcut|2 /2. Typically the variation of Ek
cut with k is very small

because |k| < |Gmin|. It is basically the effect of moving a sphere out of center. The
number of basis functions changes discontinuously with Ecut because the G vectors are
ordered in shells of equal modulus |G|, so that the number of PW will slightly depend on
k.
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4.3.2 Advantages and disadvantages of plane waves

The main advantages of using a truncated PW basis set are the following:

1. The Kohn-Sham hamiltonian has a kinetic term that is diagonal in reciprocal space,
and a potential term that is local in real space (pseudopotential methods introduce
a nonlocal component of the potential, but we shall see this in detail below). This
feature can be exploited to speed up the calculations by transforming the wave
functions and the density back and forth from real to reciprocal space and viceversa,
and calculating the kinetic and potential contributions in the space where they are
diagonal. The transformation can be done very efficiently by using Fast Fourier
Transform (FFT) techniques.

2. The calculation of the energy, forces on the orbitals, forces on the nuclei, and stresses
is very simple in PW.

3. The PW basis set is floating, in the sense that the basis functions are not attached
to any particular atom. The basis functions represent with the same accuracy all
regions of space. There are no additional forces on the nuclei that arise from the
derivation of the basis functions. This is a conseuquence of the fact that Hellmann-
Feyman theorem can be strictly applied only when the basis set is very well con-
verged, or when the basis functions do not depend on the nuclear coordinates. Using
localized basis sets, the correction for the finiteness of the basis is very important,
and gives rise to the so-called Pulay forces.

On the other side, the disadvantages are the following:

1. For molecules, wires and surfaces, a lot of computational effort is used to deal with
the vacuum that fills the supercell. This is very different from the case of localized
basis.

2. Systems with rapid variations of the wave functions close to the nuclei need a very
high energy cutoff (many PW components). Localized basis are much better in
this because they are normally tuned to reproduce atomic wave functions. This is
important in hydrogen, first-row elements, and transition metals.

4.4 Atomic first-principles pseudopotentials

The electronic states of an atom can be separated into: (1) core states, which are highly
localized and not affected by the chemical environment, (2) valence states, which are ex-
tended and responsible for chemical binding, and (3) semicore states, which are localized
and slightly affected by the environment, but contribute to the chemical binding. The
most common pseudopotential approach consists of not allowing to relax core states ac-
cording to the environment (frozen core approximation), although some polarizable
core approaches have been proposed. In general, this is a very good approximation that
gives total atomic energies within 0.01 eV. Semicore states are often treated as part of the
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frozen core, but when their contribution to binding is important, they have to be included
in the valence.

The valence states, due to orthogonalization with respect to the core states of the
same symmetry, show a marked oscillatory behaviour with a number of nodes equal to
n− l− 1, with n the principal quantum number and l the angular momentum. Nodeless
wave functions (l = n−1) are not oscillatory but, due to the lack of orthogonalization, the
electrons can approach the nucleus with less difficulty and create strongly bound states
which are steeply peaked close to the nucleus. This is the case of the 1s state in H, the
2p states in C, N, O and F, and the 3d states in transition metals.

When the basis set choosen is that of plane waves, then the computation of matrix
elements requires the use of the Fourier decomposition of the potential. Features like the
above ones are very bad for PW, because they need a very large number of basis functions
to achieve convergence in the expansion, and this translates in a vast amount of computer
time (the dimension of the matrix to diagonalize is too large).

Pseudopotential theory is constructed in two steps:

• Core electrons are removed from the calculation, and the interaction of the valence
electrons with the nucleus plus the core states (including orthogonalization) is re-
placed by an effective, screened potential. The screened potential depends on the
angular momentum of the valence electrons because of the different orthogonality
conditions. For instance in the C atom, the 2s valence state has to be orthogonal to
the 1s core state, but the 2p valence state does not feel the orthogonality constraint
(exchange interaction) of the 1s state because they have different quantum numbers.
Therefore, within the core region, these two states feel very different potentials from
the ionic core. Of course, at large distances the potential is −ZV /r independently
of the angular momentum, because the ionic core is seen as a point charge ( ZV is
the valence charge, i.e. the charge of the ionic core). For each angular momentum
l, the pseudopotential must have the atomic valence l-state as the ground state.

Example

core valence
True Si atom 1s2 2s2 2p6 3s2 3p2

Pseudo Si atom — 1s2 2p2

• The full ion-electron interaction, which includes the orthogonality of the valence
wave function to the core states, is replaced by a weaker pseudopotential that acts
on a pseudo-wave function rather than the true wave function. The pseudopotential
is constructed in such a way that its scattering properties or phase shifts for the
pseudo-wave functions are the same as those of the true potential for the true valence
wave function, but in such a way that the radial pseudo-wave function has no nodes
inside the core region (see below).

It can be shown [80] that a smooth valence wave function Φv (not orthogonalized to
the core states) constructed as Ψv = Φv − ∑

c αcvΨc (where αcv =< Ψc|Φv >) verifies

that
[

Ĥ +
∑

c (εv − εc) |Ψc >< Ψc|
]

Φv = εvΦv. Therefore, it is possible to find an exact
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pseudohamiltonian ĤPS = Ĥ +
∑

c (εv − εc) |Ψc >< Ψc| with the same eigenvalue as the
original hamiltonian, but a smooth, nodeless wave function. From this expression it is
clear that the pseudopotential will act differently on wave functions of different angu-
lar momentum. The most general form for a pseudopotential of this king is, then, the
following:

VPS (r) =
∞
∑

l=0

l
∑

m=−l

∣

∣

∣lm > V l
PS(r) < lm

∣

∣

∣ (4.14)

where | lm > are the spherical harmonics and V l
PS is the pseudopotential for the angular

component l. Acting on the electronic wave function, this operator decomposes it into its
spherical harmonics components, each of which is then multiplied by the corresponding
pseudpotential. These pseudpotentials are usually called non-local becuase of this prop-
erty of differentiating the angular components, which is a consequence of the non-local
exchange with the core. In practice, V l

PS(r) is a local operator in the radial coordinate.
Therefore, a better name for this type of expression is a semi-local pseudopotential. If
all the angular components of the pseudopotential are taken to be the same, then it is
said to be a local pseudopotential. In principle, local versions can be constructed that
verify the scattering properties for all angular momenta, but they are not smooth and
weak functions. That is why it is computationally more effective to deal with non-local
pseudopotentials.

Normally, only a few different angular momenta are present in the core, meaning that
for values of l > lmax the pseudopotential acts in the same way. Therefore, the summation
in (4.14) can be cut at lmax and recasted in the following form:

VPS (r) =
∞
∑

l=0

V loc
PS (r) P̂l +

lmax
∑

l=0

[

V l
PS(r) − V loc

PS (r)
]

P̂l = V loc
PS (r) +

lmax
∑

l=0

∆V l
PS(r) P̂l (4.15)

where ∆V l
PS(r) are short-range functions confined to the core region, and V loc

PS (r) is an
average local potential that contains the screened Coulomb interaction. It is customary
to take the local component as the pseudopotential for the first angular momentum that
is not represented in the core, e.g. V p

PS(r) for first-row elements, or V d
PS(r) for Si.

4.4.1 How to construct a pseudopotential ?

It is clear that there is an enormous freedom in the way pseudopotentials can be con-
structed. Empirical pseudopotentials determined by fitting some experimental quantities
have been very popular in the past, but they lacked a very important property which is
transferability, namely that a pseudopotential constructed for some specific environment
would not be useful for the same atomic species in a different environment. The first non-
empirical approach to pseudopotentials was the one devised by Phillips and Kleinman
[80] (see above). This approach, however, has a problem: the normalized pseudo-wave
function has a different amplitude than the all-electron wave function, although outside
the core the shapes are the same, and this is not acceptable because an incorrect va-
lence charge distribution leads to errors in the bonding properties. However, this is not a
problem of pseudopotentials in general, but of this paticular construction.
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The construction of a pseudopotential is actually an inverse problem: given a node-
less psuedo-wave function, which outside some cutoff radius rc decays exactly as the
all-electron wave function, the inversion of the radial Schrödinger equation yields a pseu-
dopotential which has the pseudo-wave function as its eigenfunction, at the correct eigen-
value. This means that the scattering property of the full potential inside rc is correctly
mimicked by the pseudopotential at that particular eigenvalue. This property is called
norm conservation. Hamann, Schlüter and Chiang [81] leaded a revolution in this field in
the late seventies when they proposed a procedure to construct non-local norm-conserving
pseudopotentials fitted to first-principles atomic calculations. Moreover, they showed that
the norm-conserving condition implies that the pseudopotential and the full potential have
the same energy variation to first order when transferred to different environments. This
property is known as transferability, and it is the one that makes pseudopotentials useful
for electronic structure calculations. The norm conservation condition implies the conti-
nuity of the logarithmic derivative of the radial wave function — d lnRl(r, ε)/dr — at the
cutoff radius rc, which is simply related to the scattering phase shift.

The norm conservation constraint does not guarantee that the pseudopotential is useful
in any energy range, but only in environments such that the eigenvalues does not depart
significantly from the eigenvalues used in its construction. For instance, a pseudopotential
for H in the H2 molecule will not be useful for hydrogen at high pressures because the
energy ranges are completely different, but a pseudo for Si constructed having in mind
the bulk solid will be useful for the Si surface or for liquid Si under similar PT conditions.
The property that makes this range wider is the loosely defined concept of smoothness,
i.e. the smoother the pseudo, the weaker the energy dependence. The easier recipe for
transferability is to reduce the cutoff radius.

The conditions proposed by Hamann, Schlüter and Chiang for the construction of
psuedopotentials are the following:

1. Φps is nodeless, and it is identical to the all-electron wave function outside a suitably
choosen cutoff radius rc:

Φps(r) = Φ̃ps(r) for r < rc (4.16)

and
Φps(r) = Φae(r) for r ≥ rc (4.17)

2. The first and second derivatives of the pseudo-wave function are continuous at rc.

3. The eigenvalues of the pseudo-wave functions coincide with those of the all-electron
wave functions.

4. The norm of the true and pseudo wave functions inside the core region is the same
(norm-conservation condition):

∫ rc

0

∣

∣

∣r Φ̃ps(r)
∣

∣

∣

2
dr =

∫ rc

0
|rΦae(r)|2 dr (4.18)

5. Other conditions to enhance the smoothness of the potentials.
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Several schemes have been proposed to generate first-principles pseudopotentials that
satisfy the above conditions, differing mainly in functional form of the potentials and the
smoothness conditions. The most popular for a long time, due to its simple form suitable
for analytic integration both, in PW and Gaussian basis sets calculations, were the ones
proposed by Bachelet, Hamann and Schlüter [82], in which the pseudopotentials are fitted
to the following form:

V l
PS(r) = −ZV

r

[

C erf
(√

αcore
1 r

)

+ (1 − C)erf
(√

αcore
2 r

)]

+ (4.19)

+
3
∑

i=1

(Al,i + r2Al,i+3) exp
(

−αl,i r
2
)

(4.20)

4.4.2 Troullier-Martins pseudopotentials

Today, the smoothest norm-conserving pseudopotentials are obtained using the recipe by
Troullier and Martins [83], who thoroughly studied the convergence properties of the PW
expansion of the pseudopotential. They generalized Kerker [84] scheme by proposing the
following analytic form of the wave function inside the cutoff radius:

RPP
l (r) = rl exp[p(r)]

with p(r) = c0 +
∑n

i=2 ci r
i. The rl behaviour for small r is to avoid a hard core pseu-

dopotential with a singularity at the origin. In Kerker’s scheme (where n = 4), the four
coefficients of the polynomial are determined by the conditions: (i) charge conservation
inside the cutoff radius; (ii)-(iv) continuity of the pseudo-wave function and its two first
derivatives at the cutoff radius. Troullier and Martins added variational freedom in the
search for smoothness by increasing the order of the polynomial. They realized that the
asymptotic, large wave number behaviour of the pseudopotential depends on the values
of its odd derivatives at the origin. This implies that a larger degree of smoothness is
achieved when all odd coefficients in the polynomial are set to zero. Additionally, they
found that pseudopotentials that are flat at the origin are also smoother. With these
ingredientes they provided the following practical recipe:

The polynomial is choosen of sixth order in r2: p(r) = c0 + c2 r
2 + c4 r

4 + c6 r
6 + c8 r

8 +
c10 r

10 + c12 r
12, and the coefficients are determined by the following seven conditions:

1. Norm conservation of the charge within the cutoff radius rc:

2c0 + ln
{∫ rc

0
r2(l+1) exp [2p(r) − 2c0] dr

}

= ln
{∫ rc

0
r2
∣

∣

∣RAE
l (r)

∣

∣

∣

2
dr
}

2. Continuity of the pseudo-wave function and its first 4 derivatives at rc, which in
practice can be written as:

•

p(rc) = ln

[

P (rc)

rl+1
c

]
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•

p′(rc) =
P ′(rc)

P (rc)
− l + 1

rc

•

p′′(rc) = 2VAE(rc) − 2εl −
2(l + 1)

rc

p′(rc) − [p′(rc)]
2

•

p′′′(rc) = 2V ′
AE(rc) +

2(l + 1)

r2
c

p′(rc) −
2(l + 1)

rc
p′′(rc) − 2 p′(rc) p

′′(rc)

•

p′′′′(rc) = 2V ′′
AE(rc) −

4(l + 1)

r3
c

p′(rc) +
4(l + 1)

r2
c

p′′(rc) −
2(l + 1)

rc

p′′′(rc) −

− 2 [p′′(rc)]
2 − 2 p′(rc) p

′′′(rc)

where P (r) = r RAE
l (r), and VAE(r) is the all-electron atomic screened poten-

tial (see below).

3. Zero curvature of the screened pseudopotential at the origin, V ′′
sc,l(0) = 0, which

translates into: c22 + c4(2l + 5) = 0.

The derivatives of the wave function and screened potentials are obtained from the
numerical all-electron wave functions and screened potential using seventh-order finite
differences.

The general procedure for obtaining a pseudopotential begins by solving the all-
electron radial Schrödinger equation:

{

−1

2

d

dr2
+
l(l + 1)

2r2
+ V [ρ; r]

}

r RAE
n,l (r) = εn,l r R

AE
n,l (r) (4.21)

where

V [ρ; r] = −Z
r

+
∫

ρ(r′)

|r − r′|dr
′ + µXC [ρ]

and ρ(r) is the sum of the electronic densities for the occupied wave functions.
Then, the pseudo-wave function constructed according to the above prescription is

used to invert (this can always be done because of the nodeless condition) the radial
Schrödinger equation for the screened pseudopotential:

V PP
sc,n,l(r) = εn,l −

l(l + 1)

2r2
+

1

2rRPP
n,l (r)

d2

dr2
[rRPP

n,l (r)]

The ionic pseudopotential is finally obtained by subtracting (unscreening) the Hartree
and exchange-correlation potentials calculated only for the valence electrons (with the
valence pseudo-wave functions):
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V PP
n,l (r) = V PP

sc,n,l(r) −
∫

ρv(r
′)

|r − r′|dr
′ − µXC [ρv]

with ρv(r) =
∑n

i=nc+1

∑i−1
l=0

∣

∣

∣rRPP
i,l (r)

∣

∣

∣

2
. Relativistic expresions based on Dirac’s equation,

instead of Schrödinger’s, have to be used in the case of heavy atoms. They can be found,
e.g. in Ref. [82].

4.4.3 Non-linear exchange-correlation core corrections (NLCC)

If there is an overlap between the core and valence charge densities, the unscreening
process in the construction of the pseudopotentials leads to some errors because the
exchange-correlation potential is not a linear function of the density. A solution to this
problem was proposed by Louie, Froyen, and Cohen [85]:

1. Replace the above unscreening expresion by:

V PP
l (r) = V PP

sc,l (r) −
∫

ρv(r
′)

|r − r′|dr
′ − µXC [ρv + ρc]

2. In the electronic structure calculations performed with this pseudopotential, com-
pute the exchange-correlation contribution for the whole electronic charge, ρv + ρc,
instead of the usual valence charge.

3. Since ρc(r) does not converge rapidly in reciprocal space, it is replaced by:

ρc(r) = A sin(Br)/r for R ≤ R0

where the parameters A and B are determined by the continuity condition for ρc

and its first derivative at the cutoff radius R0.

4.5 The Pseudopotential Plan Wave (PPW) method

The central, and most computationally intensive issue in electronic structure calculations
is the self-consistent solution of Kohn-Sham equations. The first step is to calculate
the Kohn-Sham hamiltonian matrix elements. Since quite a large number of density-
functional electronic structure calculations, and most first-principles MD simulations up
to date, have been carried out within the pseudopotential plane waves (PPW) framework
described above, we shall focus in the following on the computation of matrix elements
within the PPW scheme.

Kohn-Sham equations in the PW basis set are written:
∑

G′ HKS
k+G,k+G′ C

(j)
k+G′ =

ε(j) C
(j)
k+G, and the hamiltonian matrix elements are:

HKS
k+G,k+G′ =

〈

k + G

∣

∣

∣

∣

∣

∣

− h̄2

2m
∇2 + VH(r) + V loc

PS (r) +
lmax
∑

l=0

∆V l
PS(r) P̂l + µXC [ρ]

∣

∣

∣

∣

∣

∣

k + G′
〉

(4.22)
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where the real-space expression of the basis functions is:

〈r |k + G〉 =
ei (k+G).r

√
Ω

. (4.23)

4.5.1 Kinetic term

The expression for the kinetic energy — the first term in (4.22) — is very simple because
PW are precisely the solutions of the Laplace equation, which corresponds to free particles
(only kinetic energy). This implies that the kinetic operator is diagonal in reciprocal space,
and it matrix elements are:

〈

k + G

∣

∣

∣

∣

∣

− h̄2

2m
∇2

∣

∣

∣

∣

∣

k + G′
〉

=
h̄2

2m
|k + G|2 δG,G′ . (4.24)

4.5.2 Local potential

The matrix elements of the local part of the potential, V loc(r) = VH(r) + V loc
PS (r), in the

PW basis set are given simply by the Fourier transform:

〈

k + G
∣

∣

∣V loc(r)
∣

∣

∣k + G′
〉

=
1

Ω

∫

V loc(r) exp[i (G − G′) · r] dr = Ṽ loc(G −G′) . (4.25)

The local pseudopotential part can be written as:

Ṽ loc
PS (G) =

P
∑

I=1

1

Ω

∫

vloc
PS(r −RI) exp[i G · r] dr =

Nα
∑

α=1

Sα(G) ṽα
PS(G) (4.26)

where the sum is over the different atomic species (up to Nα), ṽα
PS(G) is the Fourier

transform of the local component of the atomic pseudopotential, and

Sα(G) =
Pα
∑

I=1

exp[i G · Rα
I ] (4.27)

is the atomic structure factor for species α, which contains all the information about the
positions of the ionic cores. This atomic structure factor should not be confused with what
is usually know as structure factor, i.e. the function obtained by Fourier transforming the
pair correlation function. The latter is a statistical average, while the former corresponds
to a single configuration.

The Hartree potential is given by the following convolution:

VH(r) =
∫

ρ(r′)

|r− r′| dr
′ (4.28)

or, equivalently, to the Poisson equation

∇2VH(r) = −4πρ(r) (4.29)

57



The Poisson equation can be solved in many ways, e.g. by overrelaxation or multigrid
methods. However, when the supercell is periodically repeated, as implicitly emboddied
in the PW approach, the most efficient way to solve it is by recalling the fact that the
Fourier transform of a convolution is the product of the Fourier transforms:

〈k + G |VH |k + G′〉 = ṼH(G −G′) = ρ(G − G′)
4π

|G −G′|2
(4.30)

where 4π/ |G|2 is the Fourier transform of the bare Coulomb potential. The Fourier
transformations can be very efficiently done by using the widely spread Fast Fourier
Transform technique (FFT), which reduces the computational cost of this part of the
calculation from order M2 to order M logM , with M the number of plane waves in the
basis.

Both, the matrix elements of the Hartree potential and of the local component of
the pseudopotential diverge as 1/ |G|2 for |G| → 0. The case of VH , is it obviously
4πZN/ |G|2, but for Ṽ loc

PS , it is a little more subtle. The bare ion-electron Coulomb
interaction would be −Z/r, corresponding to −4π(

∑

α ZαPα)/ |G|2 in reciprocal space.
The local pseudopotential interaction has the same long-range behaviour, since at long
distances the ionic cores look like point-like particles, but at short distances the pseu-
dopotential departs from bare Coulomb. However, the −4π(

∑

α ZαPα)/ |G|2 divergence is
still present because it is a consequence of the long-range Coulomb tail. The sum of the
two contributions is 4πZ(N −∑

α ZαPα)/ |G|2 = 4πQT/ |G|2, with QT the total charge
in the supercell. Therefore, in order to avoid the G = 0 divergence in the local (Hartree
plus pseudo) potential, an electronic structure calculation for a periodic system can only
be performed under charge neutrality conditions. This is a consequence of the long range
sums of Coulomb-like interactions in infinite systems, and it is not present in calculations
that do not verify PBC. Plane waves authomatically imply PBC, so that it is not pos-
sible to deal with charged systems within a PW approach in a straightforward way. If
one is interested in dealing with charged systems, the customary approach (although not
formally justified) is to artificially neutralize the charge in the supercell by adding uni-
formely distributed charge of the opposite sign. In practice, this simply means to ignore
the G = 0 term of the potential as usual and to add a background energy to the total
energy.

4.5.3 Non-local pseudopotential

The only contribution that is somewhat more complicated is the one for the non-local
components of the pseudopotential. For a particular l-component, the matrix elements
for an atom located at the origin are:

∆V l
k+G,k+G′ =

〈

k + G
∣

∣

∣∆V l
PSP̂l

∣

∣

∣k + G′
〉

= (4.31)

=
l
∑

m=−l

〈

k + G
∣

∣

∣Ylm

〉

∆V l
PS(r)

〈

Ylm

∣

∣

∣k + G′
〉

=

= 4π(2l + 1)Pl(cos θk+G,k+G′)
∫

r2 jl (|k + G| r) ∆V PS
l (r) jl (|k + G′| r) dr
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where Pl(cos θ) are Legendre polynomials, and jl(x) are the spherical Bessel functions.
The straightforward calculation of the above matrix elements involves the calculation of
M(M+1)/2 radial integrals. This was the original way of computing non-local pseudopo-
tential contributions, where the integration was done, e.g. via Gauss-Hermite polynomials,
to save computer time.

A more efficient way of computing these non-local contributions was devised in
1982 by Kleinman and Bylander [86], who introduced a modified projection procedure
onto the different angular momentum states. Instead of the original form ∆V̂ l

PS =
∑

m

∣

∣

∣Ylm

〉

∆V l
PS(r)

〈

Ylm

∣

∣

∣, they proposed a fully separable projector which uses a single
basis state per angular momentum:

∆V̂ l
KB =

l
∑

m=−l

∣

∣

∣ΦPS
lm ∆V̂ l

PS 〉 〈 ΦPS
lm ∆V̂ l

PS

∣

∣

∣

〈

ΦPS
lm

∣

∣

∣∆V̂ l
PS

∣

∣

∣ΦPS
lm

〉 (4.32)

where ΦPS
lm are the pseudo-atomic wave functions defined in the preceeding section. When

this modified projector is applied to a pseudo-atomic wave function, it gives identical
results to the original projector, as can be easily seen from (4.32).

The matrix elements of this new operator are, considering now the full system:

∆V KB,l
k+G,k+G′ =

l
∑

m=−l

P
∑

I=1

F ∗
lm,I(k + G) Flm,I(k + G′) (4.33)

with

Flm,I(k + G) =

〈

ΦPS
lm

∣

∣

∣∆V̂ l
PS

∣

∣

∣k + G
〉

√

〈

ΦPS
lm

∣

∣

∣∆V̂ l
PS

∣

∣

∣ΦPS
lm

〉

=

=
ei (k+G)·RI

∫

r2 ΦPS
lm (r) ∆V PS

l (r) jl (|k + G| r) dr
√

∫

r2 |ΦPS
lm (r)|2 ∆V PS

l (r) dr
. (4.34)

The advantage of this formulation is obvious: now the calculation of the matrix ele-
ments involves the evaluation of only the M integrals Flm(k + G), instead of the former
M(M + 1)/2 ones. These integrals are then simply multiplied amongst themselves.

When the Kleinman-Bylander form is applied in an environment different from the
isolated atom, it does not produce identical results than the original semilocal operator,
because the wave function is not projected onto a radially complete set of spherical har-
monics. In general this is not a problem, but it sometimes produces some difficulties
which are already well-known and under control [87]. These are the so-called ghost states,
which are visualized as an unphysical divergence in the logarithmic derivative (signature
of an eigenstate) of the pseudo-radial wave function at an energy below that of the true
valence state. Such divergences are a consequence of the choice of the local potential, and

are reflected in a too large value of the quantity EKB
l =

[〈

ΦPS
lm

∣

∣

∣∆V̂ l
PS

∣

∣

∣ΦPS
lm

〉]−1/2
. A test

for ghost states consists of looking at the two lowest eigenvalues of the atomic hamiltonian
without the non-local contributions, Eloc0

l and Eloc1
l . If, in the application, El < 0, then a

ghost state exists if and only if Eloc0
l < El, and also if El > 0, a ghost state exists if and

only if Eloc1
l < El [88].
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4.5.4 Exchange-correlation

The exchange-correlation potential is local in real space, so that it is usually calculated
by evaluating the appropriate expression for the electronic density (and the gradient of
the density in the case of GGA) calculated on the real-space mesh associated with the
PW expansion. Then, µXC(r) is transformed to reciprocal space using the FFT.

4.5.5 Total energy

The total energy per supercell of the infinite periodic system is given by the Kohn-Sham
expression:

EKS[ρ] =
1

Ncell

(

Te[ρ] + EH [ρ] + Eloc
PS + Eii + Enl

PS + EXC [ρ]
)

. (4.35)

where the factor Ncell in the denominator stands only for normalizing the energy to one
supercell.

The three local electrostatic contributions: EH , E
loc
PS, and Eii, diverge when taken

individually, in the same way as the local potential operator. The reason for these
divergencies, which are problematic from the computational point of view, is that the
G = 0 term in the reciprocal space expansion of the energy corresponds to the monopolar
term in a multipolar expansion. The Hartree term, for example, takes into account only
the electron-electron interaction, so that the coefficient acompanying 4π/ |G|2 is N2/2Ω .
The Eii term contributes with (

∑

α ZαPα) 2/2Ω and Eloc
PS with −(

∑

α ZαPα)N/Ω. It is
easy to see that the only way to avoid the divergence of the energy is by taking these
three contributions together and, exactly as before, the non-divergence condition is that
∑

α ZαPα = N , i.e. charge neutrality in the supercell.
Let us then calculate the contribution of these three terms:

EH + Eloc
PS + Eii =

1

2

∫ ∫

ρT (r) ρT (r′)

|r − r′| dr dr′ +

(

Eloc
PS −

∫ ∫

ρ(r) ρi(r
′)

|r − r′| dr dr′
)

+(4.36)

+

(

Eii −
1

2

∫ ∫

ρi(r) ρi(r
′)

|r − r′| dr dr′
)

where ρi(r) is a charge distribution associated with the ionic subsystem, and ρT (r) =
ρ(r) + ρi(r) is the total charge density, which is taken to be neutral. The calculation of
these double integrals is very expensive, but fortunately this operation can be efficiently
done in reciprocal space by using FFTs. The first term is a simple convolution integral,
and can be written

1

Ncell

1

2

∫ ∫

ρT (r) ρT (r′)

|r − r′| dr dr′ =
Ω

2

∑

G 6=0

4π

G2
ρ̃T (G) ρ̃T (−G) (4.37)

The second term (Ẽloc
PS for short) can also be reduced to an expression of the same

kind by using (4.26), which gives
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1

Ncell

Ẽloc
PS =

1

Ncell

Nα
∑

α=1

Pα
∑

I=1

∫

ρ(r) vα,loc
PS (r) dr− 1

Ncell

∫ ∫

ρ(r) ρi(r
′)

|r − r′| dr dr′ = (4.38)

=
∑

G 6=0

Nα
∑

α=1

[

Sα(G) ṽα
PS(G) − 4π

G2
ρ̃i(G)

]

ρ̃(−G)

(notice that again the G = 0 term vanishes because Sα(0) = ρ̃i(0) =
∑

α ZαPα, the total
ionic charge).

The third term involves the computation of the Coulomb energy of a periodic collec-
tion of point-like particles. A real-space evaluation of such an energy is extremely difficult
because the Coulomb interaction is long-ranged, and summations are conditionally con-
vergent. Coulomb interactions are also long-ranged in reciprocal space, so that a simple
Fourier transformation does not solve the problem. The solution to this problem was
given already in 1917 by Ewald [89], who developed a technique that consists of dividing
the summation into a real-space and a reciprocal-space part, both of which are rapidly
convergent. Ewald’s method is based on the following identity:

∞
∑

l=−∞

1

|R1 + l −R2|
=

2√
π

∞
∑

l=−∞

∫ ∞

η
exp

[

|R1 + l −R2|2 σ2
]

dσ + (4.39)

+
2π

Ω

∑

G

∫ η

0
exp

[

−|G|2
4σ2

]

exp [i (R1 − R2) · G]
1

σ3
dσ

which carries to the well-known expression for the Ewald sums [74]:

Eii =
1

2

P
∑

I=1

P
∑

J 6=I

ZIZJ

∞
∑

l=−∞

1

|RI + l − RJ |
= (4.40)

=
1

2

P
∑

I=1

P
∑

J 6=I

ZIZJ





∞
∑

l=−∞

erfc (|RI + l − RJ | η)
|RI + l − RJ |



− η√
π

P
∑

I=1

Z2
I − π

2η2Ω

∣

∣

∣

∣

∣

P
∑

I=1

ZI

∣

∣

∣

∣

∣

2

+

+
1

Ω

∑

G 6=0

4π

G2
exp

(

−|G|2
4η2

)

∑

α

Sα(G)
∑

β

Sβ(−G) ,

where erfc(x) is the complementary error function, which decays almost like a Gaussian,
and 1/η is a cutoff distance which is appropriately choosen to optimize the convergence
properties of the real and reciprocal space sums. This implies that the lattice sums can
be cut at some value l = lmax, and the reciprocal space sum can also be terminated at
some cutoff Gcut. In practice, Gcut is determined already by the PW expansion of the
electronic wave functions, and the value of η is choosen accordingly, to make the reciprocal
space sum convergent within Gcut. The typical values of lmax are 0 or 1 at most. If η is
choosen in such a way that lmax = 0, then only the interaction with the closest images
of the other atoms are considered. This is known as minimum image convention. When
I = J the l = 0 term in the first summation should be absent because it would imply that
an ion interacts with itself. The terms η√

π

∑P
I=1Z

2
I precisely cancels this self-interaction.
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The last term in the second line is the correction due to the fact that the G = 0 term
in the reciprocal space sum has been omitted. It appears because the expansion of the
Gaussian around G = 0 gives rise to a divergent term 4π/G2 plus a regular term π/η2.
When expression (4.40) is combined as in the last term of equation (4.36), the second
term in parenthesis will cancel the divergence mentioned above. Moreover, if we choose
the pseudo-ionic charge distribution ρi(r) in the following way:

ρi(r) =
η3

π3/2

P
∑

I=1

ZI erf
(

−η2 |r −RI |2
)

(4.41)

ρ̃i(G) =
∑

α

Sα(G) exp

(

−|G|2
4η2

)

,

the second and last terms in (4.40) exactly cancel with 1
2

∫ ∫ ρi(r) ρi(r
′)

|r−r′| dr dr′ in (4.36). The
pseudo-ionic charge density can also be viewed as a smearing of the point-like ionic charge
into the form of an error function for computational purposes (convergence of the lattice
sums), and this is then corrected back.

In conclusion, the local electrostatic energy per supercell is rewritten in the following
way:

1

Ncell

(

EH + Eloc
PS + Eii

)

=
Ω

2

∑

G 6=0

4π

G2
ρ̃T (G) ρ̃T (−G) − η√

π

P
∑

I=1

Z2
I + (4.42)

+
Nα
∑

α=1

∑

G 6=0

Sα(G)

[

ṽα
PS(G) − exp

(

−|G|2
4η2

)]

ρ̃(−G) +

+
1

2

P
∑

I=1

P
∑

J 6=I

ZIZJ





lmax
∑

l=−lmax

erfc (|RI + l −RJ | η)
|RI + l − RJ |



 .

The remaining terms in the total energy per supercell are:

• The exchange-correlation energy EXC [ρ] =
∫

ρ(r) ǫXC [ρ] dr, which is easily calcu-
lated by integrating numerically the XC energy density in real-space.

• The kinetic energy Te[ρ], which can be computed with less effort in reciprocal space,
where the kinetic operator is diagonal, i.e.

Te[ρ] =
h̄2

2m

∑

k∈BZ

ωk

Nk
∑

i=1

fk
i

∑

G

|k + G|2
∣

∣

∣Ψ̃k,i(G)
∣

∣

∣

2
(4.43)

where fk
i is the occupation number of state i at wave vector k, and ωk are the

weights of the k-points for the BZ averages. For semiconductors it is customary to
use special k-points which exploit the symmetry of the system [64, 65]. For metals,
the BZ sums are less rapidly convergent. The two standard alternatives are to use
special points [66] in combination with a Fermi surface smearing technique [90, 91],
or the linear tetrahedron method [92].
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• The non-local pseudopotential energy, which is computed in reciprocal space in the
following way:

Enl
PS =

∑

k∈BZ

ωk

lmax
∑

l=0

l
∑

m=−l

P
∑

I=1

Nk
∑

i=1

fk
i

∣

∣

∣

∣

∣

∑

G

ei (k+G)·RIFlm,I(k + G)Ψ̃k,i(G)

∣

∣

∣

∣

∣

2

(4.44)

with Flm(k + G) given by (4.34).

• The electronic density, which is also needed in the calculation, is more easily calcu-
lated in real space:

ρ(r) =
∑

k∈BZ

ωk

Nk
∑

i=1

fk
i |Ψk,i(r)|2 . (4.45)

4.5.6 Forces on the nuclear coordinates

The Helmann-Feynman forces on the nuclear coordinates are needed in order to perform
geometry optimizations and MD simulations. Within the PPW approach the forces are
very simple to calculate and computationally inexpensive. In particular, the fact that the
PW basis set is floating (it does not depend on the nuclear coordinates as in most localized
basis sets) implies that the so-called Pulay forces [93], arising from the derivatives of the
basis functions with respect to the nuclear coordinates, vanish identically. These forces
will also vanish for atom-attached basis sets, but only in the case that the basis set is
complete. Otherwise, they have to be explicitly calculated. All-electron methods usually
involve the calculation of Pulay forces due to the augmentation spheres that move with
the nuclei. Force theorems have, however, been devised by Methfessel and Schilfgaarde
in order to avoid the computation of Pulay forces [94]. In the PPW methodology, the
only terms that include a dependence on the nuclear coordinates are the pseudopotential
(local and non-local parts), and the ion-ion interaction. The forces on the nuclei have the
following expression:

FI =
ZI

2

P
∑

J 6=I

ZJ

lmax
∑

l=−lmax





erfc (|RI + l − RJ | η)
|RI + l −RJ |3

+
η exp

(

−η2 |RI + l − RJ |2
)

|RI + l − RJ |



×

× (RI + l − RJ) − 2
∑

k∈BZ

ωk

lmax
∑

l=0

l
∑

m=−l

P
∑

I=1

Nk
∑

i=1

fk
i

(

∑

G

e−iG·RIF ∗
lm,I(k + G)Ψ̃∗

k,i(G)

)

×

×
(

∑

G′

i (k + G′) eiG′·RI Flm,I(k + G′)Ψ̃k,i(G
′)

)

−

−
Nα
∑

α=1

∑

G 6=0

iG eiG·RI

[

ṽα
PS(G) − exp

(

−|G|2
4η2

) ]

ρ̃(−G) (4.46)
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Chapter 5

Electronic self-consistency:
minimizing the energy functional

The hamiltonian matrix elements, whose computation within the pseudopotential plane
waves (PPW) scheme was thoroughly described in the preceeding chapter, are the crucial
ingredient needed to solve the electronic structure problem as emboddied in the self-
consistent Kohn-Sham equations. The forces on the nuclear degrees of freedom, also
described before, serve to integrate the newtonian equations of motion either as a means
for optimizing the nuclear geometry, or to study the dynamical and statistical properties
at finite temperature. In this chapter I describe the most commonly used numerical
techniques to achieve these goals, once matrix elements and forces are known.

5.1 Minimization of the electronic energy functional

The central problem in electronic structure calculations within the density functional
formalism is to minimize the energy as a functional of the electronic density. It can be
attacked directly as a minimization problem by using standard techniques like steepest
descent or conjugated gradients, or it can be reformulated in terms of the self-consistently
Kohn-Sham set of equations. This latter approach is, in fact, the traditional procedure
in electronic structure calculations, and it involves a nested procedure of diagonalizing
the matrix equation at fixed input density, and constructung the output density with the
orbitals that solve the matrix equation, but with the hamiltonian evaluated at the input
density:

ĤKS[ρin]ϕi(r) = εi ϕi(r) .

ρout(r) =
N
∑

i=1

|ϕi(r)|2

Since potential and density are univocally connected via ohenberg-Kohn theorem, the
above self-consistency condition can also be stated in terms of the Kohn-Sham potential

V out
KS (r) = Vext(r) +

∫

ρout(r
′)

|r − r′|dr
′ + µXC [ρout(r)] ,
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where the output density ρout(r) corresponds to the solution of Kohn-Sham equations for
a trial input potential V in

KS(r).

5.1.1 Reaching self-consistency: the problem of the negativity

of the kernel.

Reaching the self-consistent solution, i.e. ρout(r) = ρin(r), or V out
KS (r) = V in

KS(r), is the
problem of finding the fixed point of an equation of the type x = f(x). The obvious
strategy is to start from some guess x0, and then to iterate the equation xn+1 = f(xn). If
this procedure converges, then the limiting value is the fixed point x̄ = f(x̄). The success
of such a strategy strongly depends on the shape of the function f(x). If the slope of
f(x) is too large and negative, this simple iterative solution does not converge. This is
precisely our case, because our function is

f(r, r′) =
δV out

KS (r)

δV in
KS(r′)

=
∫

1

|r − r′′|
δρout(r

′′)

δV in
KS(r′)

dr′′ +
dµXC [ρout(r)]

dρout(r)

δρout(r)

δV in
KS(r′)

(5.1)

and the response function χ(r, r′) = δρout(r)/δV
in
KS(r′) of the electron gas is negative

definite because increasing the potential implies that electrons tend to flow away. The
slope may also be very large because the Coulomb kernel 1/ |r − r′| in the reciprocal space
representation becomes 4π/G2, which diverges very strongly for small G.

5.1.2 Mixing schemes

The simplest approach to overcome the convergence problems when a simple out-in re-
placement procedure is ineffective, is to observe that the physical reason for this divergence
is that large charge redistributions occur from one iteration to the next. This is the so-call
charge-sloshing problem. These charge displacements can be damped out by mixing the
input and output densities according to some prescription. The simplest strategy is what
is know as simple mixing :

ρ
(n+1)
in (r) = α ρ

(n)
out(r) + (1 − α) ρ

(n)
in (r) (5.2)

where α is an empirical parameter adjusted to minimize the number of iterations needed
to achieve self-consistency.

This procedure is not always satisfactory. Difficult cases, e.g. metallic systems, force
the choice of very small value for α — sometimes down to values of the order of 0.01 —
in order to avoid the divergence of the iterative procedure. This means that only a tiny
fraction of the output density is used to construct the new input density, and implies that
a large number of iterations may be needed to achieve self-consistency.

The next natural step is to mix also input and output densities of the preceeding
iterations. The simplest scheme along this line was proposed by D. G. Anderson [95, 96],
and consists of constructing modified input and output densities by mixing the two last
steps:

ρ̄
(n)
in (r) = β ρ

(n)
in (r) + (1 − β) ρ

(n−1)
in (r) (5.3)

ρ̄
(n)
out(r) = β ρ

(n)
out(r) + (1 − β) ρ

(n−1)
out (r)
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and to propose a guess for the next iteration of the same form used in the simple mixing
scheme:

ρ
(n+1)
in (r) = α ρ̄

(n)
out(r) + (1 − α) ρ̄

(n)
in (r) , (5.4)

where α is still an empirical mixing parameter but β is choosen in such a way as to
minimize the ”distance” between ρ̄

(n)
in and ρ̄

(n)
out. This is a natural criterion for accelerating

the convergence of the self-consistent procedure. By minimizing
∥

∥

∥ρ̄
(n)
out(r) − ρ̄

(n)
in (r)

∥

∥

∥

2
with

respect to β, it is easy to show that

β =
< [ρ

(n)
out − ρ

(n)
in ] | [(ρ

(n)
out − ρ

(n)
in ) − (ρ

(n−1)
out − ρ

(n−1)
in ) >

∥

∥

∥(ρ
(n)
out − ρ

(n)
in ) − (ρ

(n−1)
out − ρ

(n−1)
in )

∥

∥

∥

2 (5.5)

where < · · · | · · · > in the numerator is a scalar product. This alternative is extremely
simple and effective, allowing to use values of α as large as 0.3 in the difficult cases
alluded above, and reducing the number of self-consistency iterations by a factor or 10 or
more. More sophisticated schemes that mix more than two iterative steps have also been
proposed. The so-called Broyden schemes are described in [96]. A simple generalization
of the Anderson scheme to an arbitrary number of iterations has been proposed by Pulay
under the name of direct inversion in iterative subspace (DIIS) [97]. Now the guess for
the next iteration is constructed exactly as in (5.4), but the modified input and output
densities are constructed as

ρ̄
(n)
in (r) =

Nmix
∑

i=1

βi ρ
(n−Nmix+i)
in (r) (5.6)

ρ̄
(n)
out(r) =

Nmix
∑

i=1

βi ρ
(n−Nmix+i)
out (r)

under the normalization constraint that
∑Nmix

i=1 βi = 1. Minimization of the ”distance”

between ρ̄
(n)
in and ρ̄

(n)
out with respect to the Nmixcoefficients {βi} leads to a system of linear

equations that can be put in the form of the following matrix equation:















< δρ(n−Nmix+1)|δρ(n−Nmix+1) > · · · < δρ(n−Nmix+1)|δρ(n) > 1
... · · · · · · ...

< δρ(n)|δρ(n−Nmix+1) >
. . . < δρ(n)|δρ(n) > 1

1 · · · 1 0



























β1
...

βNmix

λ













=













0
...
0
1













,

(5.7)

where < δρ(i)|δρ(j) >=
∫

[ρ
(i)
out(r)−ρ(i)

in (r)] [ρ
(j)
out(r)−ρ(j)

in (r)] dr. There is a limit in the num-
ber of iterations that can be mixed using the DIIS scheme, because after some iterations
the linear system develops a linear dependency and the matrix becomes singular. Before
reaching this limit, it is observed that this tendency towards linear dependency makes
that mixing more than 4 or 5 iterations does not improve any longer the convergence
properties of the algorithm.
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5.1.3 Direct minimization strategies

The main drawback of direct diagonalization methods within the PPW approach is that
the number of plane waves involved is large (of the order of 100 per atom), and it grows
linearly with the volume of the supercell. This implies that the direct diagonalization of
the matrix equation at fixed density may become an intractable task due to both, memory
storage and CPU time requirements. This was the fact that induced the development of
iterative minimization techniques within this field — originally by Car and Parrinello [98].

An alternative to solve the electronic structure problem is to explicitly minimize the
energy functional by means of iterative (Krylov) methods. The simplest, altough quite
inefficient, such method is known as steepest descent (SD). In this procedure, the mini-
mum is reached by a series of downhill steps in the direction of the local gradient of the
functional with respect to the single-particle orbitals:

ϕ
(n+1)
i (r) = ϕ

(n)
i (r) − ∆

δΩKS[{ϕ(n)
i (r)},R]

δϕ
∗(n)
i (r)

(5.8)

with ΩKS = EKS −∑

i,j λij(< ϕi|ϕj > −δij), and the Kohn-Sham energy functional EKS

is given by the usual expression. The second term is to ensure the orthonormalization
of the orbitals, as required by the concept of the non-interacting reference system. The
functional derivatives in (5.8) are given explicitly in the previous set of notes. There, it
can be seen that they represent the action of the Kohn-Sham hamiltonian on the single-
particle orbitals, supplemented with the orthonormalization constraint, i.e.

ϕ
(n+1)
i (r) = ϕ

(n)
i (r) − ∆



ĤKS ϕ
(n)
i (r) −

∑

j

λij ϕ
(n)
j (r)



 (5.9)

where ∆ is a time-like variable (time step) which is adjusted to give the fastest conver-
gence, i.e. the largest possible value that prevents the divergence of the SD procedure.
Ths divergence is due to the fact that the SD equations can be thought of as the discrete
version of a first-order differential equation: ϕ̇i(r) = −δΩKS{ϕ(n)

i (r)}/δϕ∗(n)
i (r), whose

solution is a combination of exponential decays in the time-like variable. If the time step
is too long compared to the inverse of the largest exponent (the fastest decay), then the
integration step overshoots and the iterative process diverges. In most applications the
value of a constant ∆ is estimated by trial and error. Another alternative is to determine
it dynamically by performing a line minimization along the direction of the gradient, and
to choose ∆(n) in such a way as to maximize the decrease in energy.

The steepest descent procedure is very inefficient (it may take hundreds of steps to
reach the minimum), because it is bound by the fact that the gradient at step n + 1
is orthogonal to the gradient at step n, and this reintroduces errors proportional to the
previous gradient. In order to avoid this, each minimization step has to be independent
from all the previous ones. It can be shown (see, e.g. [76]) that this condition is equiv-
alent to ask that all the search directions d(n) should be conjugated to each other, i.e.
d(n)·G · d(m) = 0, where G is the gradient operator.

Algorithms that accomplish the above task are called conjugated gradients (CG). It is
clear that the above condition does not determine a unique CG algorithm, but a familiy.
One of them is given by the following prescription for the search directions:
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d(n) = g(n) + γ(n) d(n−1) (5.10)

with

γ(n) =
g(n) · g(n)

g(n−1) · g(n−1)
(5.11)

where g(n) = −δΩKS{ϕ(n)
i (r)}/δϕ∗(n)

i (r), and γ(1) = 0.
Since each minimization step is independent from the previous ones, then the dimen-

sion of the search space is reduced by one at each iteration. In theory, a CG algorithm
should reach the minimum of the target function in a number of steps equal to the dimen-
sion of the search space. In practice, however, the number of iterations can be significantly
reduced from this value. It is interesting to notice the the well-known Lanczos algorithm
for matrix diagonalization is equivalent to a conjugated gradients minimization algorithm.

An alternative to the above relaxation dynamics is to introduce the annealing proce-
dure, which consists of a damped second order dynamics:

µ ϕ̈i(r) + η ϕ̇i(r) = −δΩKS{ϕ(n)
i (r)}/δϕ∗(n)

i (r) (5.12)

with µ a mass-like coefficient and η > 0 a friction coefficient which ensures that the energy
is always scaled down during the dynamical evolution. This second order set of differential
equations can be integrated numerically using the following discretized algorithm:

ϕ
(n+1)
i (r) =

1

1 + ∆̃(η, µ)

[

2ϕ
(n)
i (r) −

(

1 − ∆̃(η, µ)
)

ϕ
(n−1)
i (r)

]

−

− 1

1 + ∆̃(η, µ)

∆2

µ



ĤKS ϕ
(n)
i (r) −

∑

j

λij ϕ
(n)
j (r)



 (5.13)

with ∆̃(η, µ) = η∆/2µ. The relaxation time for this frictional dynamics is τanneal = µ/η.
It is easy to see that the steepest descent algorithm is recovered for ∆̃(η, µ) = 1, while
∆̃(η, µ) = 0 (no friction) corresponds to an undamped, conservative dynamics. This latter
cannot be used for minimization purposes, but we shall see in the folowing section how
it becomes useful in first-principles molecular dynamics simulations. Another possibility
is to dynamically adjust the friction coefficient η so as to keep constant, e.g. the kinetic
energy of the orbitals defined as Ke = µ

∫ | ϕ̇i(r)|2 dr. This might be useful when the
minimization process is difficult for relaxational dynamics, and this happens when the
landscape in the orbital space is very smooth.

Convergence acceleration procedures like the DIIS described amongst the mixing
schemes can also be used in connection with the minimization of the energy functional in
the space of single-particle orbitals [99].

5.1.4 Orthonormalization

The exact integration of the above equations of motion for the orbitals is enough to ensure
their mutual orthogonality, provided that they initially were orthogonal. The discretized
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numerical integration, however, introduces numerical errors such that orthogonality de-
teriorates very rapidly. It is then necessary to orthogonalize the orbitals at each step in
the iterative procedure. In the case of minimization, any orthonormalization algorithm,
like Gram-Schmidt, can be used because there is no energy conservation constraint to
respect. In a conservative second order dynamics, however, there is only one orthogonal-
ization procedure which is consistent with the equations of motion, and it is given by the
following expression for the Lagrange multipliers λij [100]:

λij =
(fi + fj)

2

∫

ϕ∗
j (r) ĤKS ϕi(r) dr− µ

∫

ϕ̇∗
j (r) ϕ̇i(r) dr . (5.14)

This is because, even if the orbitals are defined besides a unitary transformation (the
electronic density is the only physically relevant quantity), the kinetic-like term, and thus
the associated Lagrangian, is not.

An algorithm to force this type of holonomic constraints has been proposed in the
context of a geometrically constrained classical molecular dynamics by Ciccotti, Ryckaert
and Berendsen [101], under the name of SHAKE. The procedure consists of two steps:
first, the equations of motion are integrated as above without including the constraints.
This leads to non-orthogonal, unnormalized updated orbitals ϕ̄

(n+1)
i . Then, a corrective

action is applied to these orbitals in the following way:

ϕ
(n+1)
i = ϕ̄

(n+1)
i +

∑

j

x∗ij ϕ
(n)
j (5.15)

where {ϕ(n)
i } are the orthonormal orbitals at the preceeding iterative or MD step. The

matrix x∗ij = ∆2λij/µ has to be then determined in such a way that the new orbitals

{ϕ(n+1)
i } are orthonormal. It is easy to show that the orthonormality condition is the

following:
Aik +

∑

j

xij Bjk +
∑

j

x∗kj B
∗
ki +

∑

j

xij x
∗
kj = δik (5.16)

with Aij =< ϕ̄
(n+1)
i |ϕ̄(n+1)

j > and Bij =< ϕ
(n)
i |ϕ̄(n+1)

j >. In matrix notation, the above

equation (5.16) reads: 1 − A = XB + B†X†+XX†, where the dagger indicates the her-
mitian conjugation operation. The solution to this equation can be easily obtained by
and iterative procedure which typically converges in less than 10 steps. Once the matrix
of the constraints X has been determined, the new orthonormal orbitals are calculated
according to (5.15).

5.1.5 Preconditioning

The maximum integration time step ∆ of the equations of motion for the orbitals is
determined by the fastest frequency present in the spectrum of the dynamical orbitals,
which are given by:

ω2
i,G,G′ ∝ δEKS

δϕ∗
i (G) δϕi(G′)

.
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In general, this tensor can be quite complicated to calculate. However, it is easy to
realize that the dominant contribution for large G wave numbers comes from the kinetic
energy

δT

δϕ∗
i (G) δϕi(G′)

=
G2

2Ω
δG,G′ (5.17)

while the potential energy contributions are dominant for small wave numbers, e.g. for
the Hartree potential,

δEH

δϕ∗
i (G

′) δϕi(G′′)
=
∑

G

4π

G2
ϕi(G

′−G)ϕ∗
i (G

′′ + G) . (5.18)

The idea of preconditioning methods is based on the fact that for large wave vectors
the proper frequencies are basically given by the kinetic kernel (5.17), which assumes a
very simple form. In that limit, the force term in the equations of motion becomes

∆2

µ
ĤKS ϕi(G) ∝ ∆2G2

µ
ϕi(G)

and then, a larger time step ∆prec can be achieved by defining a G-dependent mass-like
coefficient µprec(G) ∝ G2 for the large G components of the orbitals. This is because this
procedure renormalizes down the spectrum in the following form: ω̃i,G = ωi,G/G. This
approach is valid as long as the kinetic kernel is more important than the potential kernel.
When the potential terms become relevant, a different preconditioning factor has to be
adopted. Even if sophisticated proconditioning schemes that use the G-dependence of the
local potential can be devised, the simpler algorithm consisting of using a constant mass-
like term µ0 up to some cutoff vector Gmass, and a G-dependent µprec(G) = µ0(G/Gmass)

2

for G > Gmass, already gives very satisfactory results at negligible additional cost. In
general, the value of Gmass will depend on the particular system under study. Systems
characterized by a free electron-like behaviour will need a small Gmass, while more tightly
bound electrons will require a larger Gmass. Typical values of Emass = G2

mass/2 are
between 1 and 4 Ry. The optimal value of Emass, i.e. the one that maximizes the time
step ∆prec, can be rapidly obtained by trial and error.
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Chapter 6

First-principles Molecular Dynamics

At the end of the first chapter it was mentioned that the set of Newtonian equations of
motion:

MI
d2RI(t)

dt2
= − ∂

∂RI

〈

Φ(R)
∣

∣

∣ĥe(R)
∣

∣

∣Φ(R)
〉

− ∂Vnn(R)

∂RI
(6.1)

where

ĥe(R, r) = −
N
∑

i=1

h̄2

2m
∇2

i +
e2

2

N
∑

i=1

N
∑

j 6=i

1

| ri − rj |
− e2

P
∑

I=1

N
∑

i=1

ZI

| RI − ri |
(6.2)

and

Vnn(R) =
e2

2

P
∑

I=1

P
∑

J 6=I

ZIZJ

| RI − RJ | . (6.3)

can be integrated numerically to generate realistic physical trajectories in phase space.
The fact that these trajectories are realistic is a consequence of the first-principles de-
scription of the acting forces, which is achieved at the expenses of introducing explicitly
the electronic component in the adiabatic approximation. This avoids the bias that is
necessarily introduced when the interatomic interactions are decribed through empirical,
classical potentials. Of course, the price is quite high, because now the electronic problem
has to be solved every time step of the MD integration, typically amounting to an over-
load of a factor of 1000 with respect to classical simulations. Therefore, one must be very
careful to analyse whether the problem under study really needs a first-principles descrip-
tion or not. Essentially, a first-principles description is necessary when the chemistry of
the system plays an important role, e.g. when there is making and breaking of chemical
bonds, changing environments, variable coordination, etc. If this is not the case, then
better put the effort in looking for a suitable classical force field, which can be obtained
by fitting the parameters of the potential to the results of some appropriate first-principles
calculations or MD simulations. This would allow for much faster and longer simulations
of much larger samples, i.e. to a significant improvement on the statistical properties.
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6.1 Density functional Molecular Dynamics

A feasible first-principles (self-consistent) MD approach can be obtained by solving the
electronic problem for the ground state according to density functional theory. In that
case we have

〈

Φ(R)
∣

∣

∣ĥe(R)
∣

∣

∣Φ(R)
〉

= EDFT [ρ,R) = TR[ρ] +
1

2

∫ ρ(r)ρ(r′)

|r − r′| dr dr′ + EXC [ρ] + (6.4)

+
P
∑

I=1

∫

ρ(r) v(r − RI) dr +
1

2

P
∑

I=1

P
∑

J 6=I

ZIZJ

|RI −RJ |

and the force on the nuclear coordinates is obtained by simple derivation, noting that
only the last two terms have a non-vanishing contribution:

FI = −∂EDFT [ρ,R)

∂RI
= −

∫

ρ(r)
∂v(r −RI)

∂RI
dr +

P
∑

J 6=I

ZIZJ (RI − RJ)

|RI −RJ |3
. (6.5)

At this point, the straightforward procedure towards a computational scheme for a
first principles molecular dynamics (FPMD) would be to keep the electronic subsystem
always in the ground state compatible with the current nuclear configuration. Such a
scheme can indeed be devised, but it has to be ensured that the electronic density is
very well converged (in the sense of self-consistency) because, otherwise, a systematic
perturbation (dragging) is being introduced in the nuclear dynamics.

For some reason, even if this type of scheme was theoretically proposed in the mid
eighties, it was not the first one to be realized in the practice. At that time the com-
putational cost of a self-consistent electronic calculation was too high for to the existing
facilities, and researchers had in mind that the above plan was not feasible. In 1985,
Roberto Car and Michele Parrinello [98] introduced an alternative scheme for a FPMD
which did not involve electronic self-consistency at each MD step. They were the first to
show that FPMD was possible, and thus opened a completely new field in computational
physics with an astonishing impact not only in physics, but also in chemistry, materials
science, and biochemistry.

In the preceeding we have used the terms first-principles and density functional as
synonyms. It is important to remark that DFT is only one of the possible realizations
of a first-principles calculation. One could also think of performing a FPMD simulation
in which the eletronic component is described using quantum chemistry methods, e.g.
Hartree-Fock, MP2, or CI. The advantage of DFT is that its computational cost, at least
within standard approximations like the LDA and GGA, is significantly lower (lower than
HF, which is the fastest of these methods). In fact, HFMD has been proposed and realized
in order to study the dynamics of a molecular system in an excited state, where DFT
is not well suited. In order to avoid confusion, we are going to used the term density
functional molecular dynamics (DFMD), or Car-Parrinello (CP) method, to distinguish
from other possible FPMD schemes, even if these latter are by far the fewest.
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6.1.1 The Car-Parrinello lagrangian

Going back to DFT, the solution of Kohn-Sham equations can be thought of as a min-
imization problem in the many-fold of the single-particle (orthogonal) orbitals of the
non-interacting reference system, {ϕi(r)}. These are, in fact, scalar fields which can be
numerically represented on a discrete mesh — or in its reciprocal plane waves form — or
by expanding them in a basis set like gaussian-type orbitals (GTO), Slater-type orbitals
(STO), atomic orbitals (LCAO), Hankel functions (LMTO), etc. The self-consistent solu-
tion of Kohn-Sham equations, i.e. the minimization of KS energy functional with respect
to {ϕi(r)}, may represent too heavy a computational task. However, it would be possible
to avoid such a procedure if the electronic density can be kept sufficiently close to the adia-
batic density during the MD simulation, and this plan can be accomplished by introducing
a second order fictitious dynamics of the KS orbitals. Car and Parrinello introduced this
scheme by proposing a dynamical system desribed by the following Lagrangian:

LCP =
1

2

P
∑

I=1

MI Ṙ
2
I + µ

N
∑

i=1

fi

∫

|ϕ̇i(r)|2 dr −EKS [ϕi(r), R] +

+
N
∑

i=1

N
∑

j=1

fi Λij

(∫

ϕ∗
i (r)ϕj(r) dr− δij

)

(6.6)

with

EKS [ϕi(r), R] =
N
∑

i=1

fi

∫

ϕ∗
i (r)

(

−∇2

2
+

P
∑

I=1

v(r − RI) +
1

2

∫

ρ(r′)

|r − r′| dr
′
)

ϕi(r) dr +

+ EXC [ρ] +
1

2

P
∑

I=1

P
∑

J 6=I

ZIZJ

|RI − RJ |
(6.7)

and the density given by

ρ(r) =
N
∑

i=1

fi

∫

ϕ∗
i (r)ϕi(r) dr . (6.8)

The first term in (6.6) is the nuclear kinetic energy, and the third term is the first
principles potential as derived from DFT, thought KS equations. The coefficients fi

are occupation numbers corresponding to the orbitals {ϕi(r)}. They assume the values:
fi = 1 for i ≤ N , and fi = 0 for i > N , in the case of semiconductors. In the case of
metals, fi(ε) = (1+e(ε−µ)/kBTe)−1, where Teis an electronic temperature, which is typically
included not for fundamental reasons (usually electronic Fermi temperatures are much
higher than the nuclear temperature), but in order to mimick Brillouin zone integration
and to improve the convergence of the self-consistency procedure due to degeneracies at
the Fermi level. If the electronic temperature is included as a physical variable, then
the assumption implied by the use of the above expression is that the energy exchanges
between the electrons are so fast that the equilibrium distributions is always verified. If
there is spin degeneracy (LDA instead of LSDA), then the occupation numbers can be
multiplied by 2 and the sums carried out up to N/2 in place of N .
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In order to represent an electronic density arising from a Slater determinant, the
orbitals {ϕi(r)} — which we are going to call dynamical Kohn-Sham orbitals (DKSO),
and are different from the true KS orbitals that minimize EKS — must be orthonormal.
This is the origin of the last term in the lagrangian. It ensures the orthonormality of the
DKSO at every step of the MD. The Lagrange multipliers {Λij} are determined in such
a way as to verify this condition, as explained in the preceeding chapter.

The second term is the big innovation of Car and Parrinello. It represents a fictitious
kinetic energy associated with the DKSO, which are frequently also called electronic
degrees of freedom. This doesn’t imply a real dynamics of the electrons. It is a just
a term which allows for a dynamical evolution of the orbitals, independent of that of
the nuclei. It is easy to see that the straightforward DFMD scheme mentioned above is
obtained by eliminating the self dynamics of the orbitals (µ = 0 in the second term in the
lagrangian).

In the dynamics of the orbitals there are two components: one is their own dynamics,
which is controlled by the fictitious mass µ, and the other arises as a consequence of a
dragging force due to the motion of the nuclei, through EKS. This latter fixed the average
trajectory of the orbitals, while the former superimposes independent oscillations. The
mass µ controls both, the energy transfer between orbitals and nuclei, which goes like
µ−1/2 (this unphysical transfer appears because the DKSO are now trated as dynamical
variables, exactly as the nuclear coordinates), and the choice of the integration time step,
which is proportional to µ1/2. A compromise is required in order to keep the energy
transfer a reasonable low values while preserving an integration time step sufficiently
large.

6.1.2 The Car-Parrinello equations of motion

We then have a lagrangian that depends on the nuclear coordinates {R} and on the
orbitals {ϕi(r)}. The Lagrange equations are obtained in the usual way of classical me-
chanics:

d

dt

(

∂LCP

∂ṘI

)

= −∂LCP
∂RI

(6.9)

d

dt

(

δLCP
δϕ̇∗

i (r)

)

= − δLCP
δϕ∗

i (r)

The second equation involves functional derivatives because the orbitals are not simple
variables but continuous scalar fields. In practice, these fields are defined on a basis set
(e.g. on a discrete regular grid), and the concept of functional derivation reduces to the
standard vectorial derivation with respect to the components of the expansion of the field
in the basis. In the case of a discrete grid made of n3 points in real space, each orbital is
described by a set of n3 degrees of freedom, one for each point in the grid. In reciprocal
space, it is equivalent to consider the coefficients of the plane waves expansion. Functional
derivation implies to derive with respect to each one of the expansion coefficients. Doing
so, we arrive to the Car-Parrinello equations of motion:
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MIR̈I = −∂EKS [{ϕi(r)} , R]

∂RI
(6.10)

µϕ̈i(r, t) = − 1

fi

δEKS [{ϕi(r)} , R]

δϕ∗
i (r)

+
N
∑

j=1

Λijϕj(r, t) = (6.11)

= −ĥKS ϕi(r, t) +
N
∑

j=1

Λijϕj(r, t) (6.12)

where ĥKS = −∇2/2+v(r)+
∫

[ρ(r′)/ |r − r′|]dr′+µXC [ρ] is the single-particle Kohn-Sham
hamiltonian, and Λij are the Lagrange multipliers that ensure the orthonormality of the
DKSO.

If, for the moment being, we forget about the first member in Eq. (6.12), i.e. we
concentrate on the stationary solution of this equation (vanishing second derivative), it is
obvious that these are just the standard KS equations:

ĥKS ϕi(r) =
N
∑

j=1

Λijϕj(r) .

By means of a unitary transformation (it can always be done because ĥKS is hermitic)
we can diagonalize the (symmetric) matrix Λij:

U−1ΛU = ǫϕ = U−1Ψ ⇒

(

U−1HKSU
) (

U−1ϕ
)

= H̃KS Ψ = ǫΨ =
(

U−1ΛU
) (

U−1Ψ
)

or: H̃KS Ψi(r) = ǫiΨi(r). This means that the eigenvalues of matrix Λ are the single-
particle energies of Kohn-Sham theory and, in this case, the transformed orbitals {Ψi(r)}
become the original KS orbitals. In general, the dynamical orbitals {ϕi(r)} are not the
solutions of the KS equations, because of their dynamical evolution.

Conclusions:

1. Kohn-Sham orbitals minimize the energy associated with the lagrangian LCP , at
fixed nuclear configuration.

2. These orbitals define the electronic density univocally, appart from a unitary trans-
formation.

3. The time evolution of the dynamical orbitals consists of small oscillations around
the Born-Oppenheimer (BO) surface.
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In general, the coupled dynamics of nuclei and orbitals is different from true nuclear
dynamics, where the electrons are in the ground state (in the Born-Oppenheimer surface).
A meaningful Car-Parrinello dynamics is realized only if the dynamical orbitals remain
always close to the KS orbitals, i.e. if the oscillations around the BO surface are small.
The conserved quantity in a CP dynamics is: Econs = Ke + Kn + EKS, with Ke =
µ
∑

i fi

∫ |ϕ̇i(r)|2 dr the fictitious electronic kinetic energy, andKn = 1/2
∑

I MIṘ
2
I the true

nuclear kinetic energy. The above condition means that we want to have Ke ≪ Kn+EKS.

When does Car-Parrinello work properly ?

• when energy exchanges between nuclear and electronic degrees of freedom are min-
imal.

When it does not work ?

• An energy gap that opens and closes periodically

• An energy gap too small with respect to nuclear vibrations

• A single-particle energy level crossing

Why ?

Classical perturbation theory indicates that motions with two different types of fre-
quencies appear when the system is perturbed out from the BO surface:

ω
(1)
ij =

√

fj(ε∗i − εj)

µ
(6.13)

ω
(2)
ij =

√

(fj − fi)(εi − εj)

2µ
(6.14)

where ε∗i are the energies of the empty single-particle eigenstates (the eigenvalues higher
than N). The most important frequency is the lowest one, because it is the one that will
mix better with the much smaller nuclear frequencies. This observation can be formalized

in the following way: Ωmax ≪
√

2Eg/µ, where Eg = ε∗i (min) − εj(max) is the (single-

particle) energy gap, and µ is the fictitious mass of the orbitals. Therefore, if the above
relation is not verified, we can always decrease µ in order to stop the energy transfer
between electronic and nuclear degrees of freedom. However, this implies an upwards
shift of all the frequencies, in particular the highest ones, which are those that fix the
integration time step. This means that reducing µ implies also the need to reduce the
time step.

If we look at the difference between the forces on the nuclei computed according to
the CP prescription (those which drive the MD), and the exact BO forces obtained by
self-consistent minimization, we can observe a high frequency component due to the free
oscillations of the orbitals, and a second, lower frequency following the nuclear oscillations.
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The interesting point is that the errors in the forces are averaged out during the time
evolution, namely that the dynamical force oscillates around the BO force.

This dragging must have some effect on the dynamics of the nuclei (the only meaningful
dynamics), because it is as if the nuclei dress up with the part of the mass of the dynamical
orbitals. In the atomic limit this dressing effect can be estimated in the following way:
M̃ = M + 4

3
µKe ,or ω̃ = ω (1 + 4µKe/3M)1/2, where Ke is the (fictitious) kinetic energy

of the electronic orbitals per atom, expressed in Hartree (atomic units). In other words,
the orbitals renormalize the mass of the nuclei. This correction may be important in the
case of light atoms (H, He, and first row elements). For instance, in Carbon compounds
this correction can amount to a 6% of the calculated frequency.

Reviews on the Car-Parrinello method and recent developments can be found in
Ref. [102, 103, 104]
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