

2137-22

Joint ICTP-IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

12 - 23 April 2010

Fuel temperature modeling and phenomena: pellet-clad gap heat transfer, fuel temperature distribution

W. Wiesenak OECD Halden Reactor Project Halden Norway

3

Fuel Temperature Modelling and Phenomena (II)

- fuel temperature distribution -

Wolfgang Wiesenack OECD Halden Reactor Project, Norway

Joint ICTP-IAEA Workshop on

The Training in Basic Radiation Materials Science and its Application to Radiation Effects Studies and Development of Advanced Radiation-Resistant Materials

Trieste, April 12-23, 2010

Overview

- Why temperature calculation?
- Coolant and cladding heat transfer
- Conductance through pellet-clad gap
 - open gap, gas conduction
 - closed gap, contact conductance
 - geometrical changes influencing gap size
- Fuel temperature distribution
 - principal formulation
 - fuel conductivity
 - power distribution

6. Fuel temperature distribution - general formulation -

Heat balance $P_v - \operatorname{div} q = c_p \rho \frac{\partial T}{\partial t}$	P_v q c_p ρ T t	power density heat flux heat capacity density temperature time	W/m^3 W/m^2 $J/g \cdot K$ g/m^3 C s
Heat conduction $q = -\lambda \operatorname{grad} T$	λ	conductivity	W/m·K
Heat equation $P_{v} + \operatorname{div}(\lambda \operatorname{grad} T) = c_{p} \rho \frac{\partial T}{\partial t}$	Valid in general for steady state and transient conditions		

Simplified formulation

A fuel rod is a cylinder and most easily described in cylinder coordinates. Simplifications are possible:

- A fuel rod (pellet) is basically axi-symmetric
 No heat flow in the circumferential direction
- In the axial direction
 - no cooling at the ends
 - stack interrupted by pellet-pellet interfaces
 - much longer axially than radially **No heat flow in the axial direction**
- The fuel time constant, 5-10 s, is small compared to speed of most power/temperature changes

No consideration of time dependence

 $\frac{\partial T}{\partial z} = 0$

Some useful equations and numbers

$$P_{v} + \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left(\lambda(T, r) \cdot r \frac{\mathrm{d}T}{\mathrm{d}r}\right) = 0$$

$$T(r) = T_R + \frac{1}{4} \frac{P_v}{\lambda} (R^2 - r^2)$$

$$T_0 = T_R + \frac{1}{4\pi R^2} \frac{q'}{\lambda} R^2$$

 $90 - 100 \, \text{kW/m} \, (\text{UO}_2)$

 $\approx 30 \text{K per kW/m}(\text{UO}_2)$

- Simplified basic equation, radial dependence only
- Solved for $P_v = \text{const}$ and $\lambda = \text{const}; R = \text{pellet radius}$ The basic temperature distribution is parabolic
- Centre temp. expressed with linear heat rating q' (W/m)
 The centre temperature T_o is independent of radius R
- Power to melting (ca 2800°C)
- Centre temperature increase

... but we need some more details

1. Thermal conductivity of the fuel

- temperature dependence
- burnup dependence
- influence of additives (e.g. Gd)
- **2.** Influence of porosity on fuel (UO_2) conductivity
 - densification (removal of pores)
 - generation of new porosity by fission gas
- **3.** Influence of fuel cracking . .
- 4. Radial power distribution
 - changes due to burnup and Pu generation
 - burnable poisons

6.1 Thermal conductivity (UO₂)

Data for UO₂ with 95% theoretical density

UO₂ (a ceramic) is a poor heat conductor. The thermal energy is transported by lattice vibrations travelling through the lattice as waves, also known as phonons.

The data have $\pm 5\%$ spread in 600-2200K range of practical interest.

Thermal conductivity contributions

Influence of impurities

- The phonon travelling is disturbed by scattering sites
- The intrinsic scattering sites are increased by
 - additives such as Gd (burnable poison)
 - accumulation of fission products in the matrix
 - irradiation induced defects

 $\lambda_{phonon} = \frac{1}{A + R \cdot T}$ $A = A_0 + A_{Gd} + A_{hu} + A_d$ $A_{Gd} = c_{Gd} \cdot Gd$ $A_{bu} = c_{bu} \cdot bu$ $A_d = c_d \cdot bu$ Gd = gadolinia concentr.bu = burnup

Thermal Conductivity, Degradation Development of temperature in UO₂ and (U,Gd)O₂ fuel

The comparative irradiation shows the conductivity difference of the two types of fuel as well as the change of conductivity with burnup. Measured fuel centre-line temperatures are linked to the thermal conductivity of the fuel.

The linear increase of the measured temperature with burnup implies a modification of the "phonon term" with a linear burnup dependent term in the denominator:

$$A_{bu} = c_{bu} \cdot bu$$

Change of UO₂ thermal conductivity derived from Halden reactor fuel temperature measurements

Laser flash conductivity measurement

- The fuel sample is heated up to the test temperature
- The response to a laser flash can be evaluated regarding thermal conductivity
- For irradiated fuel, a marked difference between going up and down in temperature indicates annealing of phonon scattering sites
- Little is yet known about the kinetics of this effect and its dependence on in-core temperature changes

6.2 Influence of porosity on fuel (UO₂) conductivity

- Maximum achievable density by sintering is about 98% th.d. (10.96 g/cm³ for UO₂)
- Some porosity (3-5%) is desirable and achieved through adding pore formers to the powder before sintering
- The porosity changes during irradiation
 - destruction/removal of pores by fission spikes (densification)
 - formation of fission gas bubbles
 - intragranular
 - intergranular
 - on grain edges and faces

Porosity correction factors

• For fuel with porosity P, the conductivity is modified with:

 $\lambda_{\mathsf{P}} = \mathsf{f}(\mathsf{P}) \cdot \lambda_0$

- Various formulations for f(P):
- f = 1 2.5P (Loeb)
- f = (1-P)/(1+0.5P) (Maxwell)
- $f = (1 P)^2$ (Schulz)
- $f = (1-P_1)(1-P_2)^{2.5}(1-P_3)^{3.5}$ (Harding) $P_1 = coarse spherical pores$ $P_2 = fine spherical pores$ $P_3 = grain face pores$

Beware!

- Conductivity is sometimes given for 100% dense fuel. This means that a certain correction was applied to the data obtained with less dense fuel (often 94-96% th.d.)
- When applying a different porosity correction, the conductivity data should also be transformed back to the original density

Porosity correction

normalised to 95% th.d.

6.3 Influence of fuel cracking

- Cracking of the UO₂ fuel pellets reduces the effective fuel thermal conductivity
- This effect may be approximated by
 - appropriately chosen "crack factors" that reduce the solid-UO₂ thermal conductivity
 - introduction of cracks in the geometry and modelling of the temperature increase across the crack in a way similar to that for the fuel-cladding gap
- Circumferential cracks are most "efficient", but they only develop at cool-down after long periods at high power
- In general, the cracking pattern is not known and may even be influenced by the introduction of a TC

Examples of fuel cracking

Heat flow resistances are introduced by

- circumferential cracks
- cracks deviating from the radial direction
- transversal cracks deviating from the plane normal to the axial direction

Consequences

- The temperature calculation in fuel modelling codes is linked to measured fuel centre temperature data
- Since a codes must stay tuned to the data base, the assumption of reduced fuel conductivity results in a reduction of the fuel stored energy, regardless of the modelling approach
- Accounting for fuel cracking leads to lower calculated peak clad temperatures obtained in some loss-of-coolant accident simulations

Fuel temperature distribution

6.4 Radial power distribution

- Thermal neutrons are absorbed in the fuel (mostly causing fission)
- These neutrons are not replaced locally (fission neutrons have high energies)
- The net result is a neutron flux depression that depends on geometry (radius) and enrichment
- Over time, Pu will build up in the pellet periphery due to U-238 neutron absorption resonances in the epithermal energy region, resulting in a strongly edge-peaked radial power distribution

Power distribution in high burnup fuel

- The TUBRNP model was developed to calculate the radial power and burnup distribution, taking into account the Pu build-up.
- Alternatively, more sophisticated lattice codes can be used, but differences are small.

Burnup distribution and rim structure

- The periphery-peaked power generation causes a similar burnup distribution and the formation of the so-called *rim structure*
 - as fabricated grains subdivide into very small grains (<0.1µm)
 - generation of spherical pores containing fission gas at high pressure
- The fuel shown to the right has undergone considerable changes:
 - loss of defined grains up to 100 μ m into the fuel
 - development of spherical porosity reaching about 500 μm into the fuel
 - bonding layer between fuel and cladding
- The conductivity of rim material is presently being determined (laser flash method)

Estimation of rim porosity

- Extra porosity is produced when the local burnup exceeds 70 MWd/kgU (full rim structure formation)
- The porosity increases linearly with burnup in excess of rim formation burnup
- 0.5% extra porosity is generated per 1 MWd/kgU beyond rim formation burnup

Thermal behaviour of high burnup fuel - combined effects -

- 67 MWd/kg fuel reinstrumented with fuel thermocouple
- Appreciable difference to temperatures of fresh fuel
- Important factors:
 - conductivity degradation
 - power distribution
 - rim porosity
- The model for UO₂ conductivity degradation derived from in-core temperature data is suitable for explaining the differences

Power distribution in fuel with burnable poison (Gd)

Helios calculated radial power distribution in Gd-bearing fuel (Halden IFA 681)

- The evolution of the radial power distribution in fuels with burnable poison is a complicated function of neutron fluence and spectrum
- Fuel modelling codes would take such distributions as input

Time dependent temperature distribution

- Required for fast power changes
 - reactivity insertion accidents (RIA)
 - BWR power oscillation
 - reactor scrams
 - (loss-of-coolant accident)

- Many fuel modelling codes do not treat non-steady state temperatures
- Some divide the problem into steady state and transient treatment (e.g. Frapcon/Fraptran)
- Some implement rigorous solutions
 - Enigma, Transuranus ...
 - For proper rendering of measured data, the thermocouple response should be included in the solution

Time dependent temperature distribution

(for temperature independent conductivity and constant heat gen.)

$$\frac{1}{r} \cdot \frac{d}{dr} \left(r \cdot \frac{dr}{dT} \right) + \frac{A_0}{k} = \frac{\rho \cdot Cp}{k} \cdot \frac{dT}{dt} = \frac{1}{K} \cdot \frac{dT}{dt}$$
Solution:

$$\frac{diffusivity}{F_r} = \frac{A_0 \cdot \left(a^2 - r^2\right)}{4k} - \frac{2A_0}{ak} \sum_{n=1}^{\infty} e^{-Ka_n^2 t} \cdot \frac{J_0(r\alpha_n)}{\alpha_n^3 J_1(a\alpha_n)}$$

Because of the space dependence of the heat generation and the thermal properties, the problem is usually solved numerically on the differential equation level.

Properties of the fuel time constant

- The simplified time dependent solution identifies the basic influences of geometry and material parameters on the major fuel time constant
- Changes over time occur due to
 - conductivity degradation (λ)
 - fission gas release (h)

$$\tau = \frac{R^2 \cdot \rho \cdot c_p}{\lambda \cdot a_1^2}$$

$$R =$$
 pellet radius

$$a_1 = h \frac{R}{\lambda} \frac{J_0(a_1)}{J_1(a_1)}$$

 $J_0, J_1 =$ Bessel functions

Application to real data

- A scram of the Halden reactor triggers a fast data logging system which saves all temperature data every 0.5s
- The function coefficients (e.g. time constants) are determined with a least squares fitting procedure
- These data, when collected over longer periods, provide supplementary information on
 - fuel conductivity changes
 - fission gas release (gap cond.)

Long-term development

- Fuel diameter 8.09 mm
- gap size 0.130 mm
- fill gas helium
- no fission gas release

- Fuel diameter 10.67 mm
- gap size 0.230 mm
- fill gas helium
- FGR after 17.5 MWd/kg

Typical time constants

- The *thermocouple time constant* represents a delayed registration of the actual fuel temperature
 - typical values are 0.5 2.0 s
 - values depend on the thickness of the TC (mass) and the heat transfer from the TC to the fuel (fuel – TC gap)
- The *major fuel time constant* depends on geometry and heat transfer properties
 - values range from 3s (small diameter fuel, R<3mm) to about 10s (test rods filled with Xe)
 - typical values for standard geometry are 4 8s
 - Temperatures associated with power changes occurring over minutes or longer can be treated with steady state calculation
- Evaluation by noise analysis results in similar values; differences reflect response at different locations (centre, periphery, fuel average)

Summary – fuel temperatures

- Fuel temperatures and their development with burnup are influenced by many phenomena which interact in complicated ways
- First principal models as well as empirical data and correlations are employed in solving the problem
- The Halden reactor experimental data constitute a solid basis for model development and verification
- However, due to the nature of the problem, knowledge on many details will be deficient or lacking, and considerable uncertainties associated with fuel temperature calculations must be expected

The END

IAEA-ICTP 2010