

2137-39

Joint ICTP-IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

12 - 23 April 2010

Numerical simulation of transport properties in nuclear fuels : from the atomistic scale to the mesoscopic scale (Part 3)

> M. Freyss CEA, Centre de Cadarache Saint Paul lez Durance France

Part 3

Numerical simulation of transport properties in nuclear fuels: from the atomistic scale to the mesoscopic scale

Part 3 Outline

œ

Ab initio modeling of actinide compounds

Illustrations of ab initio studies of nuclear fuels

- Stability of point defects in UO₂
- Atomic transport in UO₂
- Behavior of Xe in UO₂ et UC

Classical Molecular Dynamics (CMD) modeling

Illustrations of CMD studies of nuclear fuels in UO₂

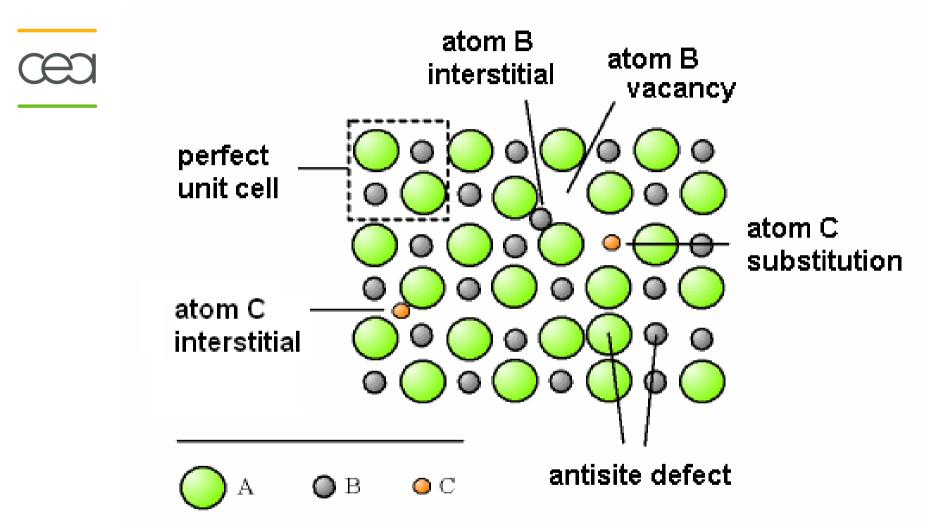
- Formation of defects during displacement cascades
- Influence of grain boundaries on cascades and defects

Conclusion

Illustrations of ab initio studies of nuclear fuels

Illustration 1: Ab initio modeling of the stability of point defects in uranium dioxide UO₂ and uranium carbide UC

Ab initio method for modeling of UO₂ and UC

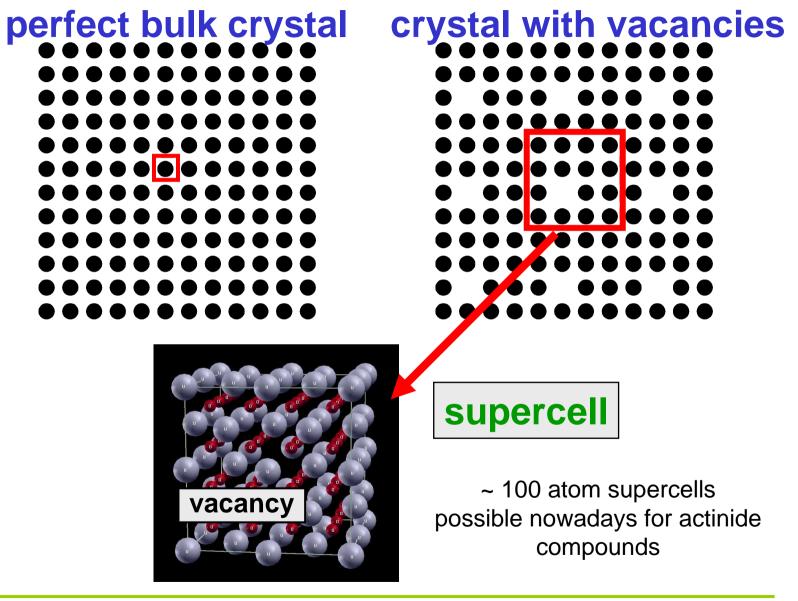

Projector Augmented Wave method (PAW)

- Based on the Density Functional Theory (DFT)
- Plane-Waves as basis functions for valence electrons
- Core electron density taken into account
- Code VASP (http://cms.mpi.univie.ac.at/vasp/)
- Scalar relativistic approximation
- Exchange-correlation functional: **GGA** for **UC**

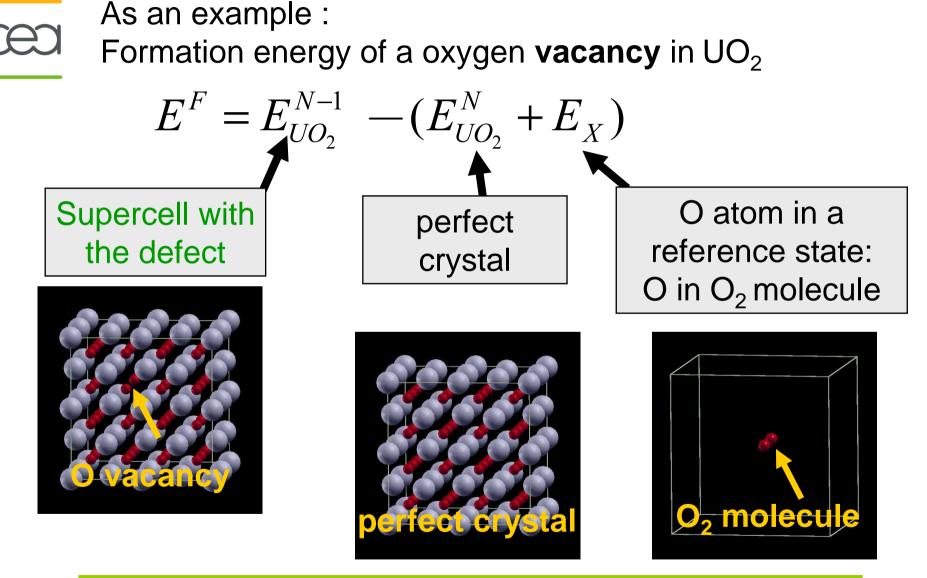
GGA+U for **UO**₂

- Low cut-off energy of the plane-wave basis: 350 eV for UC, 450 eV for UO₂
- Defects in UC in a 64 atom supercell in UO₂ in a 96 atom supercell
- 4x4x4 Monkhorst-Pack k-point mesh

Point defects



or more complex defects (tri-vacancies, dumbbells, clusters...)


Periodicity: supercell technique

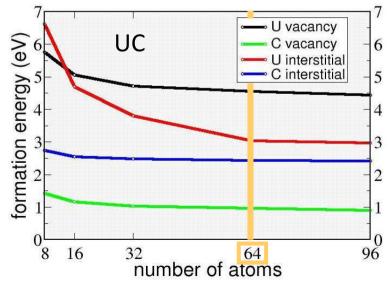
Formation energy of point defects

Point defects in uranium dioxide and carbide

- Vacancies
- Interstitials
 - Frenkel pairs
 - 1 vacancy + 1 interstitial

Schottky defects

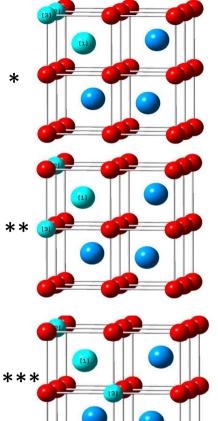
- 1 uranium vacancy
- + 2 oxygen vacancies


Small vacancy aggregates

Relative stability:

→ Formation energies

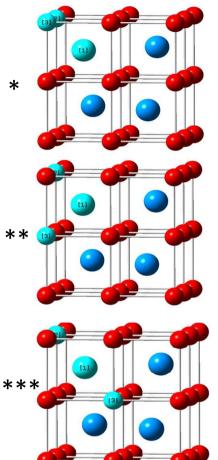
Exchange-correlation:GGA (UC) GGA+U (UO_2) Supercellule:64 atoms (UC), 96 atoms (UO_2) Cut-off energy:350 eV (UC), 500 eV (UO_2) k points:4x4x4 gridRelaxation of atomic positions and volume



DFT+U formation energies of defects in UO₂

E ^F (eV)	Fluorite	Jahn-Teller
Oxygen interstitial	0.10	0.47
Oxygen vacancy	5.67	6.01
Uranium interstitial	5.38	5.05
Uranium vacancy	10.43	9.87
1 st bound Schottky defect *	3.32	4.07
2 nd bound Schottky defect **	2.55	3.26
3 rd bound Schottky defect ***	2.92	3.41
Isolated Schottky defect	10.66	10.62
Uranium Frenkel pair	15.80	14.62
Oxygen Frenkel pair	5.78	6.48

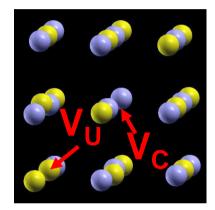
- Crystal field: moderate effect on formation energies (except I₀)
- > Uranium and oxygen vacancy formation energies > 5 eV.
- Diffusion very likely to occur via Schottky defects
- Ability of vacancies to trap fission gases?

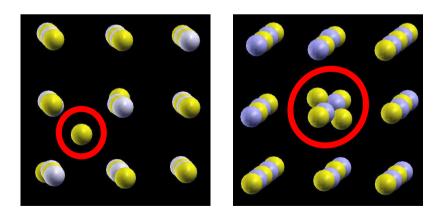

B. Dorado et a., submitted (2010)

DFT+U formation energies of defects in UO₂

E ^F (eV)	Fluorite	Jahn-Teller
Oxygen interstitial	0.10	0.47
Oxygen vacancy	5.67	6.01
Uranium interstitial	5.38	5.05
Uranium vacancy	10.43	9.87
1 st bound Schottky defect *	3.32	4.07
2 nd bound Schottky defect **	2.55	3.26
3 rd bound Schottky defect ***	2.92	3.41
Isolated Schottky defect	10.66	10.62
Uranium Frenkel pair	15.80	14.62
Oxygen Frenkel pair	5.78	6.48

Experimental data H-j. Matzke, J. Chem. Soc., Faraday Trans. 2, 83, 1121 (1987) E^F (O Frenkel pair)= 3.0-4.0 eV, E^F (U Frenkel pair)= 9.5 eV E^F (Schottky)= 6.0-7.0 eV


Relative agreement


Point defects in UC

- Irradiation damage in UC better accomodated in the carbon sub-lattice
- Weak perturbation of the crystal structure
- Aggregation of U and C vacancies more favorable than isolated vancancies
- « Dumbbell » configuration of interstitials more stable than tetraedral interstitials

Carbon at tetraedral site E^F=2.5 eV

Carbon in a dumbbell <111> E^F=2.2 eV

M. Freyss, Phys. Rev. B 81, 014101 (2010)

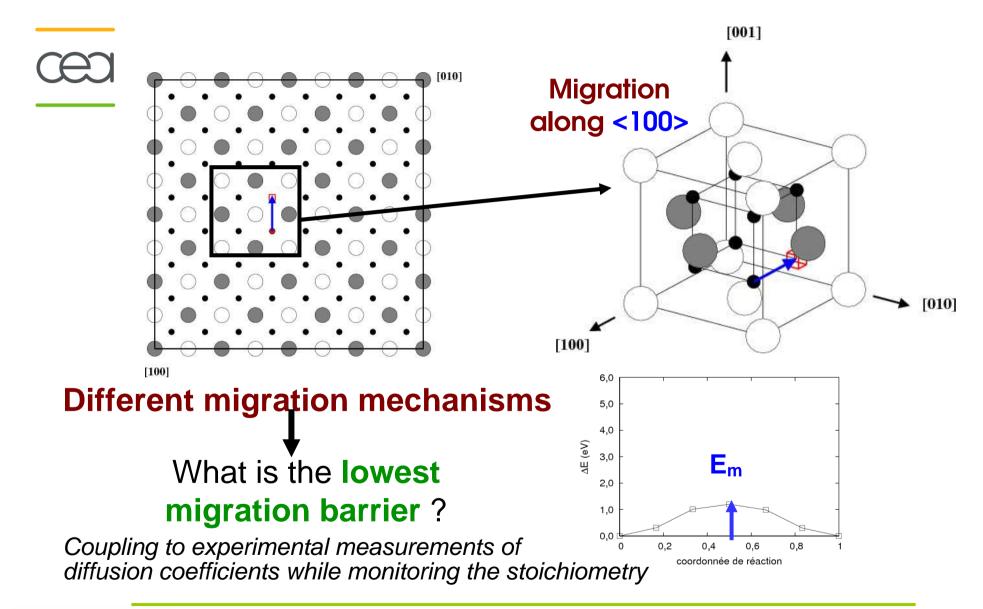
Illustrations of ab initio studies of nuclear fuels

Illustration 2: *Ab initio* modeling of migration of defects in UO₂ and UC

Migration energies of point defects in UO₂

Experimentally: activation energies measured and reported in the literature (Auskern 1961, Belle 1969, Marin 1969, Contamin 1972).

- Generally no control of oxygen partial pressure
- No measurement of impurity content
- Dominant migration mechanism remains unknown


New data for identifying diffusion mechanisms (Garcia *et al.*, Nucl. Mater. (2010) in press. Of presentation. (1)

- J. Nucl. Mater. (2010) in press. Cf presentation 4)
- Theoretically: migration energies calculated with
 - Empirical potentials (Catlow 1977): migration mechanisms
 - Standard DFT (Dorado 2009) : DFT-GGA description of UO₂
 - ♦ DFT+U approximation (Gupta 2010) without the NEB method (migration path not optimized)

Need to use up-to-date methods to determine accurate activation energies for oxygen diffusion. In progress...

Migration energies of point defects in UO₂

CADARACHE

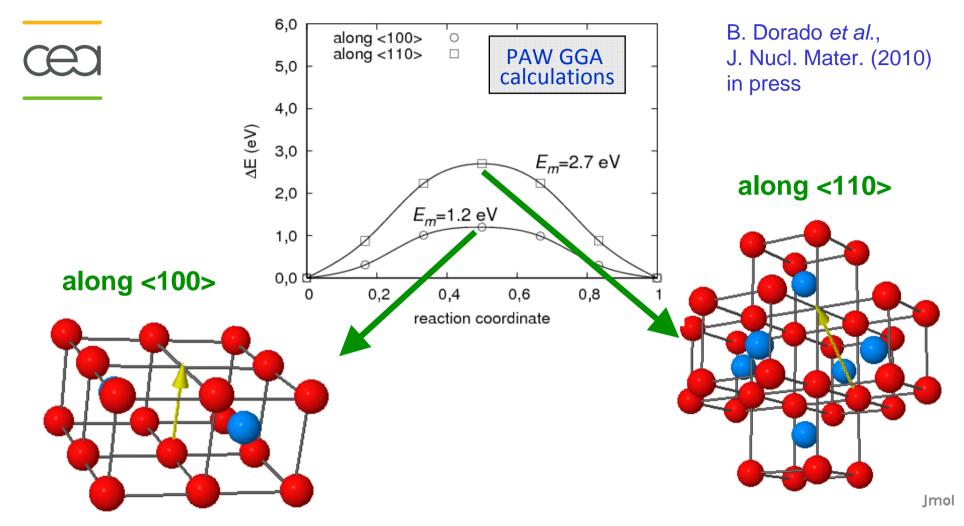
Migration energies: calculation method

Diffusion coefficient
$$D = D_0 \exp\left(-\frac{E_a}{kT}\right) = D_0 \exp\left(-\frac{E_{app}^F + E_m}{kT}\right)$$

Nudged Elastic Band (NEB)

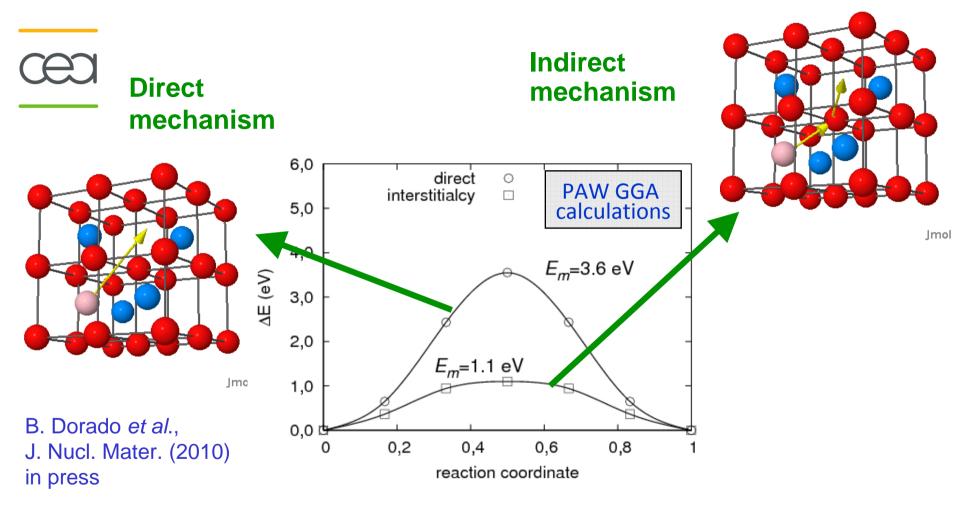
Determine Minimum Energy Paths for atom migration

 \rightarrow Choice of a start migration path and images along it


 \rightarrow Atomic relaxation perpendicular to the path

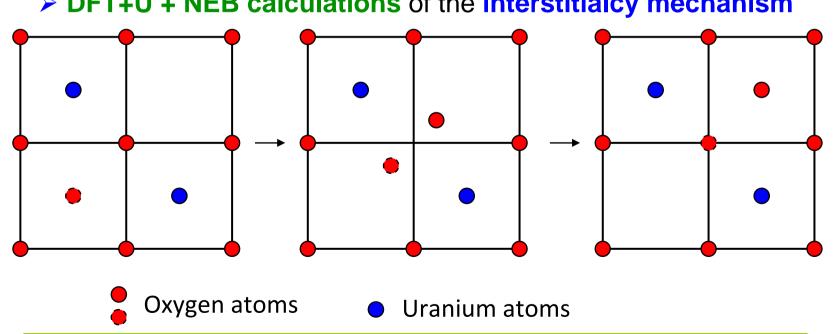
 \rightarrow Allows us to get a physical path (path continuity is ensured)

IAEA-ICTP Advanced Workshop on Multiscale Modeling of Radiation Damage Mechanism in Materials Trieste, Italy, 12-23 April 2010


Migration energies: oxygen vacancy

O vacancies are more mobile along the <100> direction than along the <110> direction

Migration energies: oxygen interstitial


The indirect mechanism is the most favorable mechanism for the migration of O interstitials

Migration energies: oxygen interstitial

|--|

- Electrical conductivity measurements:
 - Control of parameters that affect the material (oxygen) partial pressure and impurity content)
 - Oxygen diffusion occurs via interstitial mechanism
 - Measured activation energy = 0.6 eV

IAEA-ICTP Advanced Workshop on Multiscale Modeling of Radiation Damage Mechanism in Materials Trieste, Italy, 12-23 April 2010

DFT+U + NEB calculations of the interstitialcy mechanism

Migration energies: oxygen interstitial

 Σ > During the NEB calculation, symmetries are switched off.

> Calculated migration barrier : 0.6 eV \Rightarrow Calculated activation energy $E_a = E^F + E_m = 0.7$ eV (recent measured value: 0.6 eV).

Good agreement between the calculated and experimental activation energies.

> Oxygen diffusion in UO_2 occurs *via* the interstitialcy mechanism.

Other vacancy-assisted mechanisms are currently considered but much higher activation energy (because high formation energy)

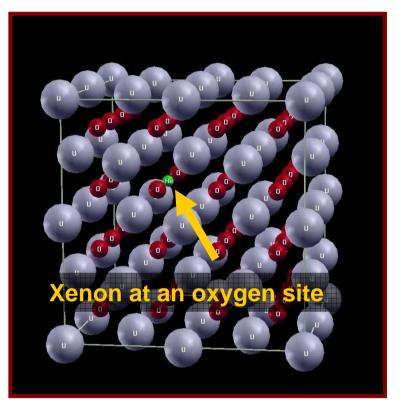
Migration in UC: carbon and uranium vacancies

* Hj. Matzke, Science of Advanced LMFBR fuels (1986) Carbon: interstitial mechanisms to be investigated

Same trend in **UN**: $E_{mig}(U) = E_{mig}(N) = 3.5eV$ Not in **UO**₂ : $E_{mig}(U) = 4.4eV > E_{mig}(O) = 1.2eV$ B. Dorado *et al.* J. Nucl. Mater (2009) B. Dorado *et al.* J. Nucl. Mater (2010)

CADARACHE

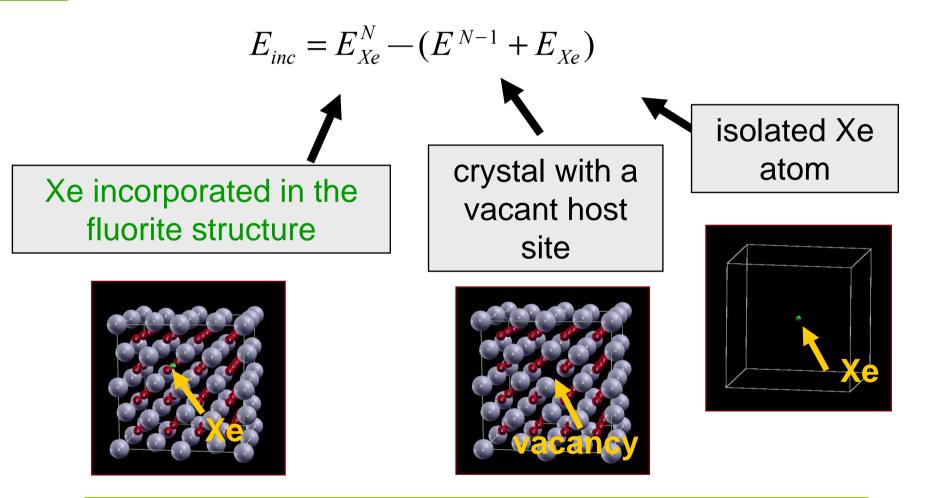
Illustrations of ab initio studies of nuclear fuels


Illustration 3: Modeling of the stability of fission products in UO₂ and UC

Volatile elements in UO_{2:} the case of Xe

- Stability in the lattice
 - interstitial site
 - substitution site
- Incorporation energy
- Solubility
- Structure modifications swelling

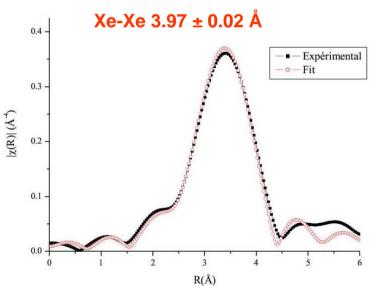
GGA or GGA+U calculations Method: PAW / VASP Supercell with 96 atoms


Completed by empirical potential calculations A. Chartier et al., submitted (2010)

Incorporation energy

Energy required to incorporate Xe in a pre-existing vacancy or at an interstitial site:

Xenon incorporation in UO₂ and UC


E _{inc} (eV)	site U	site C, O	interst.
UC	4.2	8.2	12.1
UO ₂	5.8	9.1	12.0

Large incorporation energies (> 4 eV) whatever the site: instability of diluted xenon atoms in both UC and UO_2

DFT+U studies of Xe in UO₂: Nerikar *et al.*, J. Phys.: Condens. Matter 21 (2009) 435602 Yu *et al.*, J. Phys.: Condens. Matter 21 (2009) 435401. but problems of metastable states not taken into account

Experimentally characterized in UO₂ by EXAFS and TEM

- \rightarrow Xe implantation, annealing, EXAFS analysis
- → Formation of pressurized Xe clusters

See presentation 4

P. Garcia, P. Martin, G. Carlot, M. Ripert, C. Sabathier et al., J. Nucl. Mater. 352, 136 (2006)

Xenon incorporation in UO₂

Formation of nano-voids and stability of bubbles of xenon in UO₂ A. Chartier *et al.* submitted (2010)

Study with **empirical potentials** (static calculations) fitted on **DFT calculations**

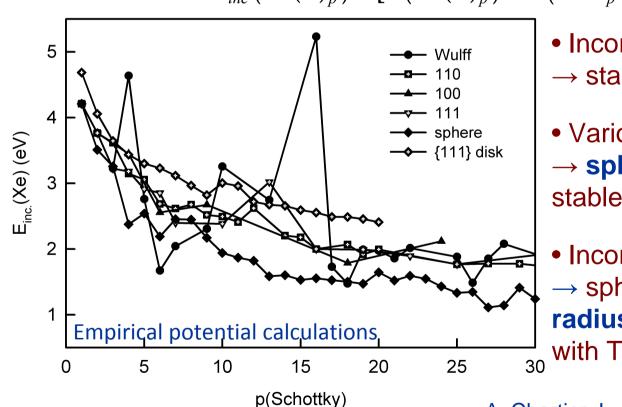
Buckingham potentials for UO_2 and Xe-U and Xe-O interactions (cf. presentation 2). Tang and Toennies potential for Xe-Xe interactions.

	In	corp. energ	ies Einc (eV)
Incorp. sites	Xe(Int)	Xe(Vu)	Xe(Vo)	Xe(S)
DFT	12.0	5.8	9.1	/
emp. pot.	11.9	5.4	9.3	4.2

Higher stability of Xe atoms in Schottky defects (S) compared to substitution or interstitial sites

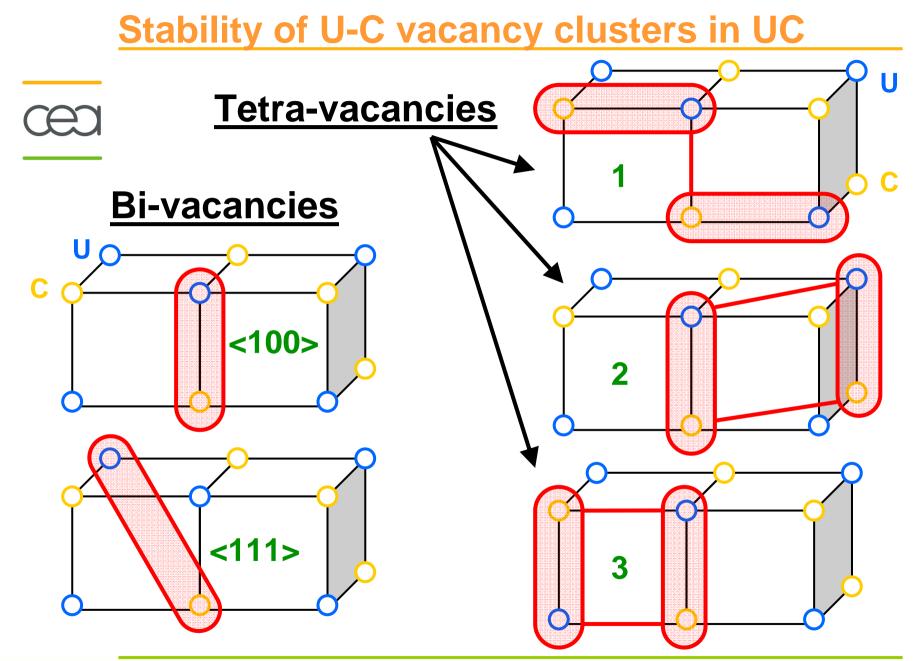
Xenon in UO₂ : stability of nanovoids

Binding energies of various shapes of voids as a function of the number *p* of Schottky (S) defects.


$$E_{binding}(Void_p^S) = [E(Void_p^S) - pE(S)]/p$$

Xenon in UO₂ : incorporation in nanovoids

Xenon incorporation energies (in eV/Xe atom) in different void shapes, as a function of the number *p* of Schottky defects, which contain *p* Xe atoms



$$E_{inc}(Xe(S)_p) = \left[E(Xe(S)_p) - E(Void_p^S) - pE(Xe_g)\right]/p$$

- Incorp. energy decreases with *p* → stability of xenon clusters
- Various shapes of voids
 → spherical xenon clusters more stable
- Incorp. energy saturates p~20 \rightarrow spherical xenon clusters with radius of 1.3 nm. In agreement with TEM analysis (cf presentation 4)

A. Chartier, L. van Brutzel et al. submitted (2010)

Stability of U-C vacancies in UC: DFT calculations

vacancies	E _F (eV)	E _b (e∨)
monovac U	4.5	/
monovac C	0.8	/
bivac U-C <100>	4.6	- 0.7
bivac U-C <111>	5.3	~ 0
tetravac 1	7.8	- 2.8
tetravac 2	7.3	- 3.3
tetravac 3	8.9	- 1.7

<u>Binding energy</u> **E**_b : Bound vacancies E^F(Vac U-C) *vs.* isolated vacancies E^F(Vac U) + E^F (Vac C) **E**_b < 0: bound vacancies are more stable than isolated vacancies

Possible traps for fission products and helium

CADARACHE

Incorporation of volatile fission products in UC

Ε _{inc} (eV)	Kr	Хе
monovac U	3.6	4.2
monovac C	6.0	8.2
interst. tetra.	10.1	12.1
bivac U-C <100>	2.6	3.2
bivac U-C <111>	3.7	4.3
tetravac 1	2.2	2.4
tetravac 2	1.7	2.2
tetravac 3	2.7	3.4

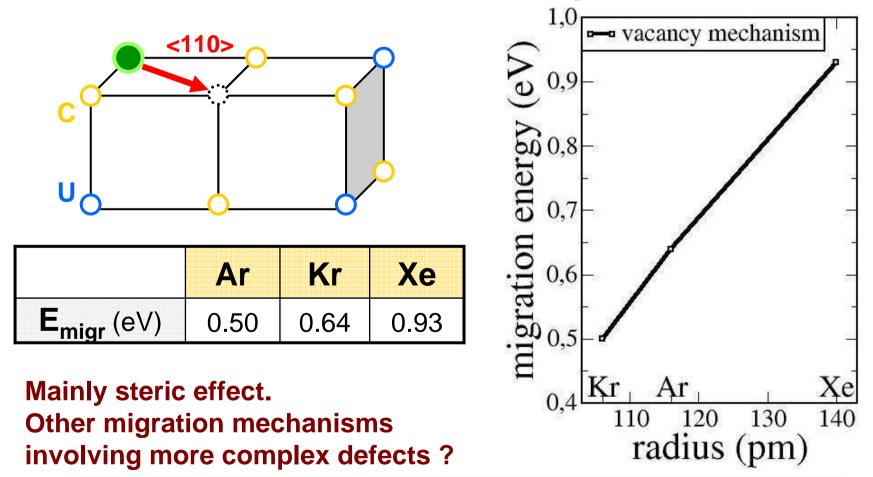
 $E_{inc} < 0$: stability

Kr and Xe not favorably incorporated: not soluble in UC Most stable at a U substitution site and extended defects, like in UO₂ Larger defects out of scope of ab initio calculations: empirical potentials

CADARACHE

()

_____)


Migration of volatile fission products in UC

Nudge Elastic Band (NEB) calculations in a 64 atom UC supercell

Only one migration path investigated so far:

U substitution site \rightarrow U vacancy

Classical Molecular Dynamics Simulations of displacement cascades in UO₂

Empirical potentials and molecular dynamics

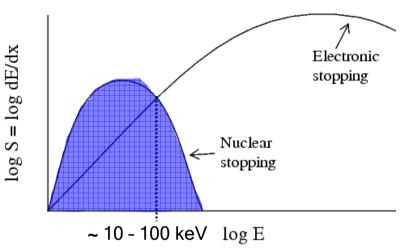
Principle

- Interatomic interactions described by analytical potential giving the energy as a function of separation distance
- Parametrized on experimental or ab initio data
- Potential form different for each system type
- Parameters different for each system
- Simulates evolution of systems in time
- Based on statistical mechanics. Calculation in a statistical ensemble (example: N, V, T constant)
- Calculations at finite temperature

Advantages / Disadvantages

- Quick ⇒ Investigation of large systems / long times
- Existing data necessary for parametrization
- Non transferable: potentials only valid in situation close to those used for parametrization
- No description of electronic structure

Cf presentation 2



CMD simulation of cascades in UO₂

Slowing down of fission products

 ⇒ Simulation of displacement cascades generated by U atom
 Description of elastic collisions

Empirical pair potential for UO₂ [1]

- relatively simple: rigid ion potential U^{3,2+} et O^{1,6-}
- without charge transfer: no description of electronic changes
- satisfactory for UO₂ defect migration/formation properties

[1] N. D. Morelon, et al., Phil. Mag. 83, 1533 (2003)

Illustrations of CMD studies of nuclear fuels

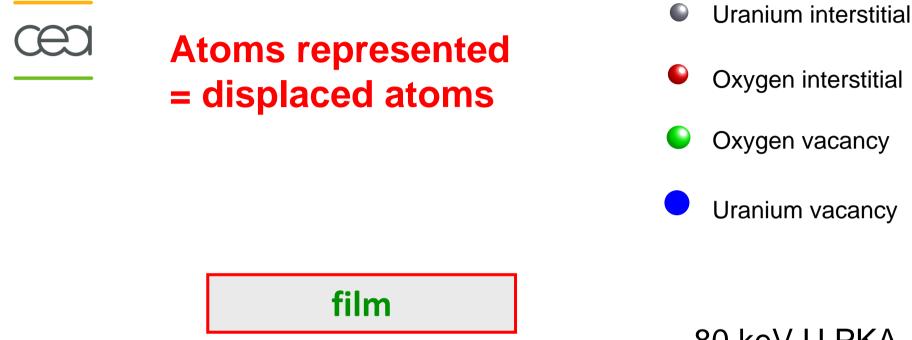
Illustration 1 : formation of defects during displacement cascades

Formation of defects during displacement cascades in UO₂

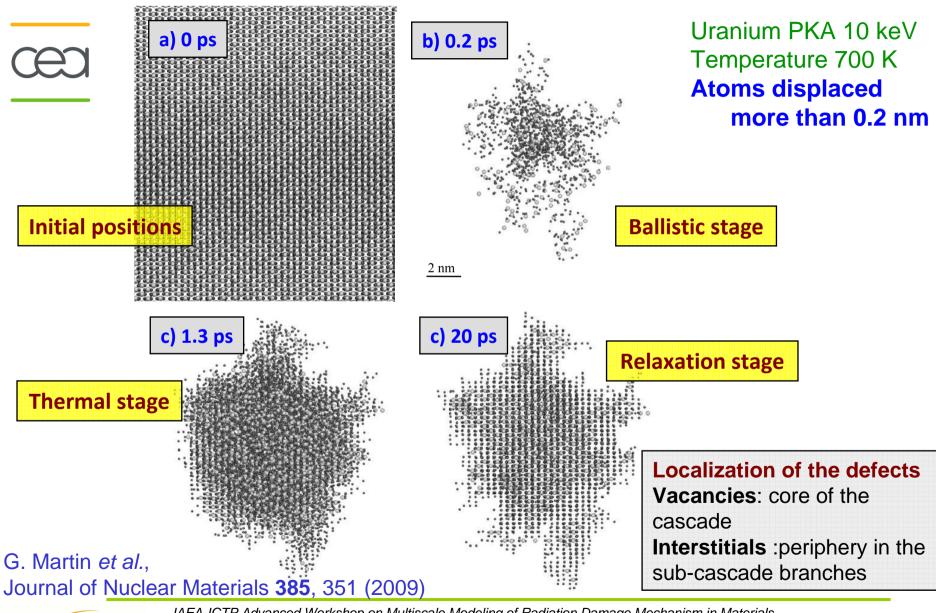
Fluorite structure UO₂

Up to 68×68×68 unit cells (3 million atoms), stabilized 20 ps at 300K and 0 GPa

Energy pulse given to an atom (Primary Knock-on Atom PKA) \rightarrow 1 to 80 keV


- Cascades simulated with constant N,V,~E
- Temperature control at the boundaries of the box (3 Å)
- Periodic boundary conditions
- Variable time steps
- Statistical approach to interpret results: several cascades performed in the same conditions with different locations and directions of the PKA.

Single cascade: successive steps of defect formation and recombination
Cascade overlaps: saturation of defect formation


Displacement cascade in UO₂ with a 80 keV PKA

80 keV U PKA 68x68x68 cell 300 K

Successive steps of a displacement cascade in UO₂

CADARACHE

Number of defects after a cascade in UO₂

The total number of defects created **increases** with the energy of the PKA

High recombination rate: a displaced atoms finds an equivalent crystal site.

No amorphisation of UO_2 .

The recombination rate for uranium increases rapidly with temperature.

G. Martin *et al.*, J. Nucl. Mater. **385**, 351 (2009) L. Van Brutzel *et al.*, Phys. Rev. B **78**, 024111 (2008)

Overlap of cascades in UO₂

Study of primary damage produced by a flux of energetic particles

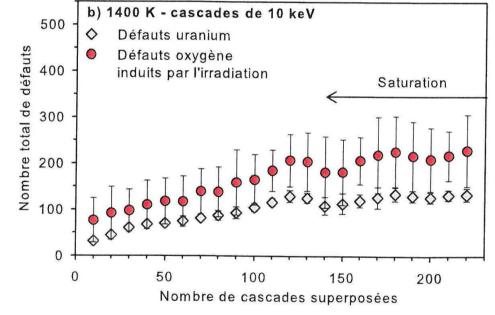
Cascade overlap within the same simulation box \rightarrow response of the material to increasing damage levels

Sequence of cascades: **new PKA every 25 ps** Energy of the uranium PKA: **10 keV** Different directions and locations of the PKA Uranium Total duration of the simulation: 350 ps Temperature **700 K**

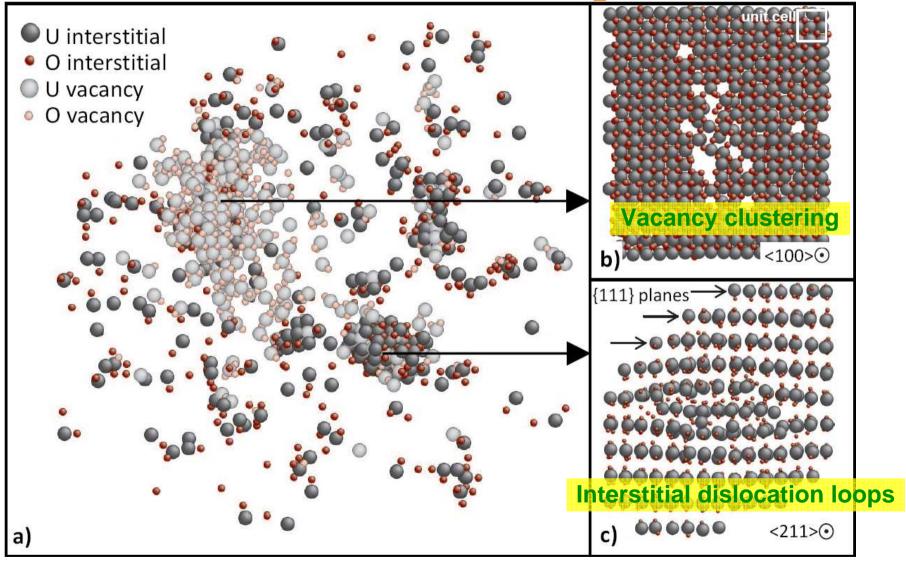
PKA 2

Overlap of cascades in UO₂

film


Damage production after displacement cascades in UO₂

CADKRACHE


Total number of defects generated first increases (linearly) with the number of cascades, then increases slower to reach **saturation**

G. Martin *et al.*, to be published (2010)

Saturation is reached for a smaller total number of defects when the temperature is higher

Damage production after displacement cascades in UO₂

Illustrations of CMD studies of nuclear fuels

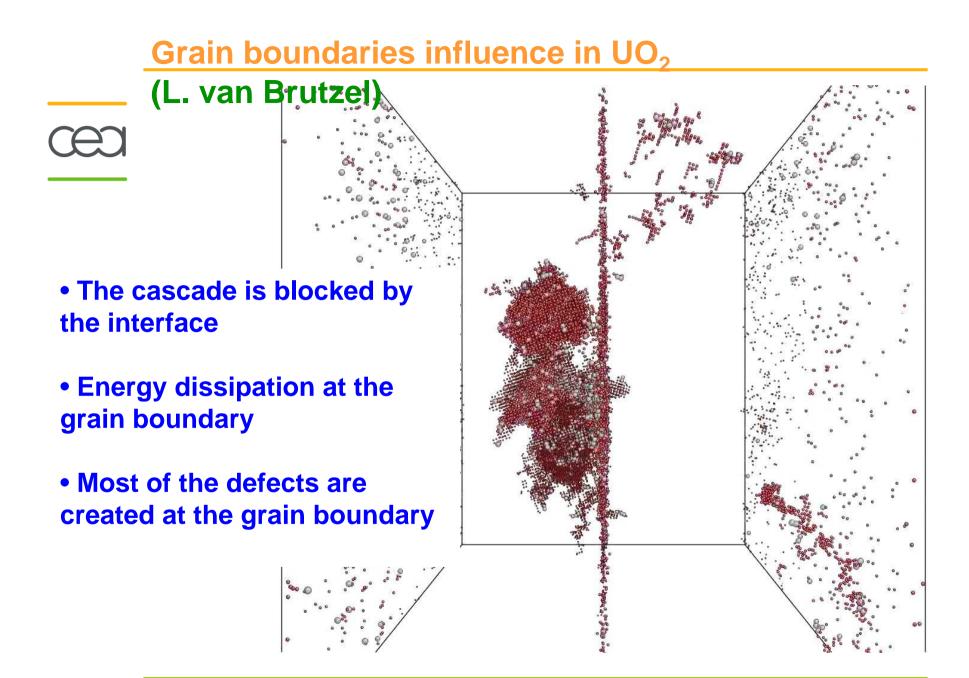
Illustration 2 : Grain boundaries influence in UO₂

Grain boundaries influence in UO₂

(L. van Brutzel, CEA Saclay)



Evolution of the grain boundary Σ5 at 300K during relaxation (constant N, P, T)



Pattern of Schottky defects = experimental observations

Part 3 Conclusion

Application of atomistic calculations to nuclear fuels

- Ab initio calculations and CMD simulations are powerful tools
 - to identify atomic scale mechanisms
 - to generate quantitative data
- Studies of phenomena difficult to access experimentally
- Support experiments and microscopic modeling techniques

Challenges for the future

- Better ab initio approximation of strong correlation in UO₂
- Better ab initio description of Van der Waals interactions to model rare gases in the material
- Development of empirical potentials for rare gases & fission products
- Better integration of *atomistic* calculations in the **multiscale** modeling of nuclear fuels (KMC, performance code...)

Acknowledgements

CEA Cadarache / Fuel Study Department

 From the lab: C. Valot (head), M. Bertolus, B. Dorado, G. Martin, P. Garcia, P. Martin, G. Carlot, C. Sabathier, J. Durinck, C. Davoisne, M. Fraczkiewicz, H. Palancher, C.
 Martial, J.C. Dumas, J.P. Piron, From the department : B. Pasquet, B. Michel, A. Bouloré, L. Noirot, P. Obry, Y. Guerin

CEA Saclay H. Khodja, C. Rapsaet, L. Van Brutzel, A. Chartier, JP. Crocombette, C. Gueneau CEA Saclay – Ecole Centrale – CNRS : G. Baldinozzi, D. Siméone, C. Petot CEA DAM F. Jollet, B. Amadon, G. Jomard, M. Torrent, F. Bottin IRSN: R. Ducher

Imperial College (UK): R. Grimes, D. Parfitt CNRS (F): MF. Barthe, T. Sauvage, P. Desgardin, E. Gilabert, F. Garrido ITU (D): R. Konings, J. Somers, E. Kotomin, D. Gryaznov, P. van Uffelen, T. Wiss SCK-CEN (B): K. Govers NRG (NL): S. De Groot ESRF FAME BL (F): O. Proux, J.-L. Hazemann, V. Nassif TUM (D): N. Wieschalla, W. Petry, R. Jungwirth AREVA-CERCA (F): C. Jarousse

ACTINET network of excellence

F-BRIDGE European project

