

2137-52

Joint ICTP-IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

12 - 23 April 2010

Application of DD modeling to plastic deformation of RPV steel in the ductile to brittle transition regime

C. Robertson CEA, Centre de Cadarache Saint Paul lez Durance France

The Abdus Salam International Centre for Theoretical Physics

Joint ICTP/IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

> 12 – 23 April 2010 Miramare – Trieste, Italy

Christian Robertson CEA-Saclay France DEN/DMN/SRMA

Plastic deformation of RPV steel in ductile to brittle transition regime

christian.robertson@cea.fr

Introduction: motivations

Pressure vessel: the only part of a PWR that cannot be changed

Safety issue: emergency procedures in case of core fusion

Brittle damage at RT (low toughness) = cleavage cracking

RPV steel toughness: temperature effect

RPV steel toughness: temperature and dose effects

Standard toughness prediction apploach is local approach of fracture Reliability of this approach in accidental conditions? \downarrow Physical origin of dose and <u>temperature</u> dependences

Ductile-brittle is not a material parameter

Nucleation and motion of dislocation away from crack tip region is the rate limiting process

DD simulation of plastic deformation of RPV steel

Mobility rules adapted bcc at RT

Double Kink (dk)

BCC Fe	
Screw ≠ Edge	
Velocity anisotropy depends on T°	
Low temperature	Room temperature
Significant Peierls barrier ($\tau_{p} \sim 1$ GPa) Thermally activated mobility $v_{screw}(\tau, T) \ll v_{edge}(\tau) = \frac{\tau b}{B}$	Athermal regime $v_{screw} \approx v_{edge}$

On dislocation dynamics : "Double Kink Mechanism"

- Nucleation of a double kink (thermally activated)
- Kink propagation : $V_k \approx V_{edge}$

Kink pair mechanism and screw mobility

Dislocation velocity RT: end of the DBTT transition

Linear dependence of velocity on SD length at low τ^*

No SD length dependence at high τ^*

Cross-slip in ferritic RPV steel?

Information from MD simulations

Simulation duration 10⁻⁹ : 1 time step in DD Simulated space: 10b lattice spacing in DD

MD simulation conditions:

- Constant T° = 50-150K
- Free surfaces (direction of slip)
- Periodic along the line direction

J. Chaussidon (CEA/GPM2)

Cross-slip rules bcc: implementation in DD

MD: random CS at high stress

- $|\psi|$ angle increases with \uparrow T°
- $|\psi|$ angle decreases with $\downarrow\sigma$

MD results consistent with thermally activated CS

- Assume thermally activated CS

- Assume ΔG has the same dependence on ($\tau \& T$) in prim and CS planes

Rule-1: C-S probability

$$P_2 = 1 - P_1 = \frac{v_2}{v_1 + v_2}$$

With
$$v_1 = bX_1J_1$$
 and $v_2 = bX_2J_2$

Additionnal MD results: no kink pair nucleation in "twin planes"

Cross-slip rules bcc: implementation in DD

Simulation setup adapted to 16MND5 RPV steel?

Initial configuration?

- > 1- Simulation volume geometry?
- > 2- Loading conditions at lath scale?
- ➤ 3- Initial dislocation sources?

Single lath

Undeformed RPV steel microstructure

2- Loading conditions at single lath scale?

2- Loading conditions in single laths?

Lath blocks are folded-up (bending radius <u>smaller</u> than lath size)

Likely due to the inter-block boundary conditions (also observed in small austenitic grains)

TO SUMMARIZE...

2- Loading conditions in invidividual laths: bending

3- Initial dislocation structures

Why inter-lath sources?

- Intra-lath ρ ~ a few times 10^{14} $m^{\text{-}2}$
- Intra-lath L ~ 0.5-1.0 μ m (lath thickness), μ b/L^{↑↑} for FR mult.
- Inter-lath ρ > 10^{15}, with L \sim 10-20 μm
- \rightarrow Very numerous SD, from one or two slip systems
- ightarrow µb/L ↓↓

Simulation setup adapted to 16MND5 RPV steel

Initial configuration

- Simulation volume geometry: single lath
- Loading conditions: single axis bending
- Initial dislocation sources: inter-lath screws

DD simulations adapted to 16MND5 RPV steel

Acta Materialia 56, 5466-5476, 2008 [111] [111][-154] ⊕⇔ [-1 -1 1] 1-11-11 Artatwin [-154] Signature of CS: wandering sources).3 um g=[110 1-1-11 13-121 25 T = 50 K, K₂₁=520 m⁻¹ 20 154] [-1 H11.11 tension őΣ comp. [-154] 1-1-11, 3 (2) □ T = 200 K, K₂₁=520 m⁻¹ (2) Signature of twin/anti-200 nm twin CS asymetry

Signature of inter-lath SD sources

Acta Metallurgica, Vol. 11, 1963

DD simulation results VS dislocation structures in deformed RPV steel

Dislocation structures and cleavage initiation ??

DD simulation results: internal stress evolutions

- Possible contribution of their long-range stress, on cleavage initiation?

stresses in RPV steel single lath:

Evolution of intra-lath stress projectged in {100} cleavage planes

Total stress σ_{nn} (100) = $\sigma_{d} + \sigma_{app}$

- T° dependent evolutions of the [100] cleavage stress di stributions
- $rac{r}$ Max stress increases with decreasing T°(compatible evolution of macro critical ceavage stress $\sigma_u(T)$)

Maximum stress decrease with $\rm K_{21}\,\uparrow$

Efficient plastic relaxation

Planes NOT prone to cleavage

- Maximum stress in (100) planes, increase with K_{21} ^ - Prone to cleavage

Selective loading of (100) plane → limited set of slip systems w/r loading direction

 \rightarrow Limitation associated with lath growth during the initial bainitic transformation

Selective loading effect (on (100) planes) more pronounced at decreasing T°

 \downarrow

Possible contribution to T° dependance of material thoughness

Perspective: PERFORM60 WP1-2 project

THE END