

2137-51

Joint ICTP-IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

12 - 23 April 2010

Dislocation dynamics simulations of post-irradiation plastic deformation in austenitic stainless steels

C. Robertson CEA, Centre de Cadarache Saint Paul lez Durance France

The Abdus Salam International Centre for Theoretical Physics

Joint ICTP/IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

> 12 – 23 April 2010 Miramare – Trieste, Italy

Christian Robertson CEA-Saclay France DEN/DMN/SRMA

christian.robertson@cea.fr

DD simulations of post-irradiation plastic deformation in austenitic steels

RPV in Pressurized Water Reators

What happen, during irradiation of metals?

Short term evolutions: collision cascades (MD)

Courtesy CEA/SRMP

Long term evolutions: diffusion, germination, growth of point defect cluster (KMC)

Courtesy CEA/SRMP

Irradiation defect loops in various metals

AI

Ni

Irradiation 10 dpa (Kiritani 1994)

Fe

Consequence of loops in tensile properties of metals

Irradiated Austenitic Stainless Steels

Dose dependent reduction of ductility Hardening (< 3 dpa) Hardening/Softening instability(> 3 dpa)

Post irradiation plasticity: a multi-scale phenomena

• <u>Q1</u> How works the observed strain localisation mechanisms?

• <u>Q2</u> The reason of the hardening/softening observed at high dose (> 3 dpa) ?

• Approach

Step1: Observation Step2: Analysis with the help of simulations Step1- Plastic deformation after irradiation: observations

Goal: Accurate information on dislocation/defect cluster interactions

Plastic deformation after irradiation: observations

Jog size ~ Irradiation loop size

Neutrons Irradiations (~ cm)

Dislocation dynamics

Lattice spacing and time step

Nanometric loops

DD	« micro »	« nano »
XL	10 b	0.08 b
dt	5. 10 ⁻¹⁰ s	5. 10 ⁻¹⁴ s

Model fcc crystal: Cu elastic parameters

Examined configuration

Frank loop population

- Random position
- D=10nm, L=50nm

Loading conditions

- Single slip
- $\dot{\mathcal{E}}$ =1.2 10⁵s⁻¹

Dislocation/loop interactions

Rules come from MD simulation results

Elementary dislocation/loop Interactions

Local interaction rules implemented in $DD \rightarrow MD$ simulations

Generation of long screw segments Planar slip Helix

Strong pinning

Plasticity is controled by screw dislocations

Case 1: Glide of an isolated dislocation $\tau_{nuc} >> \tau_{obst}$

 \implies No clear band of finite thickness

Case 2: Collective glide of dislocations $\tau_{nuc} < \tau_{obst}$

Dislocation glide with the help of *collective* effects

m

m

m

DI RANNA RANKINA

D3 mm mt

Formation of a clear band // (111) of finite thickness

Case 2: Collective glide of dislocations

 $\tau_{nuc} < \tau_{obst}$

Case 2: Collective glide of dislocations

 $\tau_{dislocation} = \tau_{applied} + \tau_{pile-up} (number of dislocations) > \tau_{unpinning} (defect strength, defect density)$

Conclusion Dislocation Dynamics analysis

Clear band formation scenario

- \rightarrow Helix clear the initial defect loops
- \rightarrow Clear band broaden by slip plane change
 - \rightarrow Collective effects necessary

IV Comparaison simulation / experiment

Comparison simulation / experiment

Microstructure of clear bands

Cu irradiated and deformed: foil <u>parallel</u> to the clear band [Sharp, 67]

Dislocation Dynamics

 \implies Longs screw segments

 \Rightarrow Accumulation of jogs and debris in small zones

Comparison simulations / experiments

Elementary dislocation/loop interactions

Conclusions

New clear band formation scenario

Multi-scale modelling

<u>Molecular Dynamics</u> Dislocation/loop interaction mechanisms

→ Difference screw / edge
→ Screw = Unfaulting - Absorption - Helix - Change of glide plane

Dislocation Dynamics Collective interaction dynamics (leading to finite thickness clear band)

 \rightarrow Realistic description of elementary dislocation/loop interactions

 \rightarrow Cleaning + Broadening = helix + dislocation pile-ups

Experimental validation

THE END