

2137-40

Joint ICTP-IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials

12 - 23 April 2010

Experimental simulation of nuclear fuels: separate effect studies (Part 4)

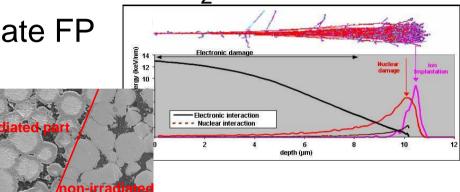
M. Freyss CEA, Centre de Cadarache Saint Paul lez Durance France

Part 4

Experimental simulation of nuclear fuels: separate effect experiments

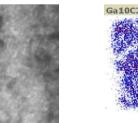
Objectives of the separate effect studies

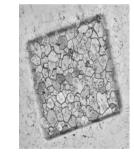
- To model and to understand nuclear fuel behavior under irradiation as well as under long term storage conditions
 - Volatile fission products I, Xe, Kr, Cs + He
 - Transport properties
 - Irradiation effects


Direct support to modeling

- Guide: mechanism understanding
- Basic data to be used in the models
- Experimental and theoretical methodologies developed for application to a large panel of materials
 - Oxides UO₂ and MOX (U,Pu)O₂
 - Carbides UC and UPuC...

Separated effects studies : the approach


- Non active model materials such as UO₂
- Ion implantation to simulate FP
 - Thermal treatment or heavy ion irradiation



Characterization with a large panel of dedicated techniques

(SIMS, RBS, NRA, TEM, XAS...)

 Large scientific facilities (particle accelerators and synchrotron radiation)

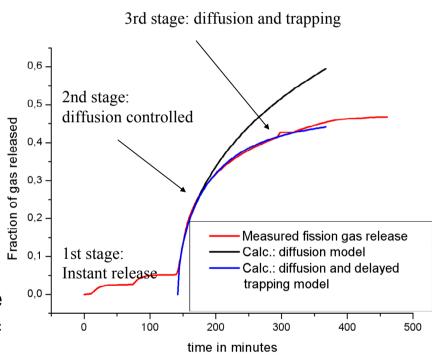
Separated effects studies : illustrations

C	e	O Objective Studies					
	1	Understand and model fission gas diffusion/ precipitation/release in nuclear oxide fuels	XAS and TEM				
	2	Understand and model He behavior in nuclear oxide fuels	Thermal diffusion of helium in uranium dioxide				
	3	Oxygen diffusion in relation to p-type doping in UO ₂	Electrical conductivity and diffusion coefficient measurements in UO ₂	4 + 0 100 µm			
			0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\Delta H^{(0)}_{\mu\nu} = 0.31 \text{ eV} + 4.001^{-5}$ 10 12 14 16			

10⁴/T (T in K)

Separated effects studies : illustrations

e	O Objective	Studies	implanted hours at 800°C
1	Understand and model fission gas diffusion/ precipitation/release in nuclear oxide fuels	XAS and TEM characterization of Xe bubbles in uranium dioxide	6
2	Understand and model He behavior in nuclear oxide fuels	Thermal diffusion of helium in uranium dioxide	
3	Oxygen diffusion in relation to p-type doping in UO ₂	Electrical conductivity and diffusion coefficient measurements in UO ₂	


-	~	~	
(6		
	入	~	

- Issue : Understand and model xenon release in nuclear oxide fuels
- Rare gases are highly insoluble in most materials (confirmed by 1st-principles and empirical potential calculations)
- Therefore predicting rare gas transport requires:
 * understanding precipitation mechanisms
 - * rare gas bubble characteristics
 - * diffusion of gas atoms in presence of bubbles
- Two analytical tools are very powerful when coupled : Transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS)

Understanding of thermally activated phenomena : post-irradiation annealing on irradiated fuel

- High temperature (>~1300°C) anneals of irradiated material
- At a given temperature, three stages generally identified (Valin, Portier, PhD theses 1999-2005)
 - (1) instantaneous release: gas accumulated at grain boundaries
 - (2) diffusion controlled release
 - (3) fractional release levels off

Release at 1500℃ (3h)

Trapping efficiency? Characteristic of bubbles?

What information can we get from in situ transmission electron microscopy (TEM)?

- Defect accumulation/annealing
- Threshold temperature for bubble precipitation
- Bubble size distribution
- Electronic excitation effects: bubble nucleation and fission gas re-solution

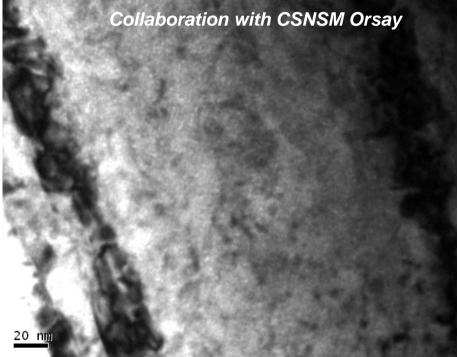
TEM measurements by C. Sabathier et al. (CEA/DEC Cadarache)

Methodology

- In situ TEM experiments carried out in Orsay: IRMA (now JANNUS beam line)
- 390 keV Xe implanted UO₂ thin foils (Rp~60nm)
- Samples are observed at increasing doses and annealed for approx. 20 min. at various temperatures

Xe bubble precipitation: main results of TEM study

[Xe]	2.10 ¹⁵ Xe/cm ² (0.4 at.%)	1.10 ¹⁶ Xe/cm ² (2 at.%)
T _{thresh.}	600°C	400°C
Size (nm)	~ 1	2


$$T_{thres.} = f(C_{Xe})$$

defect concentrations

Annealing conditions	400°C ~ 20 min	600°C ~ 20 min
Bubble density (b/m³)	$\begin{array}{c} 3.0 \ .10^{23} \\ \pm 1.0.10^{23} \end{array}$	4.0 .10 ²³ ±1.0.10 ²³
Bubble size (nm)	1.7 ± 0.3 nm	1.8 ± 0.3 nm

C. Sabathier et al. NIMB 266, 3027 (2008)

TEM observations on 2 at.% sample annealed at 600°C for 20 minutes

Same results obtained on irradiated UO₂ fuel, 49 GWd/Mt (0.5 at%), T~600℃ : 4.3 10²³ b/m³ [Nogita *et al. NIMB* 141, 481 (1998)]

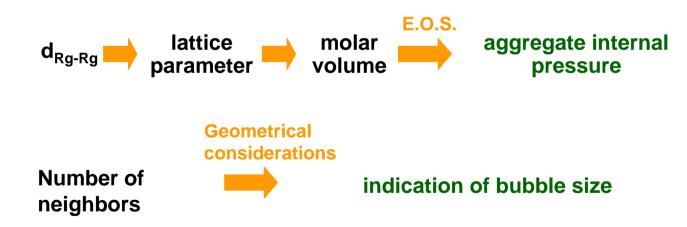
What information can we get from X-ray absorption spectroscopy (XAS)?

Determination of element local environment

EXAFS & XANES XANES EXAFS **Extended X-ray Absorption** X-ray Absorption Fine Structure Near Edge Structure Inter-atomic distances •Oxidation state Number of nearest Absorption Local symmetry neighbours Thermal agitation **Complete description of** 1°RG-RG distance local environment 17200 17400 17600 17800 18000 17000 Energie (eV)

XAS sample preparation

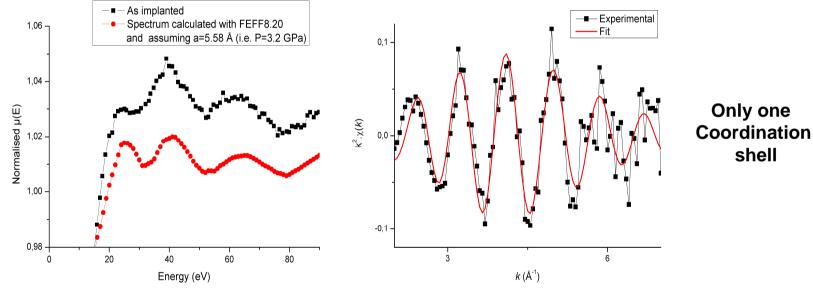
- Polycrystalline UO₂ pellets
- Ion Xe implantation Influence of concentration on bubble precipitation
 - Multi-energy ion implantation 2 at.% ($E \le 800 \text{ keV}$)
 - Single-energy implantation ~8 at.% max (E=800 keV,10¹⁷ Xe.cm⁻³, depth ~140 nm from surface)
- Annealing for precipitation/stability study of xenon bubbles
 - Annealing between 600°C and 800°C under reducing atmosphere



XAS experiment performed and data interpretation methodology

- Probe at the atomic scale, work performed mainly at low T(4-11K)
- Experiments performed on ESRF/FAME (BM30B), at Xe (34,5 keV) & Kr (14,3 keV) K-edges

Information relative to rare gas aggregates



XAS bubble characterization: concentration effect

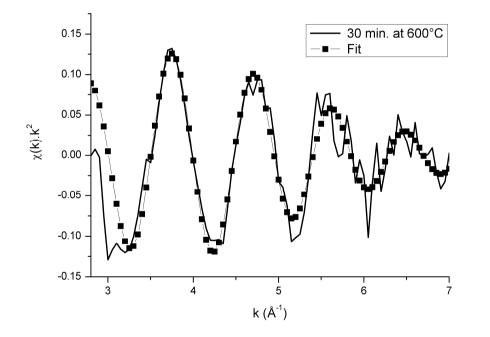
As implanted samples

- 2 at. % sample : no Xe-Xe bonds, no bubble nucleation / same conclusion using TEM
- 8 at. % sample : bubble nucleation occurs

Xe-Xe distance estimated at 3.97 \pm 0,02 Å against 4.39 Å for un-pressurised crystal Then using an E.O.S., P=f(V,T) (K. Asaumi, Phys Rev. B 29(1984))

- P. Garcia *et al.*, J. Nucl. Mater. **352**, 136 (2006)
- P. Martin *et al* Nucl. Instrum. and Meth. B **266**, 2887 (2008)

P ~ 2.8 ± 0.3 GPa Bubble size ~ 1-2 nm



XAS and TEM characterization of Xe bubbles in UO₂ XAS bubble characterization: temperature effect

After annealing

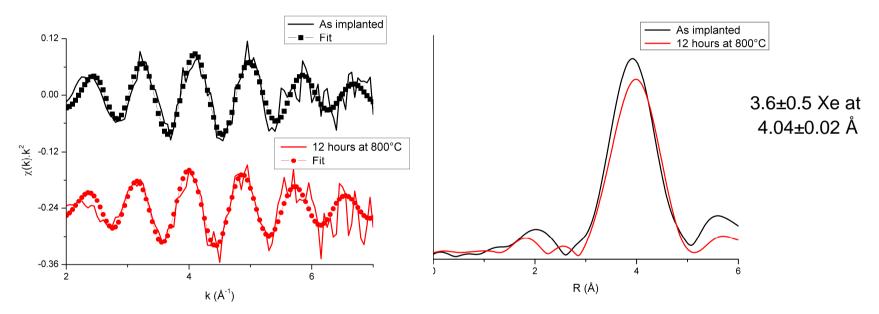
2 at .% Xe sample / annealing 600°C during 30 minutes

Xe-Xe bonds bubble nucleation occurs

P. Garcia *et al.*, J. Nucl. Mater. **352**, 136 (2006) P. Martin *et al* Nucl. Instrum. and Meth. B **266**, 2887 (2008)

Same Xe local environment observed for the 8 at.% sample and for the as-implanted sample

P~ 2.8 ± 0.3 GPa, Bubble size ~ 1-2 nm



XAS and TEM characterization of Xe bubbles in UO₂ XAS bubble characterization: temperature effect

After annealing

■ 8 at .% Xe sample / annealing 12 hours at 600℃ and 800℃

Small increase of Xe-Xe distance : Decrease of aggregate internal pressure P~ 2.0 ± 0.3 GPa,

No variation of N : Xenon bubbles remain small Bubble size ~ 1-2 nm

With annealing temperature up to 800° :

Xenon aggregates remain small and highly pressurized (P~2.0 GPa)

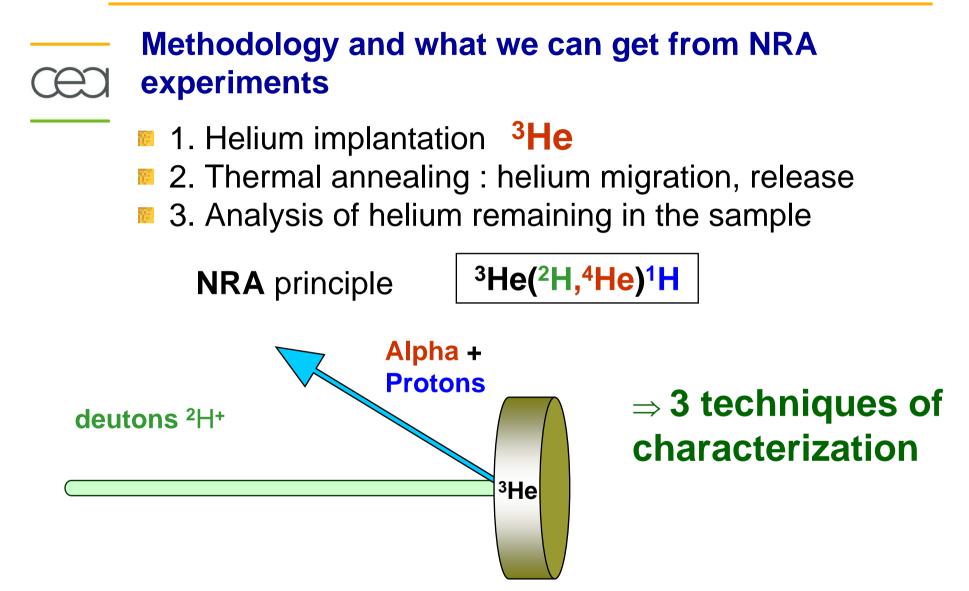
P. Garcia et al., J. Nucl. Mater. 352, 136 (2006) P. Martin et al NIMB. B 266, 2887 (2008)

Coupling XAS and TEM : very useful to characterize rare gas bubbles

- XAS and TEM are efficient tools for characterising nanometer size bubble distributions
- Temperature induces xenon nucleation. So does irradiation by heavy ions (790 Mev Kr) in an inelastic or elastic energy loss regime (not presented): heterogeneous nucleation.
- Heavy ion (790 Mev Kr) irradiation induced xenon re-solution was not observed.
- Pressures within nanometer size rare gas aggregates are extremely high
- Provide very important data to be used in the modeling of nuclear fuel behaviour in pile

Separated effects studies : illustrations

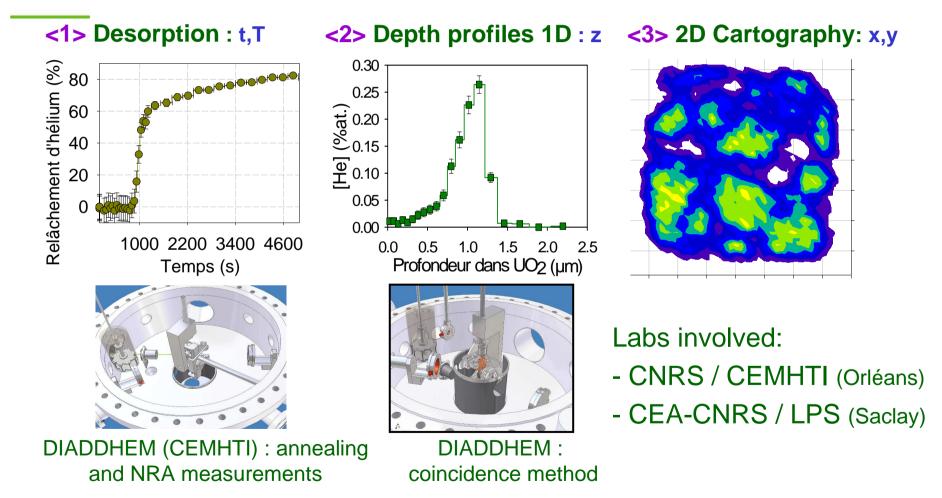
e	C Objective	Studies	As implaid
1	Understand and model fission gas diffusion/ precipitation/release in nuclear oxide fuels	XAS and TEM characterization of Xe bubbles in uranium dioxide	R (Å)
2	Understand and model He behavior in nuclear oxide fuels	Thermal diffusion of helium in uranium dioxide	
3	Oxygen diffusion in relation to p-type doping in UO ₂	Electrical conductivity and diffusion coefficient measurements in UO ₂	<i>f</i>

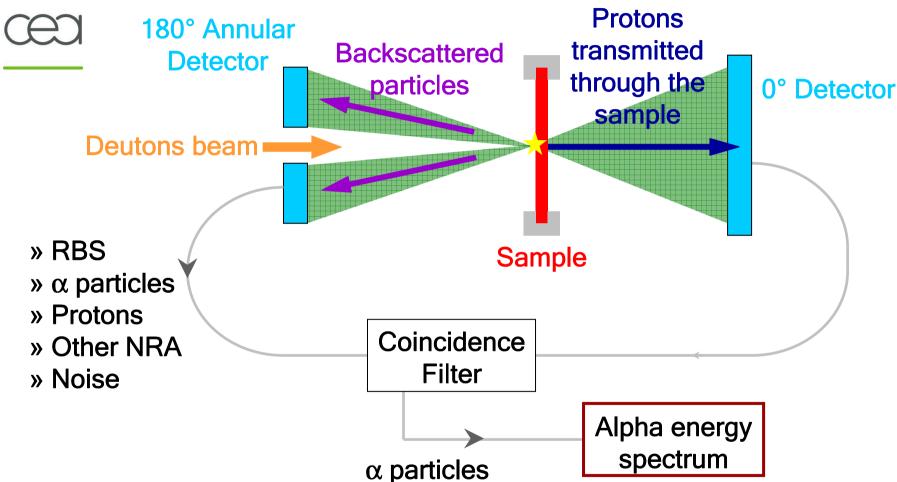


Issue : Understand and model helium behavior in nuclear oxide fuels

- α -decay in spent fuels and minor actinides in fuel \Rightarrow Helium accumulation
- Nuclear reaction analysis (NRA) methods using the ³He(d,α)p reaction to characterize helium behavior in fuel

Studies conducted by Guillaume Martin *et al.* (CEA-Cadarache with CEMHTI Orléans – France)

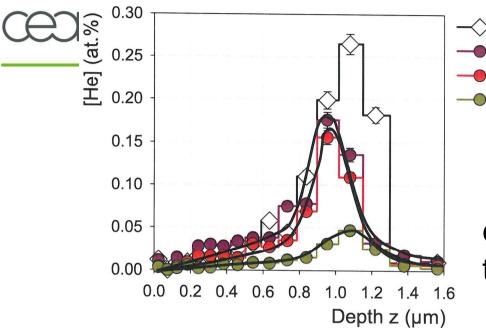




Three techniques for a 3-D characterization of He behavior: space x,y,z, time t, temperature T

1-NRA: helium depth profiling

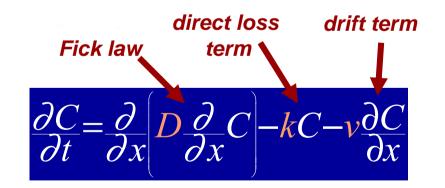
The greater the depth at which the α particle is produced within the sample, the more energy it loses as it reaches the sample surface

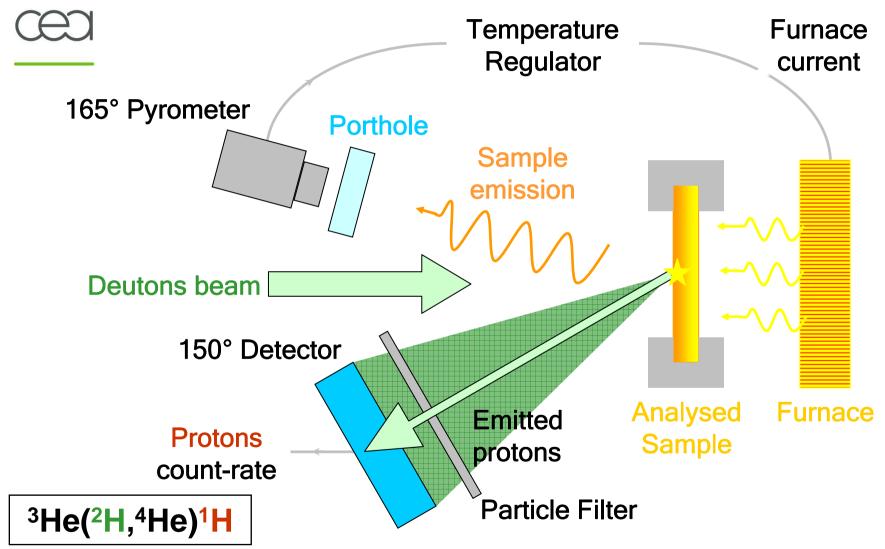


1-NRA: helium depth profiling, temperature effect

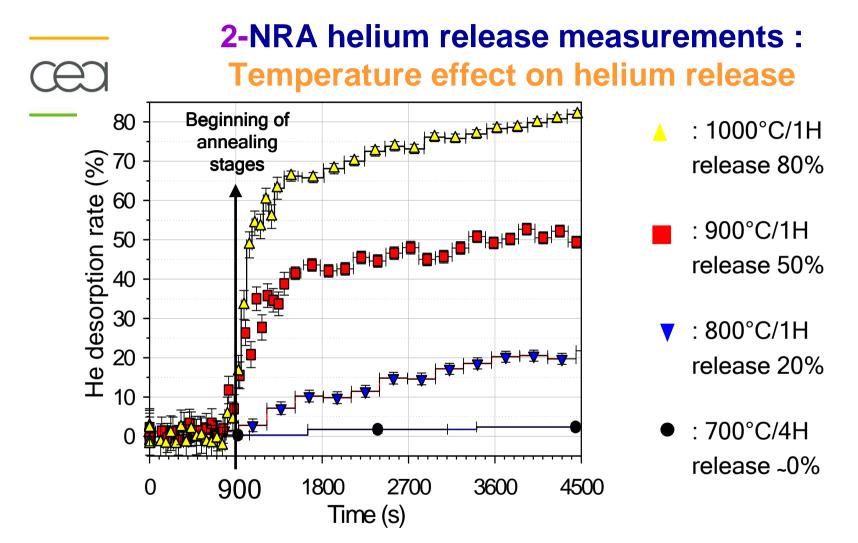
As-implanted 800℃ / 1H

900℃ / 1H

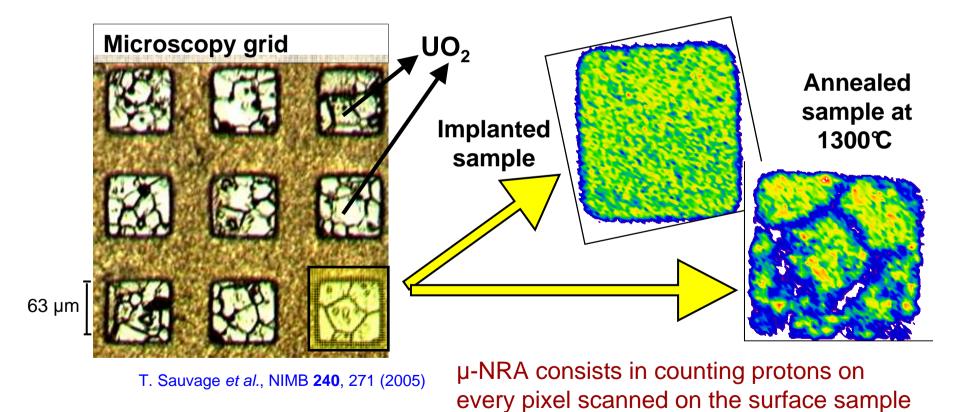

1000℃ / 1H


G.Martin *et al*., J. Nucl. Mater. 357, 198 (2006)

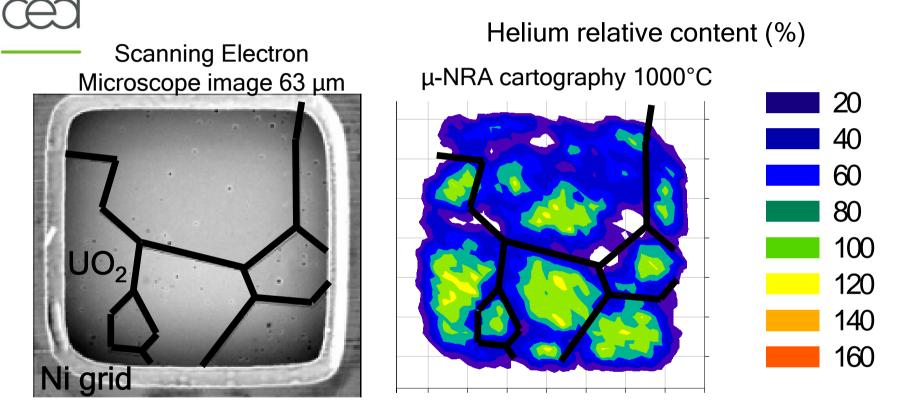
The depth profiles evolution can be modeled with this 1D diffusion equation:


Depth profiles after annealing do not broaden significantly: helium is able to migrate and is then released via diffusion short-cuts such as grain boundaries

2-NRA: helium release measurements


At 800° C, helium release regular and slow. Above 800° C, two successive stages. Fast transient helium release stage.

3- Micro-NRA: helium cartography


Measurement of remaining helium :

- Micrometric beam
- Analyzed area characterized by optic microscopy

CADARACHE

µ–NRA helium cartography : microstructure effect

At 1000°C, depletion width > 3 μ m Helium diffusion higher near grain boundaries

Coupling various NRA techniques offers interesting possibilities to study helium in fuels

Generating data to be used in fuel behavior code

Providing mechanisms to be modeled

Giving helium release stages as a function of temperature

Demonstrating strong effects of microstructure, grain boundaries, to be taken into account in the transport mechanisms

Separated effects studies : illustrations

	Objective	Studies
1	Understand and model fission gas diffusion/ precipitation/release in nuclear oxide fuels	XAS and TEM characterization of Xe bubbles in uranium dioxide
2	Understand and model He behavior in nuclear oxide fuels	Thermal diffusion of helium in uranium dioxide
3	Oxygen diffusion in relation to p-type doping in UO ₂	Electrical conductivity and diffusion coefficient measurements in UO ₂

The second se

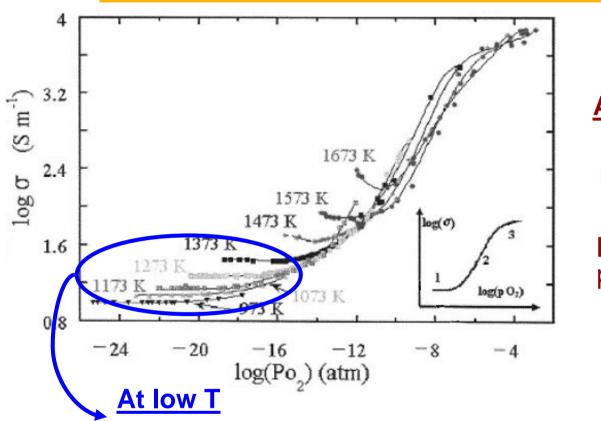
10⁴/T (T in K)

Oxygen diffusion in relation to p-type doping in UO₂

Aim: generate experimental data that can be compared to theoretical approaches, such as the nature of the defects, their migration mechanisms, ...

Basic theory & Methodology

Combination of electrical conductivity and of intrinsic diffusion coefficients


Experimental

Techniques and materials **Electrical conductivity** results Diffusion coefficient measurements by secondary ion mass spectroscopy (SIMS)

Study led by Philippe Garcia (CEA-Cadarache) P. Garcia, M. Fraczkiewicz, C. Davoisne, G. Carlot, B. Pasquet, G. Baldinozzi, D. Siméone, C. Petot, J. Nucl. Mater. (2010), in press.

Electrical conductivity of UO₂

At higher T:

n-type carriers at low $p(O_2)$

p-type charge carriers at high $p(O_2)$

Low p(O₂): extrinsic behaviour: charge carrier [h^{\circ}] controlled by doping levels, σ independent of p(O₂)

P. Ruello et al. JACS 88, 604 (2005)

At higher p(O₂): intrinsic defects predominate, p-type charge carriers

CADARACHE

Basic equations, at low T, extrinsic regime

Expression for electrical conductivity yields the hole concentration [h] and the enthalpy of migration E^m

$$\sigma = e.\mu^p.[h^\circ] = e.\frac{\mu_o^p.e^{\frac{-E_p^\circ}{k_b \cdot T}}}{T}.[h^\circ]$$

"Simple" charged point defect model

$$\frac{1}{2}O_2 \rightleftharpoons O_i'' + 2.h^\circ \qquad \qquad \emptyset \rightleftharpoons O_i'' + V_O^{\circ\circ}$$

$$K_{O_i} = \frac{[O_i''] \cdot [h^\circ]^2}{\sqrt{p(O_2)}} \qquad \qquad K_{AF} = [O_i''] \cdot [V_O^{\circ\circ}]$$

Assumed equilibria

• Interstitial mechanism $D_O \propto [O_i''].e^{-\frac{E_m^{O_i}}{k_b T}}$

• Vacancy mechanism $D_O \propto [V_O^{\circ\circ}].e^{-\frac{E_m^{V_O}}{k_b T}}$

Objectives

Questions are:

- What mass balance equations?
 - Nature of defects assumed correct?
 - What diffusion mechanism for O?
 - Role of dopant concentration on diffusion properties ?
 - Migration energies, free energies for mass balance equations?

• How do we check the theory?

 Take two materials containing different doping levels: single crystals (SC) / polycrystals (PC)

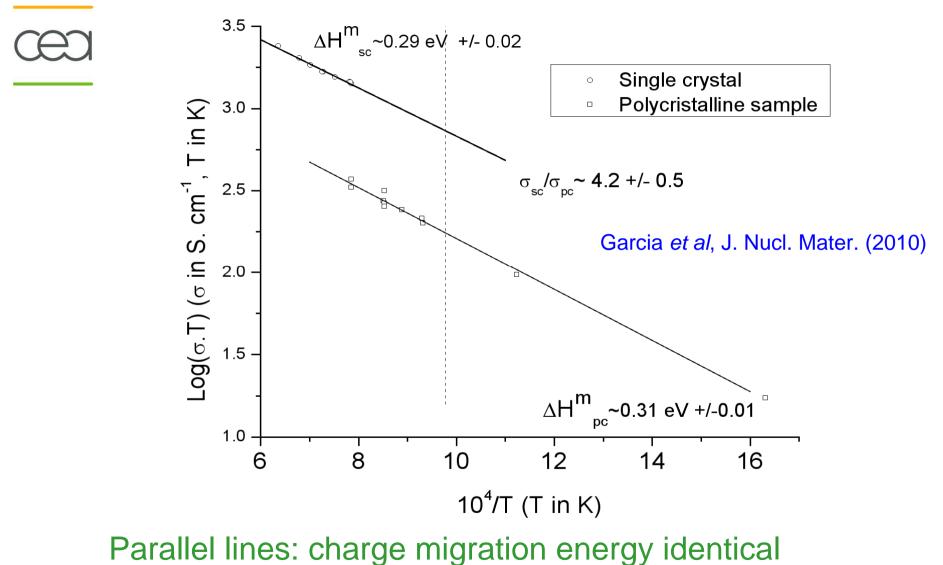
$$- \text{ Measure } \sigma : \frac{\sigma_{sc}}{\sigma_{pc}} = \frac{[h^{\circ}]_{sc}}{[h^{\circ}]_{pc}} = r_{\sigma} \qquad \qquad \text{vacancy mechanism since} \\ D_{O} \propto [V_{O}^{\circ\circ}].e^{-\frac{E_{m}^{V_{O}}}{k_{b}T}} \propto [h^{\circ}]^{2}. \\ - \text{ Measure } D_{o}: \qquad \sqrt{\frac{D_{pc}^{O}}{D_{sc}^{O}}} ? \frac{1}{r_{\sigma}} \text{ or } r_{\sigma} \qquad \qquad \text{interstitial mechanism since} \\ D_{O} \propto [O_{i}''].e^{-\frac{E_{m}^{O}}{k_{b}T}} \propto \frac{1}{[h^{\circ}]^{2}}. \end{cases}$$

Materials used

Single crystals prepared from very large grain polycrystalline bloc

- Obtained from cooling of a molten mass of UO_2
- Grain size ~ 1-2mm

element	Р	SC
Cr	7	522
Fe	36	1649
Gd	9	
Mo	2	
Mn		59
Ca		1423
Ni		190
sum ppm	51	5516
Total concentration	1.2-2.1 10 ¹⁸ cm ⁻³	1.3-1.710 ²⁰ cm ⁻³

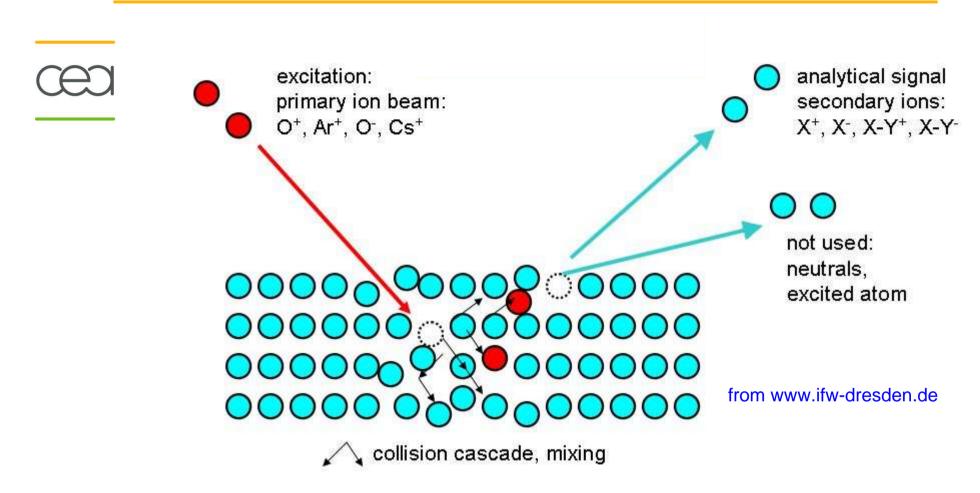

•Polycrystalline samples

High density (98.5 % th.d)
 annealed at 1700℃ for 80 hours

– Grain size ~ 24 μ m

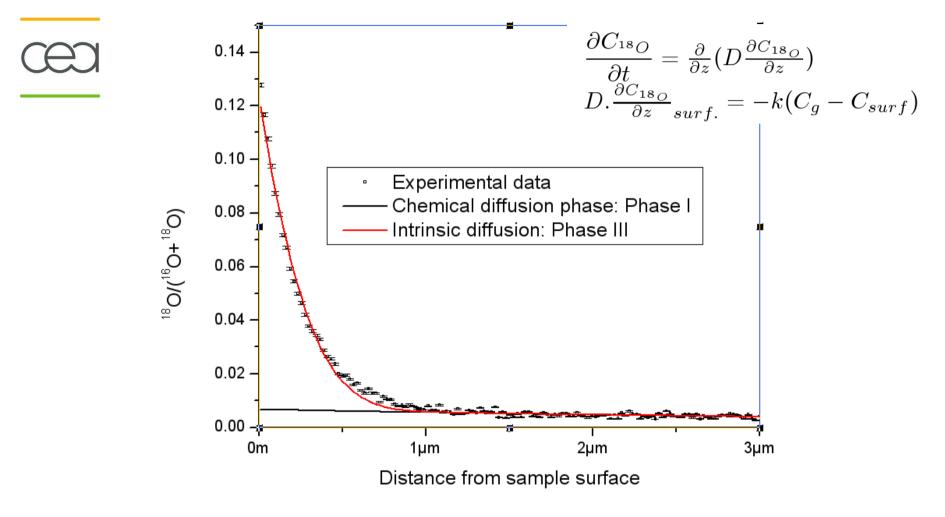
Electrical conductivity at low oxygen potential

IAEA-ICTP Advanced Workshop on Multiscale Modeling of Radiation Damage Mechanism in Materials Trieste, Italy, 12-23 April 2010


34

Oxygen diffusion experiments in UO₂

- Gas-solid isotopic exchange method, vapour enriched in ¹⁸O₂
- Annealing conditions:
 - Simultaneous annealing of polycrystalline and single crystals
 - At 750℃ and lowest oxygen potential (~ 2.8 10⁻²² atm.)
- **SIMS** analysis of 2 samples
 - 10 kV Cs beam (beam current between 30-100 nA), 5 kV extraction field
 - beam rastered over 150x150 μm^2 , extracted from an area 30 μm in diameter
 - Several craters in each sample
 - ¹⁶O, ¹⁸O, ²³⁵U, ²³⁵U¹⁶O₂ signals were systematically collected
- Crater depths determined using optical method (chromatic confocal microscopy)


Principles of SIMS

Conversion time dependence to depth dependence yields chemical composition as a function of depth

Results obtained on a polycrystalline sample

Model reproduces satisfactorily the experimental data Garcia et al, J. Nucl. Mater. (2010)

Summary of the measurements

	profile	$D(m^2.s^{-1})$	$k \ (m.s^{-1})$
Œ	S1	$5.4 \times 10^{-19} \pm 10^{-19}$	$4.8 \times 10^{-13} \ m^2 . s^{-1} \pm 6 \times 10^{-14}$
	S2	$6.4 \times 10^{-19} \pm 1.6 \times 10^{-19}$	$3.2 \times 10^{-13} \ m^2 . s^{-1} \pm 4 \times 10^{-14}$
	S3	$7.6 \times 10^{-19} \pm 10^{-19}$	$7.6 \times 10^{-13} \ m^2.s^{-1} \pm 8 \times 10^{-14}$
	P1	$1.0 \times 10^{-17} \pm 3 \times 10^{-18}$	$4.5 \times 10^{-12} \ m^2 . s^{-1} \pm 7 \times 10^{-13}$
	P2	$1.4 \times 10^{-17} \pm 3 \times 10^{-18}$	$5.3 \times 10^{-12} \ m^2 . s^{-1} \pm 6 \times 10^{-13}$
	P3	$1.8 \times 10^{-17} \pm 2 \times 10^{-18}$	$5.7 \times 10^{-12} \ m^2 . s^{-1} \pm 4 \times 10^{-13}$

Accurate determination of parameters

•
$$r = \sqrt{\frac{D_O^{pc}}{D_O^{sc}}} \sim 4.7 + -0.6 \text{ compared to } 4.2 + -0.5 \text{ for } \left(\frac{\sigma_{sc}}{\sigma_{pc}}\right)$$

 $D_O \propto \frac{1}{[h^\circ]^2} \cdot \sqrt{p(O_2)} \cdot K_{O_i} \cdot e^{-\frac{\Delta H_m^{O_i}}{kT}} + [h^\circ]^2 \cdot \frac{K_{AF}}{K_{O_i}} \cdot \frac{1}{\sqrt{p(Q_2)}} \cdot e^{-\frac{\Delta H_m^{V_O}}{kT}}$

Concluding remarks and prospects

Efficient way of characterising nature of point defects and associated mass balance equations $\frac{1}{2}O_2 \rightleftharpoons O_i^{''} + 2.h^\circ$

- Relevant mass balance equation for UO₂:
- In the extrinsic region studied, doubly charged oxygen interstitials are no doubt the point defects responsible for atomic migration
 First-principles calculations tell us it is an interstitialcy mechanism

 $K_{O_i} = \frac{[O_i''].[h^{\circ}]^2}{\sqrt{p(O_2)}}$

- Oxygen defect concentrations are controlled at low T and p(O₂) by impurity concentration on cation sublattice
- Prospects
 - Determine D_o dependence on all parameters: oxygen potential, impurity concentration and temperature
 - Assess data against *ab initio* calculations
 - formation and migration energies
 - vibrational properties along migration paths

Necessary coupling between separated effects studies, PIE and fuel modeling

The separate effect studies are complementary to the post irradiation examinations

The separate effect studies enable us

to decorrelate and improve understanding of the relevant phenomena (thermal, irradiation, chemical effects)

- Identification of mechanisms at lower scale
- Determination of basic data to be used in the fuel behavior codes

Essential to in-pile fuel behavior modeling Essential to validate approximations in modeling

General conclusion

- Various communities have to work together:
- modelling and experiment
- applied physics and basic research

Acknowledgements

CEA Cadarache / Fuel Study Department

<u>From the lab</u>: C. Valot (head), M. Bertolus, B. Dorado, G. Martin, P. Garcia, P. Martin, G. Carlot, C. Sabathier, J. Durinck, C. Davoisne, M. Fraczkiewicz, H. Palancher, C. Martial, J.C. Dumas, J.P. Piron, <u>From the department</u> : B. Pasquet, B. Michel, A. Bouloré, L. Noirot, P. Obry, Y. Guerin

CEA Saclay H. Khodja, C. Rapsaet, L. Van Brutzel, A. Chartier, JP. Crocombette, C. Gueneau CEA Saclay – Ecole Centrale – CNRS : G. Baldinozzi, D. Siméone, C. Petot CEA DAM F. Jollet, B. Amadon, G. Jomard, M. Torrent, F. Bottin IRSN: R. Ducher

Imperial College (UK): R. Grimes, D. Parfitt CNRS (F): MF. Barthe, T. Sauvage, P. Desgardin, E. Gilabert, F. Garrido ITU (D): R. Konings, J. Somers, E. Kotomin, D. Gryaznov, P. van Uffelen, T. Wiss SCK-CEN (B): K. Govers NRG (NL): S. De Groot ESRF FAME BL (F): O. Proux, J.-L. Hazemann, V. Nassif TUM (D): N. Wieschalla, W. Petry, R. Jungwirth AREVA-CERCA (F): C. Jarousse

ACTINET network of excellence

F-BRIDGE European project

