

2137-26

Joint ICTP-IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

12 - 23 April 2010

Atomistic simulation of a swift ion track development in a model Ni-Al alloy

N. Lazarev Akhiezer Institute for Theoretical Physics Kharkov Ukraine

Atomistic simulation of a swift ion track development in a model Ni-Al alloy

Nikolai Lazarev *Kharkov Institute of Physics and Technology, Ukraine* n.lazarev@kipt.kharkov.ua

Collaboration:

Christian Abromeit

Helmholtz-Zentrum Berlin für Materialien und Energie

Rolf Gotthardt

École Polytechnique Fédérale de Lausanne

Robin Schäublin EPFL SB CRPP Groupe Matériaux, PSI

Outline

- Basic concepts of track formation
- > MT and shape memory alloys
- Hysteretic behavior at reversible MT
- Kinetics of transformation
- Stress-controlled MT
- > MT in ordered Ni_5Al_3 and Ni_7Al_5 alloys
- Grain Boundary Effect
- Phase transformations at track development

Nuclear and electronic stopping power

Stopping power for Al ions in Al. The nuclear stopping curve typically reaches maximum at energies of ~1 keV/nucleon, the electronic one ~1MeV/ nucleon.

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste 12-23 April 2010

Track formation by swift heavy ion $E_i \sim 0.1-10 \text{ GeV}$

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

ХФТИ

Thermal spike model: analytical description

M.I. Kaganov, I.M. Lifshits, L.V. Tanatarov, Sov. Phys. JETP 4 (1957) 175

$$C_{e}(T_{e})\frac{\partial T_{e}}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}rK_{e}(T_{e})\frac{\partial}{\partial r}T_{e} - g(T_{e} - T_{a}) + B(r, t)$$

$$C_{a}(T_{a})\frac{\partial T_{a}}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}rK_{a}(T_{a})\frac{\partial}{\partial r}T_{a} - g(T_{a} - T_{c})$$

$$\frac{dE}{dx} = \iint B(r, t)drdt$$

Experimental study of electronic temperatures in heavy ion tracks

M. Caron, H. Rothard, M. Toulemonde, B. Gervais, M. Beuve, NIMPR B245 (2006) 36-40

Metals (W/cm ³ /K)	Kaganov et al. [26] (W/cm ³ /K)	Swift heavy ions (W/cm ³ /K)	Calculated threshold (keV/nm)	From experimen (keV/nm)	
Cu	13×10^{10}				
Au	2.3×10^{10}				
Fe	119×10^{10}	144×10^{10} [16]	~45	~40 [30]	
a-Fe85B15	2400×10^{10}	500×10^{10} [34,35]	~15	~13 [31]	
Bi	20×10^{10}	13×10^{10} [33]	~30	~30 [25]	
Ti	203×10^{10}	1000×10^{10} [16]	~12	~7 [32]	
Graphite	2700×10^{10}	3000×10^{10}	~8	~7 [33]	
Co	90×10^{10}	345×10^{10} [16]	~32	~35 [32]	
Zr	85×10^{10}	260×10^{10} [16]	~29	~30 [32]	

Values of the electron-phonon coupling g (in 10^{10} Wcm⁻³K⁻¹) for different metals assuming $n_e/n_a = 1$ [25]

Swift ion track observations in the NiTi

A. Barbu, A. Dunlop, A. Hardouin Duparc, G. Jaskierowicz, N. Lorenzelli, NIMPR B145 (1998) 354.

Ion	E (GeV)	Т	Fluence (cm ⁻²)	d <i>E</i> /d <i>x</i> ∣ _e (keV/nm)	Velocity (m/s)	Structure	Figures	Comments and mean track diameters $D_{\rm m}$ (nm)
Kr	0.71	85 K	5×10^{10} 5×10^{11}	17	4.0×10 ⁷	M–M		No visible damage
Xe	0.82	85 K 85 K 85 K	$\begin{array}{c} 1.3 \times 10^{11} \\ 1.0 \times 10^{12} \\ 2.6 \times 10^{13} \end{array}$	32	3.5×10 ⁷	M-M M-M M-M	17	No visible damage No visible damage Monoclinic \rightarrow B2 (X ray)
Та	0.98	85 K	5×1010	46	3.2×10 ⁷	A–M	1c	$D_{\rm m} = 4.2$
Pb	0.84	85 K 85 K 85 K 85 K	5×10^{10} 5×10^{10} 1.8×10^{13} 7.2×10^{13}	52	2.8×10 ⁷	A-M M-M M-M	1b, 4c 5, 6, 7 13, 14 15	$D_{\rm m} = 5.7$ $D_{\rm m} = 12.8$ (am + B2) Totally am
Pb	0.84	300 K	5×10^{10} 10^{12} 10^{13}	52	2.8×10 ⁷	A+M M A	9 11, 12 16	Tracks only in M Tracks (am+B2) No tracks but cascades
U	0.76	85 K 85 K 85 K	5×10^{10} 5×10^{10} 5×10^{11}	57	2.5×10 ⁷	A-M M-M A-M	1a, 2, 4b, 10 8 3	$D_{\rm m} = 13.1$ $D_{\rm m} = 17.5$ $D_{\rm m} = 13.1$
U	4.6	10 K	5×10 ¹⁰	52	6.1×10 ⁷	A–M	4a	$D_{\rm m} = 6.5$

MD simulation of sputtering from a cylindrical track

O.J. Tucker, D.S. Ivanov, L.V. Zhigilei, R.E. Johnson, E.M. Bringa, NIMPR B 228 (2005) 163

Snapshots from simulations of thermal spike in Au.

 $dE/dx = N_{exc}E_{exc}/d \sim n\pi R_{cyl}^2E_{exc}$ $R_{cyl} = 10 \text{ Å}, E_{exc} = 10 \text{ eV}, t = 4 \text{ ps}$

Microstructure of the 350 MeV Au ion irradiated Ti-Ni thin film

T. LaGrange, R. Schäublin, D. S. Grummon, C. Abromeit, R. Gotthardt, Phil. Mag. 85 (2005) 577

Problems

Stress-controlled MT

Effect of interfaces

Compositional order-disorder

Local structure order

Lattice correspondence: austenite - martensite lattices

austenite B2 structure (CsCl ordering)

martensite L1₀ lattices

Shape Memory Alloys

Ni-Ti, Cu-Zn-Al, Cu-Al-Ni, Au-Cd, Fe-Pt, Ni-Al

A non-diffusion transformation which can be induced by:

- a) temperature change
- b) applying stress

XOTN

Phase diagram of Ni-Al system

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Simulation Setup

$$Ni_xAl_{100-x}$$
, x = 60 ÷ 70

Molecular Dynamics with Empirical force-field

EAM potential:
$$U = \sum_{ij} V(r_{ij}) + \sum_{i} F(\overline{\rho}_i)$$

Limitations:System size
$$N = 10^4 \div 10^7$$
Time window $t = 1 \div 20 \ ns$

Potentials

- A.F. Voter and S.P. Chen, Accurate Interatomic Potentials for Ni, Al, and Ni3Al, Mat. Res. Soc. Symp. Proc. 82 (1987) 175.
- D. Farkas, B. Mutasa, C. Vailhe, K. Ternes, Interatomic potentials for B2 NiAl and martensitic phases. Modeling Simul. Mater. Sci. Eng. 3 (1995) 201-214.
- M. Yan, V. Vitek and S. P. Chen, *Many-body central force potentials and properties of grain boundaries in NiAl*, Acta Mater. 44 (1996) 4351-4365.
- Y. Mishin, M. J. Mehl and D. A. Papaconstantopoulos, *Embedded-atom potential for B2-NiAl*, Phys. Rev. B65 (2002) 224114.
- N. I. Papanicolaou, H. Chamatia, G. A. Evangelakisa, D. A. Papaconstantopoulos, Second-moment interatomic potential for Al, Ni and Ni–Al alloys, and molecular dynamics application, Comp. Mater. Sc. 27 (2003) 191-198.
- Song Yua, Chong-Yu Wanga, Tao Yua, Jun Cai, *Self-diffusion in the intermetallic compounds NiAl and Ni3Al: An embedded atom method study*, Physica B 396 (2007) 138–144.

ХФТИ

Temperature-controlled MT at constant external stress

N. P. Lazarev, C. Abromeit, R. Schäublin and R. Gotthardt, Solid-Solid Phase Transformations in Inorganic Materials, TMS publications, 2005, Vol. 2, p. 715.

Shape Changes of Simulated Box

• *Linear dimensions are more sensitive to MPT than average volume*

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Enthalpy at Reversible MTs

• The 1-st order phase transformations: $A \rightarrow M \rightarrow A$

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Hysteretic behavior of different samples at equal composition Ni-37%AI.

• *Hysteresis width essentially depends on defect structure of martensite state*

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Atomic displacements during cycle A \rightarrow M \rightarrow A

N. P. Lazarev, C. Abromeit, R. Schäublin, R. Gotthardt, J. Appl. Phys. 100 (2006) 063520

• Non-diffusional transformations and completely reversible

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

12-23 April 2010

коти

Composition dependent MPT

• MPT is observed in narrow composition interval: 60-65 at. % Ni

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Cylinder under pressure, Ni₆₀Al₄₀

Perfect FCC + HCP Distorted FCC + HCP Perfect BCC Distorted BCC Perf. & Dist. ICO *Gas atoms* Unclassified

Cylinder under pressure, Ni₆₀Al₄₀

Stress-Controlled MPTs at Constant Temperature

Multi-axial compression/tension

$$\sigma_{xx} = \sigma_{yy} = -\sigma_{zz} / 2$$

Stress dependence

Reversibility on Stress

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

ХФТИ ХФХ

Map of M_F-States

N. P. Lazarev, C. Abromeit, R. Schäublin, R. Gotthardt, Materials Science and Engineering A481–482 (2008) 205

ХФТИ

Entropy of harmonic system

$$S_{har} = -k_B \sum_{j} \ln(\hbar \omega_j / k_B T) + S_0$$

$$\Delta S_{AM} = -\int_{0}^{\infty} \ln(\omega) [g_{A}(\omega) - g_{M}(\omega)] d\omega = -\ln \frac{\overline{\omega}_{A}}{\overline{\omega}_{M}}$$

$$A_{VV}(t) = \int_{0}^{\infty} V(\tau) V(\tau+t) d\tau$$

$$g(\omega) = \frac{1}{2\pi} \int_{0}^{\infty} e^{-\omega t} A_{VV}(t) dt$$

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Spectral densities in martensite

• Low-frequency limit: ~ ω^2

Spectral densities in austenite

Soft modes at small ω ?

Enthalpy difference, Ni-37%AI

Free energy difference

Radial Distribution Function

$$g(r) = \frac{V}{4\pi r^2 N^2} \left\langle \sum_{i} \sum_{j \neq i} \delta(r - r_{ij}) \right\rangle$$

BCC before MPT

HCP after MPT

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

The Bainitic Ni₅Al₃ phase

D. Schryvers et al, J. de Physique IV, Vol. 5 (1995) Col. C8, p. 1029

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

MT in ordered alloy, Ni_5Al_3 (PBC): $B \rightarrow A \rightarrow B$

• Compositional ordering facilitates to martensite (bainitic) phase

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

12-23 April 2010

ХФТИ

Free external surface

Ni62-Al38

Al-Enriched

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

MT in finite-size $Ni_5AI_3 : B \rightarrow A \rightarrow B$

Dynamics of transformation $A \rightarrow B$ in Ni₅Al₃

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

MT in finite-size ordered Ni₅Al₃ and Ni₇Al₅

•*Composition disorder decreases transformation temperature up to ~200K*

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

MT in finite-size ordered Ni₇Al₅

• The 1-st order phase transformations: $A \rightarrow M \rightarrow A$

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Homogeneous transformation $A \rightarrow M$

 Ni_7Al_5 T = 290K, N = 390948

Perfect FCC+HCP Distorted FCC+HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Unclassified

Heterogeneous transformation $M \rightarrow A$

 Ni_7Al_5 T = 580K, N = 1809648

Perfect FCC+HCP Distorted FCC+HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Unclassified

Grain boundary preparation

Grain boundary effect

$A \rightarrow M$ heterogeneous transformation near GB N = 130995

Perfect FCC + HCP Distorted FCC + HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Unclassified

T = 180 K

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

$A \rightarrow M$ heterogeneous transformation near GB

Perfect FCC + HCP Distorted FCC + HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Unclassified

T = 160 K

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

$M \rightarrow A$ heterogeneous transformation near GB N = 130995

Perfect FCC + HCP Distorted FCC + HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Unclassified

T = 550 K

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

$M \rightarrow A$ heterogeneous transformation near GB N = 130995

Perfect FCC + HCP Distorted FCC + HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Unclassified

T = 600 K

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Atomistic simulation of track

Simulation setup A

Ni-40%Al $\delta = 7-10 \ nm$ L = 30-40 nmN = (0.6-1.4) $\cdot 10^{6}$ T = 300 K

Temperature development around track

Phases Development in the Range of Swift Ion track

Ni - 40%Al N = 1 400 000

T = 300 K

Perfect FCC + HCP Distorted FCC + HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Compositionally Disordered Unclassified

Phases Development in the Range of Swift Ion track

Ni - 40%Al N = 1 400 000

T = 300 K

Perfect FCC + HCP Distorted FCC + HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Compositionally Disordered Unclassified

Melting, Martensitic Transformations, Order-Disorder

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Simulation setup B

- Ni_7Al_5 $\delta = 10 \ nm$ $R = 22-44 \ nm$ $N = (1-5) \cdot 10^6$
- T = 300-400 K

- Ni_7Al_5 N = 1 200 000
- T = 300 K
- $k_e = 10 \text{ A}^2/fs$
- Perfect FCC + HCP Distorted FCC + HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Compositionally Disordered Unclassified

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Development of Swift Ion Track

Ni₇Al₅ N = 4 900 000 T₀ = 400 K $k_e = 10 \text{ A}^2/fs$

Perfect FCC + HCP Distorted FCC + HCP Perfect BCC Distorted BCC Perf. & Dist. ICO Compositionally Disordered Unclassified

Compositional disordering favours austenitic phase

• Shift of T_c

ICTP/IAEA Workshop on Multi-Scale Modelling, Trieste

Conclusions

- The reversibility of both temperature- and stress-controlled MTs was observed at MD simulation of model NiAl alloy
- Stress-controlled MPTs have features of shape memory effect
- External surface and GG affect the behavior of MTs indicating heterogeneous nucleation of new phase on extended defects
- Compositional disordering is the dominant cause of track formation in ordered NiAl alloy