

2137-31

Joint ICTP-IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

12 - 23 April 2010

Atomistic Simulations of irradiation in nanocrystalline materials

M. Samaras Paul Scherrer Institut Villigen Switzerland

Atomistic Simulations of irradiation in nanocrystalline materials

M. Samaras

Paul Scherrer Institute, Switzerland

IAEA- ICTP Workshop Trieste. 16th April 2010

Collaborators

PSI

P. M. Derlet (NUM)

W. Hoffelner (NES)

H. Van Swygenhoven (NUM)

UPM

M. Victoria

Simulation Data

•300K

- •Periodic Boundary Conditions
- •Modified 2nd moment TB potential (Cleri-Rosato PRB 1993), fcc nc Ni

including high-energy corrections (Ziegler et al. 1987)

•Ackland potential, Calder and Bacon corrections (non-magnetic)

bcc nc Fe

Local crystalline order

Topological short range analysis (Honeycutt and Andersen, 1987).

Sample Sizes

Grain Boundaries

Structurally ordered units and misfit areas with less order

Bcc vs fcc: cascade size comparison

20nm grain fcc Ni 18nm grain bcc Fe

Displacement cascade

movie

Densification of the GB

15th April 2010

GB Flexibility- movement of GB towards cascade direction

grain 1

grain 1

O₁ 0 0 Ċ. a en. a ~ 0 0 **ch** c, D. grain 14

10keV cascade

-0 -0 en. -~ 0 0 ^m e 0.00 Q Ő.

grain 14

Close up of atoms in the GB plane

PAUL SCHERRER INSTITUT

Atomic Pressure in a 5keV PKA 12nm grain size Sample

6-SIA crowdion cluster Grain 13 Ô e de la constante de la consta a @ Ô **C** m

Grain 9

Atomic Pressure in a 5keV PKA 12nm grain size Sample

Grain 13

mono-SIA crowdion cluster

1D/3D motion

fcc nc Ni

Cooling of 20keV cascade

movie

Influence of GB on SIA movement

Experiment: GBs work as effective sinks (Rose et al. 1991, Chimi et al. 2001).

Defect distribution: single + nano crystal, fcc vs bcc

Movement of interstitials

RCS to GB: vacancy dominated damage

Cascade on TJ: no damage left

Easier formation of truncated SFT

Cascade directed towards the GB

Size Effects

Experimetally irradiated HPT Ni

M. Victoria, N. Nita, R. Schäublin, R. Z. Valiev

Average grain size decreases from 115 nm (unirradiated, 34 nm by XRD) to 38 nm (irradiated)

CRPP

Experimentally irradiated SPD Cu-0.5Al₂O₃

Average grain size increases

Cascade Overlap

luovie

4 PKAs 20keV 12nm grains

Experiment: Voids produced preferentially along actively climbing dislocations (Kitajima *et al.* JNM 1979) 4 PKAs 20keV 12nm

movie

Voids, Swelling and Cracking

Dherbey 2002

Pre-existing Voids - MD

Defects attracted to GBs and void

movie

The `Empirical-Potential' Issue

Difference in interstitials formed:

bcc nc Fe

Non-magnetic potentials predict similar energies for the <110> and the <111> SIA dumbbells which contradict experiment.

Ab initio calculations (Fu 2004) show a 0.7eV difference between configurations with:

<110> dumbbell the most stable configuration <111> dumbbell almost unstable results are comparable to experiment

Fu et al 2004

Dudarev-Derlet potential includes magnetism produces the correct interstitial

Mendelev potential is non-magnetic and has been fitted to produce the correct interstitial

PAUL SCHERRER INSTITUT

Nuclear Energy and Safety Department

10keV PKA

Very little damage, GB accomodates the cascade, local movement of GB

movie

Atomistic simulations in β -SiC

Ab initio	Ab initio - GB		Empirical Potentials		MD	MD- rad dam Single crystal	MD- rad dam Bi-crystal
Lucas <i>et al</i> 2005-8 Frenkel pairs 3C-SiC 96 atoms Quantum Espresso	Koyama <i>et al</i> 2002 Tensile stress, fracture sigma 9		Tersoff 1989 Brenner type Bond-order reactive potential		Yip <i>et al</i> 1997-9 heat capacity, thermal conductivity	Diaz de la Rubia <i>et al</i> 1995-6 5keV, 200000 atoms	Moriani <i>et al</i> 2006 Sigma 5 3keV
Bockstedte <i>et al</i> 2004-7 Vac, diffusion migration and diffusion FHI96SPIN, 64 atoms	Rulis <i>et al</i>		Gao <i>et al</i> 2002 Brenner type include bond order and bond conjugation		Szlufarska <i>et al</i> 2005-8 Nanoindentation- amorphorous,	Perlado <i>et al</i> 1997-2005 5-10keV 300,1300K 800000 atoms	
Windl <i>et al</i> 1998 displacement-threshold energies 64 atoms, Fireball			Belko <i>et al</i> 2003 Tersoff with improved repulsive part		Kohler <i>et al</i> 2002 Tilt GBs	Farell <i>et al</i> 2009 10keV, 0-2000K 1M atoms	
Kinoshita <i>et al</i> 2007 Shear deformation VASP	<i>Ab initio</i> Review: Silicon Carbide, pg27, Bockstedte et al.		Vashita <i>et al</i> 1999, 2007 two-body and three- body covalent interactions		SiC nanowires	Devanathan, Gao <i>et al</i> 1998-2007 0.25 to 50 keV 6M atoms	
Jiang <i>et al</i> 2002 Ground state properties CASTEP, 84 atoms	Tight Bin Koyhama Self-consi binding		ding <i>et al</i> 1990 istent tight		Mura <i>et al</i> 1998, Amorphisation and order	Yuan <i>et al</i> 2001-2 Alpha SiC 512 atoms, 25 ns	
# atoms	types of GBs		Fitting various properties; Rac repulsive part	d dam –	Properties that can be modelled	Time and length scale	Type of GBs

Radiation Damage:

Different potentials lead to different estimates of displacement energies Uncertainty due to the use of potentials and/or techniques in calculations ?

Ref: Pizzagalli et al

Difference in interstitials formed:

- Tersoff potential: CTSi interstitials
- Modified Tersoff (including Ziegler et al corrections- (green)): dumbbells

Conclusions

MD comparison simulations of bcc and fcc structures show the formation of truncated SFT of 2nm comparable in size to experimental 2-4nm SFT formation formation of voids in bcc Fe rather than SFTs (fcc metals) attraction of SIAs to sinks present as GBs in nc bcc and fcc Cascade volume is: comparable when the GB not directly involved differs when GB is inside the cascade Size of the grain affects the damage produced. Smaller grains seem

to be more radiation resistant by producing less damage.

Inclusion of GBs affects the damage produced during irradiation