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Introduction: motivations

�Pressure vessel: the only part of a PWR that cannot be changed

Cold water injection in the vessel

Safety issue: emergency procedures in case of core fusion

Rupture of the vessel

Brittle damage at RT (low toughness) = cleavage cracking

5 m

12 m

vessel
Generation of thermo-mechnical stresses 
& T°falls down to the ductile/brittle regime



Brittle damage

(cleavage)

Ductile damage

RPV steel toughness: temperature effect
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Standard toughness prediction apploach is local approac h of fracture

Reliability of this approach in accidental conditions?

↓↓↓↓

Physical origin of dose and temperature dependences

RPV steel toughness: temperature and dose effects

Irradiation-induced shift

safety
margin

Defect loading path in 
accidental conditions
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Ductile-brittle is not a material parameter

Nucleation and motion of dislocation away from crack t ip region is the rate limiting process



DD simulation of plastic deformation of RPV steel

Dislocation microstructure

DD code : RPV steel
(SD mobility, CS)

Simulation volume and initial 
dislocation structures, and main 

slip systems?

Loading Plastic deformation

Loading conditions at lath scale?



Mobility rules adapted bcc at RT

( ) ( )screw edge
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• ττττ : applied stress >> τ
p

• B : Viscous drag coefficient

• b : Burgers vector module

• ττττp : Peierls Stress

Negligible Peierls barrier (τ
p
∼x10 MPa)

Phonon-drag mechanism

Screw ∼∼∼∼ Edge

FCC models (Cu, FCC Fe)

Velocity anisotropy depends on T°

BCC Fe

Screw ≠≠≠≠ Edge

On dislocation dynamics : “Double Kink Mechanism”

• Nucleation of a double kink (thermally activated)

Peierls 

Potential

Double Kink (dk)
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• Kink propagation : 

( )edge

b
v

B

ττ =

Significant Peierls barrier (τp∼1GPa)

Thermally activated mobility

Low temperature

( ),screwv Tτ <<

screw edgev v≈
Athermal regime

Room temperature



• h : distance between Peierls valleys

• J [m-1s-1] : kink pair (dk) nucleation rate per unit length

• X [m] : kp’s mean free path before annihilation with another dk 

[increases with kinks velocity (vk), and decreases with J]

Kink pair mechanism and screw mobility

α= cocrew rrsv h JX
h

General expression

Guyot & Dorn [1967] – Hirth & Lothe  [1982] hybrid model

• ∆∆∆∆H0
: barrier’s height at zero stress

• ττττp : Peierls stress

• p, q : dimensionless fitting parameters
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• ∆∆∆∆G : Activation energy 

• lc (ττττ∗∗∗∗) : critical dk length

ααααcorr: fitting parameter ≈ 1

(to adjust athermal velocity in 
simulations)

G&D

H&L
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Dislocation velocity RT: end of the DBTT transition

77K

Linear dependence of velocity on SD length at low ττττ*

No SD length dependence at high ττττ*

4K



T = -196°C

Cross-slip in ferritic RPV steel?

(εp = 2,5%)

TEM: unlike in pure Fe, CS is very active at all T°in t he transition

T = 0°C

Cross-slip : 
P(τd,T)

Primary slip plane

Sketch: Marian et al 2005

Treatment of CS in DD ??

b
10 b



Information from MD simulations

64 nm

10 b T = 150 K

Simulation duration 10-9 : 1 time step in DD

Simulated space: 10b lattice spacing in DD

MD simulation conditions:

� Free surfaces (direction of slip)

� Periodic along the line direction

� Constant T°= 50-150K

J. Chaussidon (CEA/GPM2)



- |ψ| angle increases with ↑ T°

- |ψ| angle decreases with ↓ σ

MD results consistent with thermally activated CS

MD: random CS at high stress

- Assume thermally activated CS 
- Assume ∆G has the same dependence on (ττττ & T) in prim and CS planes

Cross-slip rules bcc: implementation in DD

Rule-1: C-S probability

With v1 = bX1J1 and v2 = bX2J2

Additionnal MD results: no kink pair nucleation in "twin planes"



Cross-slip rules bcc: implementation in DD

Twin zone: dislocation slip possible in 2 {110} slip planes

Anti twin zone: Cross-slip is inhibited

Main slip plane: closest {110} plane to the MRSSP

Cross slip plane: second closest {110} twin plane t o the MRSSP

CS Rule-2
(0

-1
1)

AT

MRSSP 

(-101)

(-110)
T



Simulation setup adapted to 16MND5 RPV steel?

carbide

Lath
block

<111>

� 3- Initial dislocation sources? 

� 2- Loading conditions at lath scale?

Initial configuration?

� 1- Simulation volume geometry?

Undeformed RPV steel microstructure

TEM SEM AFM

Single lath

10 µm

2 
µm10 µm



Un-deformed

2- Loading conditions at single lath scale?

Deformed εεεεp = 10% at 77K



After tensile εεεεp: 

Lath blocks are neither elongated nor
sheared-off

Lath blocks are folded-up (bending radius smaller than lath size)

Likely due to the inter-block boundary conditions (also observed in small austenitic grains)

�

2- Loading conditions in single laths?



≠
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TO SUMMARIZE…

RPV steel Austenite



�Stress vanishes in the neutral plane and 
becomes negative, further below

� Lath geometry � Homogeneous bending

� γ = 0

Single axis bending

2- Loading conditions in invidividual laths: bending



Interfacial
dislocation array

- Inter-lath ρρρρ > 1015, with L ∼∼∼∼ 10-20 µm 

→ Very numerous SD, from one or two slip systems

→ µb/L ↓↓↓↓↓↓↓↓

3- Initial dislocation structures

Why inter-lath sources?

- Intra-lath ρρρρ ∼∼∼∼ a few times 10 14 m-2

- Intra-lath L ∼∼∼∼ 0.5-1.0 µm (lath thickness), µb/L ↑↑↑↑↑↑↑↑ for FR mult.



Simulation setup adapted to 16MND5 RPV steel

Ferritic lath

10 µm

2 
µm10 µm

carbide

Lath
block

<111>

� Initial dislocation sources: inter-lath screws

� Loading conditions: single axis bending

Initial configuration

� Simulation volume geometry: single lath



DD code adapted
16MND5 in DBTT: 

screw mobility, X-slip
Stress Curvature rate K21

Dislocation Microstructure

DD simulations adapted to 16MND5 RPV steel



Signature of twin/anti-
twin CS asymetry

Acta Metallurgica, Vol. 11, 1963

comp.

tension

DD simulation results VS dislocation structures in deformed RPV steel

Acta Materialia 56, 5466-5476, 2008

Signature of inter-lath SD sources

Signature of CS: wandering sources



Dislocation structures and cleavage initiation ??



T = 200KT = 50K

0.5 cm

DD simulation results: internal stress evolutions

- Dislocation structure: T° dependent

- Possible contribution of their long-range 
stress, on cleavage initiation?

Analysis volume:

106 points

0,7 µm

DD analysis of dislocation-induced internal
stresses in RPV steel single lath:



T = 200KT = 50K

� T°dependent evolutions of the [100] cleavage stress di stributions 

� Max stress increases with decreasing T°(compatible evo lution of macro critical ceavage stress σσσσu(T))

Evolution of intra-lath stress projectged in {100} cleavage planes 

(100) (100)

Total stress σσσσnn (100) = σσσσd + + + + σσσσapp



T = 200K

K21 = 260 m-1 K21 = 520 m-1

T = 50K

K21 = 260 m-1 K21 = 520 m-1

σσσσnn = σσσσd + + + + σσσσapp



- In (010) & (001) cleavage planes

Maximum stress decrease with K 21 ↑↑↑↑

� Efficient plastic relaxation

� Planes NOT prone to cleavage 

(010) (001)

DD simulations of plastic deformation of RPV steel: internal stress evolutions

Selective loading effect (on (100) planes) 
more pronounced at decreasing T°

↓↓↓↓

Possible contribution to T°dependance of 
material thoughness

- Maximum stress in (100) planes, increase with  K 21 ↑↑↑↑

- Prone to cleavage

(100)

Selective loading of (100) plane →→→→ limited set of slip 
systems w/r loading direction

→→→→ Limitation associated with lath growth during the initia l 
bainitic transformation 
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Code DD adapted to 
16MND5 strained in 
the DBTT range

Stress
(bending)

Plastic deformation

Dislocation microstructure

16MND5 irradiated 0.5 dpa / 400°C

Perspective: PERFORM60 WP1-2 project

… initial dislocation structure: 
sources, loops

Expected model predictions: 
hardening and strain localisation



THE END


