

2138-23

Joint ICTP-IAEA Workshop on Vulnerability of Energy Systems to Climate Change and Extreme Events

19 - 23 April 2010

Impacts of climate change on renewable energy sources in Croatia

Robert Pašičko

United Nations Development Programme Zagreb Croatia

Impacts of Climate Change on Renewable Energy Sources in Croatia

Robert Pašičko UNDP Croatia

Joint ICTP-IAEA Workshop on Vulnerability of Energy Systems to Climate Change and Extreme Events 19-23 April 2010

Contents

- Climate in Croatia
- Power system planning
- Energy system in Croatia
- Photovoltaics
- Hydro
- Wind
- Conclusions

Climate in Croatia

Climate in Croatia is divided into two predominant climate regions:

- Continental (Croatian interior which includes Zagreb and Slavonia)
- Mediterranean (from Istria until Dubrovnik in the south)
- During the 20th century, a decrease in precipitation and an increase in temperature in almost every season experienced
- In the future, Croatia is expected to be hotter and drier especially in the summer
- Future climate change impacts will not be distributed evenly, but different regions in Croatia will have different influences
- Dynamical downscaling by a regional climate model is currently underway at the Croatian Meteorological and Hydrological Service where GCM is used named EH5OM

Power system planning

Power system planning demands long-term approach:

- long planning and construction process (1-12 years)
- long life time of new power plants (25-60 years or longer for hydro with revitalization)
- 5-10% loss of the future planned income can make a difference between economically justified and unjustified power plant – important to have good inputs!

Presentation questions:

- How will climate change influence generation from renewable energy sources in Croatia?
- Which climate variables influence electricity generation?

Domestic energy production

Energy strategy outlook to 2030

2000 MW in wind parks 420 MW in biomass power plants 60 MW in waste-to-energy plants 30 MW in geothermal power plants 250 MW in solar power plants 140 MW in small hydro

6

Photovoltaics – potential

Esg- an average annual irradiated solar energy per square meter

Location	Average annual irradiated solar energy per day (kWh/m ² d)
Croatia, Southern coast	5,0-5,2
Croatia, Northern coast	4,2
Croatia, continental part	3,4-4,2
Central Europe	3,0-3,2
Northern Europe	2,8-3,0
Southern Europe	4,4-5,6

- Southern coast of Croatia is receiving as much solar energy as Greece or Northern Spain

- Some parts of Croatia have more then 2700 hours of sunshine/year!

Photovoltaics – impact from CC

- Temperature
- Number of days under snow cover
- Irradiated energy
- Extreme events
- Time horizon: 2041 -2050 (compared with 1981-1990)

PV – temperature impacts

- "Cell temperature coefficients" differ according to technology and producer (efficiency, power, current, voltage)
- For silicon based cells, for each °C temperature rise efficiency lowers for 0,5%

PV – temperature change

-3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3

Autumn

-3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3

Winter

-3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3

Average temperature increase in summer is 3.5 °C.
With maximal temperature rise of 6 °C, efficiency drop from PVs is up to 3%!

PV – total irradiated energy

Total irradiated energy

- A sum of direct and diffused irradiation
- Mostly influenced by cloudiness
- For the period 2041-2050 expected rise of total irradiation is the highest in summer and autumn (from 8% to 10%)
- Such increase means direct proportional increase of electricity production from PV panel by 8-10% in summer and autumn

PV – irradiation change winter

PV – irradiation change spring

PV – irradiation change summer

PV – irradiation change autumn

PV – other impacts

Number of days under snow cover

- Lower precipitation up to 10%
- Higher temperatures in winter mean less days with snow cover
- Result: more solar energy on PVs, with less need for snow removal

Extreme weather events

- Higher temperatures and less precipitation will result in more forest fires that can affect PV plant; risk hard to quantify, but can be reduced with choice of PV plant location
- Expected increase in strong winds and storm events can influence PV panels with stronger force than designed

Hydro

•Half of electricity produced in Croatia from 2000 – 2007 came from hydro power plants

•50% of installed Croatian power capacities are in hydro

•Average annual share of hydro in total electricity consumption was 39%

Hydro

Most hydro power plants located in Southern Croatia, with water inflow depending on water situation in Bosnia and Herzegovina

Hydro – less precipitation, 2080-2100

Hydro

- Lower precipitation means less water inflow to hydro reservoirs
- Macro-scale hydrological models predict that production from Southern European hydros will decrease between 20-50% by the 2070s (CEC 2007, Lehner et al. 2005)
- Recent experience from new small HPPs in Bosnia and Herzegovina show in some cases 20-30% lower electricity generation than planned (water flow data used were mostly from 1970s)

Cost for replacing 35% loss of hydro production annually: -65 million € (if replaced with coal, 50 €/MWh) -117 million € (if replaced with imported electricity, 84 €/MWh)

Wind energy development

Economical potential – 9 TWh/year (with strong interconnection to neighboring power systems)

Goals:

- In year 2020 1200 MW;
- In year 2030 2000 MW.

Installed wind capacity (MW)

Wind

- Increasing number of studies looking at changes in wind speed and impacts on electricity production
- Two main impacts from CC:
 - Change in wind speed (influence on quantity and timing of the wind resource and electricity produced)
 - Increase in maximal wind speed for which wind power plants are designed (influence on equipment robustness)

$$P = \frac{1}{2}\rho U^3$$

- P Power; U wind speed, ρ air density
- Due to this cubic relationship, 10% change in wind speed could alter energy produced by 13-25% (Baker et al, 1990)
- Wind turbines can extract energy over a defined band of wind speeds, typically between 3 and 25 m/s
- Rise in 1°C changes air density and production by 0,3%

Wind

 Detailed wind downscaling model should be applied to analyze change in wind speed and direction (grid 15 -50 km)

Rise in wind speed in summer in Croatia between 2-6 % expected in 2080s (MAGICC/SCENGEN v. 4.1) This could result in 6-19 % more electricity generated

Change in wind direction can also impact electricity generation from wind power plant

Wind speed variability

- can have significant impact on electricity production from wind power plants:
 - wind speed rises
 - due to the variability, most part of this wind speed rise is unexploited because it is out of the wind speed upper limit

Conclusions

- This work represents a first step in exploring the potential changes in production from PVs, wind and hydro in Croatia due to climate change
- Power planning demands detailed understanding of long term availability of these potentials
- PVs positive correlation with CC up to 5% higher electricity generation until 2050 (summer, due to lower cloudiness)
- Hydro negative correlation with CC between 10-40% lower electricity generation in 2070s (less precipitation)
- Wind positive correlation with CC between 6-20% higher electricity generation in 2080s (rise in wind speed)

